1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Runtime symbol table parsing.
//
// The Go tools use a symbol table derived from the Plan 9 symbol table
// format. The symbol table is kept in its own section treated as
// read-only memory when the binary is running: the binary consults the
// table.
//
// The format used by Go 1.0 was basically the Plan 9 format. Each entry
// is variable sized but had this format:
//
// 4-byte value, big endian
// 1-byte type ([A-Za-z] + 0x80)
// name, NUL terminated (or for 'z' and 'Z' entries, double-NUL terminated)
// 4-byte Go type address, big endian (new in Go)
//
// In order to support greater interoperation with standard toolchains,
// Go 1.1 uses a more flexible yet smaller encoding of the entries.
// The overall structure is unchanged from Go 1.0 and, for that matter,
// from Plan 9.
//
// The Go 1.1 table is a re-encoding of the data in a Go 1.0 table.
// To identify a new table as new, it begins one of two eight-byte
// sequences:
//
// FF FF FF FD 00 00 00 xx - big endian new table
// FD FF FF FF 00 00 00 xx - little endian new table
//
// This sequence was chosen because old tables stop at an entry with type
// 0, so old code reading a new table will see only an empty table. The
// first four bytes are the target-endian encoding of 0xfffffffd. The
// final xx gives AddrSize, the width of a full-width address.
//
// After that header, each entry is encoded as follows.
//
// 1-byte type (0-51 + two flag bits)
// AddrSize-byte value, host-endian OR varint-encoded value
// AddrSize-byte Go type address OR nothing
// [n] name, terminated as before
//
// The type byte comes first, but 'A' encodes as 0 and 'a' as 26, so that
// the type itself is only in the low 6 bits. The upper two bits specify
// the format of the next two fields. If the 0x40 bit is set, the value
// is encoded as an full-width 4- or 8-byte target-endian word. Otherwise
// the value is a varint-encoded number. If the 0x80 bit is set, the Go
// type is present, again as a 4- or 8-byte target-endian word. If not,
// there is no Go type in this entry. The NUL-terminated name ends the
// entry.
#include "runtime.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
#include "arch_GOARCH.h"
#include "malloc.h"
extern byte pclntab[], epclntab[], symtab[], esymtab[];
typedef struct Sym Sym;
struct Sym
{
uintptr value;
byte symtype;
byte *name;
// byte *gotype;
};
static uintptr mainoffset;
// A dynamically allocated string containing multiple substrings.
// Individual strings are slices of hugestring.
static String hugestring;
static int32 hugestring_len;
extern void main·main(void);
static uintptr
readword(byte **pp, byte *ep)
{
byte *p;
p = *pp;
if(ep - p < sizeof(void*)) {
*pp = ep;
return 0;
}
*pp = p + sizeof(void*);
// Hairy, but only one of these four cases gets compiled.
if(sizeof(void*) == 8) {
if(BigEndian) {
return ((uint64)p[0]<<56) | ((uint64)p[1]<<48) | ((uint64)p[2]<<40) | ((uint64)p[3]<<32) |
((uint64)p[4]<<24) | ((uint64)p[5]<<16) | ((uint64)p[6]<<8) | ((uint64)p[7]);
}
return ((uint64)p[7]<<56) | ((uint64)p[6]<<48) | ((uint64)p[5]<<40) | ((uint64)p[4]<<32) |
((uint64)p[3]<<24) | ((uint64)p[2]<<16) | ((uint64)p[1]<<8) | ((uint64)p[0]);
}
if(BigEndian) {
return ((uint32)p[0]<<24) | ((uint32)p[1]<<16) | ((uint32)p[2]<<8) | ((uint32)p[3]);
}
return ((uint32)p[3]<<24) | ((uint32)p[2]<<16) | ((uint32)p[1]<<8) | ((uint32)p[0]);
}
// Walk over symtab, calling fn(&s) for each symbol.
static void
walksymtab(void (*fn)(Sym*))
{
byte *p, *ep, *q;
Sym s;
int32 widevalue, havetype, shift;
p = symtab;
ep = esymtab;
// Table must begin with correct magic number.
if(ep - p < 8 || p[4] != 0x00 || p[5] != 0x00 || p[6] != 0x00 || p[7] != sizeof(void*))
return;
if(BigEndian) {
if(p[0] != 0xff || p[1] != 0xff || p[2] != 0xff || p[3] != 0xfd)
return;
} else {
if(p[0] != 0xfd || p[1] != 0xff || p[2] != 0xff || p[3] != 0xff)
return;
}
p += 8;
while(p < ep) {
s.symtype = p[0]&0x3F;
widevalue = p[0]&0x40;
havetype = p[0]&0x80;
if(s.symtype < 26)
s.symtype += 'A';
else
s.symtype += 'a' - 26;
p++;
// Value, either full-width or varint-encoded.
