summaryrefslogtreecommitdiff
path: root/src/pkg/runtime/signal_linux_arm.c
blob: c26caa7cdb3283c53e7ff2d02d3137deeeebce3a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "runtime.h"
#include "defs_GOOS_GOARCH.h"
#include "signals_GOOS.h"
#include "os_GOOS.h"

void
runtime·dumpregs(Sigcontext *r)
{
	runtime·printf("trap    %x\n", r->trap_no);
	runtime·printf("error   %x\n", r->error_code);
	runtime·printf("oldmask %x\n", r->oldmask);
	runtime·printf("r0      %x\n", r->arm_r0);
	runtime·printf("r1      %x\n", r->arm_r1);
	runtime·printf("r2      %x\n", r->arm_r2);
	runtime·printf("r3      %x\n", r->arm_r3);
	runtime·printf("r4      %x\n", r->arm_r4);
	runtime·printf("r5      %x\n", r->arm_r5);
	runtime·printf("r6      %x\n", r->arm_r6);
	runtime·printf("r7      %x\n", r->arm_r7);
	runtime·printf("r8      %x\n", r->arm_r8);
	runtime·printf("r9      %x\n", r->arm_r9);
	runtime·printf("r10     %x\n", r->arm_r10);
	runtime·printf("fp      %x\n", r->arm_fp);
	runtime·printf("ip      %x\n", r->arm_ip);
	runtime·printf("sp      %x\n", r->arm_sp);
	runtime·printf("lr      %x\n", r->arm_lr);
	runtime·printf("pc      %x\n", r->arm_pc);
	runtime·printf("cpsr    %x\n", r->arm_cpsr);
	runtime·printf("fault   %x\n", r->fault_address);
}

/*
 * This assembler routine takes the args from registers, puts them on the stack,
 * and calls sighandler().
 */
extern void runtime·sigtramp(void);
extern void runtime·sigreturn(void);	// calls runtime·sigreturn

void
runtime·sighandler(int32 sig, Siginfo *info, void *context, G *gp)
{
	Ucontext *uc;
	Sigcontext *r;
	SigTab *t;

	uc = context;
	r = &uc->uc_mcontext;

	if(sig == SIGPROF) {
		runtime·sigprof((uint8*)r->arm_pc, (uint8*)r->arm_sp, (uint8*)r->arm_lr, gp);
		return;
	}

	t = &runtime·sigtab[sig];
	if(info->si_code != SI_USER && (t->flags & SigPanic)) {
		if(gp == nil || gp == m->g0)
			goto Throw;
		// Make it look like a call to the signal func.
		// Have to pass arguments out of band since
		// augmenting the stack frame would break
		// the unwinding code.
		gp->sig = sig;
		gp->sigcode0 = info->si_code;
		gp->sigcode1 = r->fault_address;
		gp->sigpc = r->arm_pc;

		// We arrange lr, and pc to pretend the panicking
		// function calls sigpanic directly.
		// Always save LR to stack so that panics in leaf
		// functions are correctly handled. This smashes
		// the stack frame but we're not going back there
		// anyway.
		r->arm_sp -= 4;
		*(uint32 *)r->arm_sp = r->arm_lr;
		// Don't bother saving PC if it's zero, which is
		// probably a call to a nil func: the old link register
		// is more useful in the stack trace.
		if(r->arm_pc != 0)
			r->arm_lr = r->arm_pc;
		// In case we are panicking from external C code
		r->arm_r10 = (uintptr)gp;
		r->arm_r9 = (uintptr)m;
		r->arm_pc = (uintptr)runtime·sigpanic;
		return;
	}

	if(info->si_code == SI_USER || (t->flags & SigNotify))
		if(runtime·sigsend(sig))
			return;
	if(t->flags & SigKill)
		runtime·exit(2);
	if(!(t->flags & SigThrow))
		return;

Throw:
	if(runtime·panicking)	// traceback already printed
		runtime·exit(2);
	runtime·panicking = 1;

	if(sig < 0 || sig >= NSIG)
		runtime·printf("Signal %d\n", sig);
	else
		runtime·printf("%s\n", runtime·sigtab[sig].name);

	runtime·printf("PC=%x\n", r->arm_pc);
	if(m->lockedg != nil && m->ncgo > 0 && gp == m->g0) {
		runtime·printf("signal arrived during cgo execution\n");
		gp = m->lockedg;
	}
	runtime·printf("\n");

	if(runtime·gotraceback()){
		runtime·traceback((void*)r->arm_pc, (void*)r->arm_sp, (void*)r->arm_lr, gp);
		runtime·tracebackothers(gp);
		runtime·printf("\n");
		runtime·dumpregs(r);
	}

