summaryrefslogtreecommitdiff
path: root/src/pkg/runtime/slice.c
blob: dd92a59a9d959ae8474c2ac90da7f9d2ca3b5310 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "runtime.h"
#include "arch_GOARCH.h"
#include "type.h"
#include "typekind.h"
#include "malloc.h"
#include "race.h"

static	bool	debug	= 0;

static	void	makeslice1(SliceType*, intgo, intgo, Slice*);
static	void	growslice1(SliceType*, Slice, intgo, Slice *);
	void	runtime·copy(Slice to, Slice fm, uintptr width, intgo ret);

// see also unsafe·NewArray
// makeslice(typ *Type, len, cap int64) (ary []any);
void
runtime·makeslice(SliceType *t, int64 len, int64 cap, Slice ret)
{
	// NOTE: The len > MaxMem/elemsize check here is not strictly necessary,
	// but it produces a 'len out of range' error instead of a 'cap out of range' error
	// when someone does make([]T, bignumber). 'cap out of range' is true too,
	// but since the cap is only being supplied implicitly, saying len is clearer.
	// See issue 4085.
	if(len < 0 || (intgo)len != len || t->elem->size > 0 && len > MaxMem / t->elem->size)
		runtime·panicstring("makeslice: len out of range");

	if(cap < len || (intgo)cap != cap || t->elem->size > 0 && cap > MaxMem / t->elem->size)
		runtime·panicstring("makeslice: cap out of range");

	makeslice1(t, len, cap, &ret);

	if(debug) {
		runtime·printf("makeslice(%S, %D, %D); ret=",
			*t->string, len, cap);
		runtime·printslice(ret);
	}
}

// Dummy word to use as base pointer for make([]T, 0).
// Since you cannot take the address of such a slice,
// you can't tell that they all have the same base pointer.
uintptr runtime·zerobase;

static void
makeslice1(SliceType *t, intgo len, intgo cap, Slice *ret)
{
	ret->len = len;
	ret->cap = cap;
	ret->array = runtime·cnewarray(t->elem, cap);
}

// appendslice(type *Type, x, y, []T) []T
#pragma textflag 7
void
runtime·appendslice(SliceType *t, Slice x, Slice y, Slice ret)
{
	intgo m;
	uintptr w;
	void *pc;
	uint8 *p, *q;

	m = x.len+y.len;
	w = t->elem->size;

	if(m < x.len)
		runtime·throw("append: slice overflow");

	if(m > x.cap)
		growslice1(t, x, m, &ret);
	else
		ret = x;

	if(raceenabled) {
		// Don't mark read/writes on the newly allocated slice.
		pc = runtime·getcallerpc(&t);
		// read x[:len]
		if(m > x.cap)
			runtime·racereadrangepc(x.array, x.len*w, w, pc, runtime·appendslice);
		// read y
		runtime·racereadrangepc(y.array, y.len*w, w, pc, runtime·appendslice);
		// write x[len(x):len(x)+len(y)]
		if(m <= x.cap)
			runtime·racewriterangepc(ret.array+ret.len*w, y.len*w, w, pc, runtime·appendslice);
	}

	// A very common case is appending bytes. Small appends can avoid the overhead of memmove.
	// We can generalize a bit here, and just pick small-sized appends.
	p = ret.array+ret.len*w;
	q = y.array;
	w *= y.len;
	if(w <= appendCrossover) {
		if(p <= q || w <= p-q) // No overlap.
			while(w-- > 0)
				*p++ = *q++;
		else {
			p += w;
			q += w;
			while(w-- > 0)
				*--p = *--q;
		}
	} else {
		runtime·memmove(p, q, w);
	}
	ret.len += y.len;
	FLUSH(&ret);
}


// appendstr([]byte, string) []byte
#pragma textflag 7
void
runtime·appendstr(SliceType *t, Slice x, String y, Slice ret)
{
	intgo m;
	void *pc;
	uintptr w;
	uint8 *p, *q;

	m = x.len+y.len;

	if(m < x.len)
		runtime·throw("append: string overflow");

	if(m > x.cap)
		growslice1(t, x, m, &ret);
	else
		ret = x;

	if(raceenabled) {
		// Don't mark read/writes on the newly allocated slice.
		pc = runtime·getcallerpc(&t);
		// read x[:len]
		if(m > x.cap)
			runtime·racereadrangepc(x.array, x.len, 1, pc, runtime·appendstr);
		// write x[len(x):len(x)+len(y)]
		if(m <= x.cap)
			runtime·racewriterangepc(ret.array+ret.len, y.len, 1, pc, runtime·appendstr);
	}