if(widevalue) {
s.value = readword(&p, ep);
} else {
s.value = 0;
shift = 0;
while(p < ep && (p[0]&0x80) != 0) {
s.value |= (uintptr)(p[0]&0x7F)<<shift;
shift += 7;
p++;
}
if(p >= ep)
break;
s.value |= (uintptr)p[0]<<shift;
p++;
}
// Go type, if present. Ignored but must skip over.
if(havetype)
readword(&p, ep);
// Name.
if(ep - p < 2)
break;
s.name = p;
if(s.symtype == 'z' || s.symtype == 'Z') {
// path reference string - skip first byte,
// then 2-byte pairs ending at two zeros.
q = p+1;
for(;;) {
if(q+2 > ep)
return;
if(q[0] == '\0' && q[1] == '\0')
break;
q += 2;
}
p = q+2;
}else{
q = runtime·mchr(p, '\0', ep);
if(q == nil)
break;
p = q+1;
}
fn(&s);
}
}
// Symtab walker; accumulates info about functions.
static Func *func;
static int32 nfunc;
static byte **fname;
static int32 nfname;
static uint32 funcinit;
static Lock funclock;
static uintptr lastvalue;
static void
dofunc(Sym *sym)
{
Func *f;
switch(sym->symtype) {
case 't':
case 'T':
case 'l':
case 'L':
if(runtime·strcmp(sym->name, (byte*)"etext") == 0)
break;
if(sym->value < lastvalue) {
runtime·printf("symbols out of order: %p before %p\n", lastvalue, sym->value);
runtime·throw("malformed symbol table");
}
lastvalue = sym->value;
if(func == nil) {
nfunc++;
break;
}
f = &func[nfunc++];
f->name = runtime·gostringnocopy(sym->name);
f->entry = sym->value;
if(sym->symtype == 'L' || sym->symtype == 'l')
f->frame = -sizeof(uintptr);
break;
case 'm':
if(nfunc <= 0 || func == nil)
break;
if(runtime·strcmp(sym->name, (byte*)".frame") == 0)
func[nfunc-1].frame = sym->value;
else if(runtime·strcmp(sym->name, (byte*)".locals") == 0)
func[nfunc-1].locals = sym->value;
else if(runtime·strcmp(sym->name, (byte*)".args") == 0)
func[nfunc-1].args = sym->value;
else {
runtime·printf("invalid 'm' symbol named '%s'\n", sym->name);
runtime·throw("mangled symbol table");
}
break;
case 'f':
if(fname == nil) {
if(sym->value >= nfname) {
if(sym->value >= 0x10000) {
runtime·printf("runtime: invalid symbol file index %p\n", sym->value);
runtime·throw("mangled symbol table");
}
nfname = sym->value+1;
}
break;
}
fname[sym->value] = sym->name;
break;
}
}
// put together the path name for a z entry.
// the f entries have been accumulated into fname already.
// returns the length of the path name.
static int32
makepath(byte *buf, int32 nbuf, byte *path)
{
int32 n, len;
byte *p, *ep, *q;
if(nbuf <= 0)
return 0;
p = buf;
ep = buf + nbuf;
*p = '\0';
for(;;) {
if(path[0] == 0 && path[1] == 0)
break;
n = (path[0]<<8) | path[1];
path += 2;
if(n >= nfname)
break;
q = fname[n];
len = runtime·findnull(q);
if(p+1+len >= ep)
break;
if(p > buf && p[-1] != '/')
*p++ = '/';
runtime·memmove(p, q, len+1);
p += len;
}
return p - buf;
}
// appends p to hugestring
static String
gostringn(byte *p, int32 l)
{
String s;
if(l == 0)
return runtime·emptystring;
if(hugestring.str == nil) {
hugestring_len += l;
return runtime·emptystring;
}
s.str = hugestring.str + hugestring.len;
s.len = l;
hugestring.len += s.len;
runtime·memmove(s.str, p, l);
return s;
}
// walk symtab accumulating path names for use by pc/ln table.