//	breakpoint();
	runtime·exit(2);
}

void
runtime·signalstack(byte *p, int32 n)
{
	Sigaltstack st;

	st.ss_sp = p;
	st.ss_size = n;
	st.ss_flags = 0;
	if(p == nil)
		st.ss_flags = SS_DISABLE;
	runtime·sigaltstack(&st, nil);
}

void
runtime·setsig(int32 i, void (*fn)(int32, Siginfo*, void*, G*), bool restart)
{
	Sigaction sa;

	// If SIGHUP handler is SIG_IGN, assume running
	// under nohup and do not set explicit handler.
	if(i == SIGHUP) {
		runtime·memclr((byte*)&sa, sizeof sa);
		if(runtime·rt_sigaction(i, nil, &sa, sizeof(sa.sa_mask)) != 0)
			runtime·throw("rt_sigaction read failure");
		if(sa.sa_handler == SIG_IGN)
			return;
	}

	runtime·memclr((byte*)&sa, sizeof sa);
	sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER;
	if(restart)
		sa.sa_flags |= SA_RESTART;
	sa.sa_mask = ~0ULL;
	sa.sa_restorer = (void*)runtime·sigreturn;
	if(fn == runtime·sighandler)
		fn = (void*)runtime·sigtramp;
	sa.sa_handler = fn;
	if(runtime·rt_sigaction(i, &sa, nil, sizeof(sa.sa_mask)) != 0)
		runtime·throw("rt_sigaction failure");
}

#define AT_NULL		0
#define AT_PLATFORM	15 // introduced in at least 2.6.11
#define AT_HWCAP	16 // introduced in at least 2.6.11
#define AT_RANDOM	25 // introduced in 2.6.29
#define HWCAP_VFP	(1 << 6) // introduced in at least 2.6.11
#define HWCAP_VFPv3	(1 << 13) // introduced in 2.6.30
static uint32 runtime·randomNumber;
uint8  runtime·armArch = 6;	// we default to ARMv6
uint32 runtime·hwcap;	// set by setup_auxv
uint8  runtime·goarm;	// set by 5l

void
runtime·checkgoarm(void)
{
	if(runtime·goarm > 5 && !(runtime·hwcap & HWCAP_VFP)) {
		runtime·printf("runtime: this CPU has no floating point hardware, so it cannot run\n");
		runtime·printf("this GOARM=%d binary. Recompile using GOARM=5.\n", runtime·goarm);
		runtime·exit(1);
	}
	if(runtime·goarm > 6 && !(runtime·hwcap & HWCAP_VFPv3)) {
		runtime·printf("runtime: this CPU has no VFPv3 floating point hardware, so it cannot run\n");
		runtime·printf("this GOARM=%d binary. Recompile using GOARM=6.\n", runtime·goarm);
		runtime·exit(1);
	}
}

#pragma textflag 7
void
runtime·setup_auxv(int32 argc, void *argv_list)
{
	byte **argv;
	byte **envp;
	byte *rnd;
	uint32 *auxv;
	uint32 t;

	argv = &argv_list;

	// skip envp to get to ELF auxiliary vector.
	for(envp = &argv[argc+1]; *envp != nil; envp++)
		;
	envp++;
	
	for(auxv=(uint32*)envp; auxv[0] != AT_NULL; auxv += 2) {
		switch(auxv[0]) {
		case AT_RANDOM: // kernel provided 16-byte worth of random data
			if(auxv[1]) {
				rnd = (byte*)auxv[1];
				runtime·randomNumber = rnd[4] | rnd[5]<<8 | rnd[6]<<16 | rnd[7]<<24;
			}
			break;
		case AT_PLATFORM: // v5l, v6l, v7l
			if(auxv[1]) {
				t = *(uint8*)(auxv[1]+1);
				if(t >= '5' && t <= '7')
					runtime·armArch = t - '0';
			}
			break;
		case AT_HWCAP: // CPU capability bit flags
			runtime·hwcap = auxv[1];
			break;
		}
	}
}

#pragma textflag 7
int64
runtime·cputicks(void)
{
	// Currently cputicks() is used in blocking profiler and to seed runtime·fastrand1().
	// runtime·nanotime() is a poor approximation of CPU ticks that is enough for the profiler.
	// runtime·randomNumber provides better seeding of fastrand1.
	return runtime·nanotime() + runtime·randomNumber;
}