	// Small appends can avoid the overhead of memmove.
	w = y.len;
	p = ret.array+ret.len;
	q = y.str;
	if(w <= appendCrossover) {
		while(w-- > 0)
			*p++ = *q++;
	} else {
		runtime·memmove(p, q, w);
	}
	ret.len += y.len;
	FLUSH(&ret);
}


// growslice(type *Type, x, []T, n int64) []T
void
runtime·growslice(SliceType *t, Slice old, int64 n, Slice ret)
{
	int64 cap;
	void *pc;

	if(n < 1)
		runtime·panicstring("growslice: invalid n");

	cap = old.cap + n;

	if((intgo)cap != cap || cap < old.cap || (t->elem->size > 0 && cap > MaxMem/t->elem->size))
		runtime·panicstring("growslice: cap out of range");

	if(raceenabled) {
		pc = runtime·getcallerpc(&t);
		runtime·racereadrangepc(old.array, old.len*t->elem->size, t->elem->size, pc, runtime·growslice);
	}

	growslice1(t, old, cap, &ret);

	FLUSH(&ret);

	if(debug) {
		runtime·printf("growslice(%S,", *t->string);
		runtime·printslice(old);
		runtime·printf(", new cap=%D) =", cap);
		runtime·printslice(ret);
	}
}

static void
growslice1(SliceType *t, Slice x, intgo newcap, Slice *ret)
{
	intgo m;

	m = x.cap;
	
	// Using newcap directly for m+m < newcap handles
	// both the case where m == 0 and also the case where
	// m+m/4 wraps around, in which case the loop
	// below might never terminate.
	if(m+m < newcap)
		m = newcap;
	else {
		do {
			if(x.len < 1024)
				m += m;
			else
				m += m/4;
		} while(m < newcap);
	}
	makeslice1(t, x.len, m, ret);
	runtime·memmove(ret->array, x.array, ret->len * t->elem->size);
}

// copy(to any, fr any, wid uintptr) int
#pragma textflag 7
void
runtime·copy(Slice to, Slice fm, uintptr width, intgo ret)
{
	void *pc;

	if(fm.len == 0 || to.len == 0 || width == 0) {
		ret = 0;
		goto out;
	}

	ret = fm.len;
	if(to.len < ret)
		ret = to.len;

	if(raceenabled) {
		pc = runtime·getcallerpc(&to);
		runtime·racewriterangepc(to.array, ret*width, width, pc, runtime·copy);
		runtime·racereadrangepc(fm.array, ret*width, width, pc, runtime·copy);
	}

	if(ret == 1 && width == 1) {	// common case worth about 2x to do here
		*to.array = *fm.array;	// known to be a byte pointer
	} else {
		runtime·memmove(to.array, fm.array, ret*width);
	}

out:
	FLUSH(&ret);

	if(debug) {
		runtime·prints("main·copy: to=");
		runtime·printslice(to);
		runtime·prints("; fm=");
		runtime·printslice(fm);
		runtime·prints("; width=");
		runtime·printint(width);
		runtime·prints("; ret=");
		runtime·printint(ret);
		runtime·prints("\n");
	}
}

#pragma textflag 7
void
runtime·slicestringcopy(Slice to, String fm, intgo ret)
{
	void *pc;

	if(fm.len == 0 || to.len == 0) {
		ret = 0;
		goto out;
	}

	ret = fm.len;
	if(to.len < ret)
		ret = to.len;

	if(raceenabled) {
		pc = runtime·getcallerpc(&to);
		runtime·racewriterangepc(to.array, ret, 1, pc, runtime·slicestringcopy);
	}

	runtime·memmove(to.array, fm.str, ret);

out:
	FLUSH(&ret);
}

void
runtime·printslice(Slice a)
{
	runtime·prints("[");
	runtime·printint(a.len);
	runtime·prints("/");
	runtime·printint(a.cap);
	runtime·prints("]");
	runtime·printpointer(a.array);
}