// don't need the full generality of the z entry history stack because
// there are no includes in go (and only sensible includes in our c);
// assume code only appear in top-level files.
static void
dosrcline(Sym *sym)
{
static byte srcbuf[1000];
static struct {
String srcstring;
int32 aline;
int32 delta;
} files[200];
static int32 incstart;
static int32 nfunc, nfile, nhist;
Func *f;
int32 i, l;
switch(sym->symtype) {
case 't':
case 'T':
if(hugestring.str == nil)
break;
if(runtime·strcmp(sym->name, (byte*)"etext") == 0)
break;
f = &func[nfunc++];
// find source file
for(i = 0; i < nfile - 1; i++) {
if (files[i+1].aline > f->ln0)
break;
}
f->src = files[i].srcstring;
f->ln0 -= files[i].delta;
break;
case 'z':
if(sym->value == 1) {
// entry for main source file for a new object.
l = makepath(srcbuf, sizeof srcbuf, sym->name+1);
nhist = 0;
nfile = 0;
if(nfile == nelem(files))
return;
files[nfile].srcstring = gostringn(srcbuf, l);
files[nfile].aline = 0;
files[nfile++].delta = 0;
} else {
// push or pop of included file.
l = makepath(srcbuf, sizeof srcbuf, sym->name+1);
if(srcbuf[0] != '\0') {
if(nhist++ == 0)
incstart = sym->value;
if(nhist == 0 && nfile < nelem(files)) {
// new top-level file
files[nfile].srcstring = gostringn(srcbuf, l);
files[nfile].aline = sym->value;
// this is "line 0"
files[nfile++].delta = sym->value - 1;
}
}else{
if(--nhist == 0)
files[nfile-1].delta += sym->value - incstart;
}
}
}
}
// Interpret pc/ln table, saving the subpiece for each func.
static void
splitpcln(void)
{
int32 line;
uintptr pc;
byte *p, *ep;
Func *f, *ef;
int32 pcquant;
if(pclntab == epclntab || nfunc == 0)
return;
switch(thechar) {
case '5':
pcquant = 4;
break;
default: // 6, 8
pcquant = 1;
break;
}
// pc/ln table bounds
p = pclntab;
ep = epclntab;
f = func;
ef = func + nfunc;
pc = func[0].entry; // text base
f->pcln.array = p;
f->pc0 = pc;
line = 0;
for(;;) {
while(p < ep && *p > 128)
pc += pcquant * (*p++ - 128);
// runtime·printf("pc<%p targetpc=%p line=%d\n", pc, targetpc, line);
if(*p == 0) {
if(p+5 > ep)
break;
// 4 byte add to line
line += (p[1]<<24) | (p[2]<<16) | (p[3]<<8) | p[4];
p += 5;
} else if(*p <= 64)
line += *p++;
else
line -= *p++ - 64;
// pc, line now match.
// Because the state machine begins at pc==entry and line==0,
// it can happen - just at the beginning! - that the update may
// have updated line but left pc alone, to tell us the true line
// number for pc==entry. In that case, update f->ln0.
// Having the correct initial line number is important for choosing
// the correct file in dosrcline above.
if(f == func && pc == f->pc0) {
f->pcln.array = p;
f->pc0 = pc + pcquant;
f->ln0 = line;
}
if(f < ef && pc >= (f+1)->entry) {
f->pcln.len = p - f->pcln.array;
f->pcln.cap = f->pcln.len;
do
f++;
while(f < ef && pc >= (f+1)->entry);
f->pcln.array = p;
// pc0 and ln0 are the starting values for
// the loop over f->pcln, so pc must be
// adjusted by the same pcquant update
// that we're going to do as we continue our loop.
f->pc0 = pc + pcquant;
f->ln0 = line;
}
pc += pcquant;
}
if(f < ef) {
f->pcln.len = p - f->pcln.array;
f->pcln.cap = f->pcln.len;
}
}
// Return actual file line number for targetpc in func f.
// (Source file is f->src.)
// NOTE(rsc): If you edit this function, also edit extern.go:/FileLine
int32
runtime·funcline(Func *f, uintptr targetpc)
{
byte *p, *ep;
uintptr pc;
int32 line;
int32 pcquant;
enum {
debug = 0
};
switch(thechar) {
case '5':
pcquant = 4;
break;
default: // 6, 8
pcquant = 1;
break;
}
p = f->pcln.array;
ep = p + f->pcln.len;
pc = f->pc0;
line = f->ln0;
if(debug && !runtime·panicking)
runtime·printf("funcline start pc=%p targetpc=%p line=%d tab=%p+%d\n",
pc, targetpc, line, p, (int32)f->pcln.len);
for(;;) {
// Table is a sequence of updates.
// Each update says first how to adjust the pc,
// in possibly multiple instructions...
while(p < ep && *p > 128)
pc += pcquant * (*p++ - 128);
if(debug && !runtime·panicking)
runtime·printf("pc<%p targetpc=%p line=%d\n", pc, targetpc, line);
// If the pc has advanced too far or we're out of data,
// stop and the last known line number.
if(pc > targetpc || p >= ep)
break;
// ... and then how to adjust the line number,
// in a single instruction.
if(*p == 0) {
if(p+5 > ep)
break;
line += (p[1]<<24) | (p[2]<<16) | (p[3]<<8) | p[4];
p += 5;
} else if(*p <= 64)
line += *p++;
else
line -= *p++ - 64;
// Now pc, line pair is consistent.
if(debug && !runtime·panicking)
runtime·printf("pc=%p targetpc=%p line=%d\n", pc, targetpc, line);
// PC increments implicitly on each iteration.
pc += pcquant;
}
return line;
}
void
runtime·funcline_go(Func *f, uintptr targetpc, String retfile, intgo retline)
{
retfile = f->src;
retline = runtime·funcline(f, targetpc);
FLUSH(&retfile);
FLUSH(&retline);
}
static void
buildfuncs(void)
{
extern byte etext[];
if(func != nil)
return;
// Memory profiling uses this code;
// can deadlock if the profiler ends
// up back here.
m->nomemprof++;
// count funcs, fnames
nfunc = 0;
nfname = 0;
lastvalue = 0;
walksymtab(dofunc);
// Initialize tables.
// Can use FlagNoPointers - all pointers either point into sections of the executable
// or point into hugestring.
func = runtime·mallocgc((nfunc+1)*sizeof func[0], FlagNoPointers, 0, 1);
func[nfunc].entry = (uint64)etext;
fname = runtime·mallocgc(nfname*sizeof fname[0], FlagNoPointers, 0, 1);
nfunc = 0;
lastvalue = 0;
walksymtab(dofunc);
// split pc/ln table by func
splitpcln();
// record src file and line info for each func
walksymtab(dosrcline); // pass 1: determine hugestring_len
hugestring.str = runtime·mallocgc(hugestring_len, FlagNoPointers, 0, 0);
hugestring.len = 0;
walksymtab(dosrcline); // pass 2: fill and use hugestring
if(hugestring.len != hugestring_len)
runtime·throw("buildfunc: problem in initialization procedure");
m->nomemprof--;
}
Func*
runtime·findfunc(uintptr addr)
{
Func *f;
int32 nf, n;
// Use atomic double-checked locking,
// because when called from pprof signal
// handler, findfunc must run without
// grabbing any locks.
// (Before enabling the signal handler,
// SetCPUProfileRate calls findfunc to trigger
// the initialization outside the handler.)
// Avoid deadlock on fault during malloc
// by not calling buildfuncs if we're already in malloc.
if(!m->mallocing && !m->gcing) {
if(runtime·atomicload(&funcinit) == 0) {
runtime·lock(&funclock);
if(funcinit == 0) {
buildfuncs();
runtime·atomicstore(&funcinit, 1);
}
runtime·unlock(&funclock);
}
}
if(nfunc == 0)
return nil;
if(addr < func[0].entry || addr >= func[nfunc].entry)
return nil;
// binary search to find func with entry <= addr.
f = func;
nf = nfunc;
while(nf > 0) {
n = nf/2;
if(f[n].entry <= addr && addr < f[n+1].entry)
return &f[n];
else if(addr < f[n].entry)
nf = n;
else {
f += n+1;
nf -= n+1;
}
}
// can't get here -- we already checked above
// that the address was in the table bounds.
// this can only happen if the table isn't sorted
// by address or if the binary search above is buggy.
runtime·prints("findfunc unreachable\n");
return nil;
}
static bool
hasprefix(String s, int8 *p)
{
int32 i;
for(i=0; i<s.len; i++) {
if(p[i] == 0)
return 1;
if(p[i] != s.str[i])
return 0;
}
return p[i] == 0;
}
static bool
contains(String s, int8 *p)
{
int32 i;
if(p[0] == 0)
return 1;
for(i=0; i<s.len; i++) {
if(s.str[i] != p[0])
continue;
if(hasprefix((String){s.str + i, s.len - i}, p))
return 1;
}
return 0;
}
bool
runtime·showframe(Func *f, bool current)
{
static int32 traceback = -1;
if(current && m->throwing > 0)
return 1;
if(traceback < 0)
traceback = runtime·gotraceback(nil);
return traceback > 1 || f != nil && contains(f->name, ".") && !hasprefix(f->name, "runtime.");
}
|