1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Time-related runtime and pieces of package time.
package time
#include "runtime.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
#include "arch_GOARCH.h"
#include "malloc.h"
#include "race.h"
static Timers timers;
static void addtimer(Timer*);
// Package time APIs.
// Godoc uses the comments in package time, not these.
// time.now is implemented in assembly.
// Sleep puts the current goroutine to sleep for at least ns nanoseconds.
func Sleep(ns int64) {
runtime·tsleep(ns, "sleep");
}
// startTimer adds t to the timer heap.
func startTimer(t *Timer) {
if(raceenabled)
runtime·racerelease(t);
runtime·addtimer(t);
}
// stopTimer removes t from the timer heap if it is there.
// It returns true if t was removed, false if t wasn't even there.
func stopTimer(t *Timer) (stopped bool) {
stopped = runtime·deltimer(t);
}
// C runtime.
static void timerproc(void);
static void siftup(int32);
static void siftdown(int32);
// Ready the goroutine e.data.
static void
ready(int64 now, Eface e)
{
USED(now);
runtime·ready(e.data);
}
static FuncVal readyv = {(void(*)(void))ready};
// Put the current goroutine to sleep for ns nanoseconds.
void
runtime·tsleep(int64 ns, int8 *reason)
{
Timer t;
if(ns <= 0)
return;
t.when = runtime·nanotime() + ns;
t.period = 0;
t.fv = &readyv;
t.arg.data = g;
runtime·lock(&timers);
addtimer(&t);
runtime·park(runtime·unlock, &timers, reason);
}
static FuncVal timerprocv = {timerproc};
void
runtime·addtimer(Timer *t)
{
runtime·lock(&timers);
addtimer(t);
runtime·unlock(&timers);
}
// Add a timer to the heap and start or kick the timer proc
// if the new timer is earlier than any of the others.
static void
addtimer(Timer *t)
{
int32 n;
Timer **nt;
if(timers.len >= timers.cap) {
// Grow slice.
n = 16;
if(n <= timers.cap)
n = timers.cap*3 / 2;
nt = runtime·malloc(n*sizeof nt[0]);
runtime·memmove(nt, timers.t, timers.len*sizeof nt[0]);
runtime·free(timers.t);
timers.t = nt;
timers.cap = n;
}
t->i = timers.len++;
timers.t[t->i] = t;
siftup(t->i);
if(t->i == 0) {
// siftup moved to top: new earliest deadline.
if(timers.sleeping) {
timers.sleeping = false;
runtime·notewakeup(&timers.waitnote);
}
if(timers.rescheduling) {
timers.rescheduling = false;
runtime·ready(timers.timerproc);
}
}
if(timers.timerproc == nil) {
timers.timerproc = runtime·newproc1(&timerprocv, nil, 0, 0, addtimer);
timers.timerproc->issystem = true;
}
}
// Delete timer t from the heap.
// Do not need to update the timerproc:
// if it wakes up early, no big deal.
bool
runtime·deltimer(Timer *t)
{
int32 i;
runtime·lock(&timers);
// t may not be registered anymore and may have
// a bogus i (typically 0, if generated by Go).
// Verify it before proceeding.
i = t->i;
if(i < 0 || i >= timers.len || timers.t[i] != t) {
runtime·unlock(&timers);
return false;
}
timers.len--;
if(i == timers.len) {
timers.t[i] = nil;
} else {
timers.t[i] = timers.t[timers.len];
timers.t[timers.len] = nil;
timers.t[i]->i = i;
siftup(i);
siftdown(i);
}
runtime·unlock(&timers);
return true;
}
// Timerproc runs the time-driven events.
// It sleeps until the next event in the timers heap.
// If addtimer inserts a new earlier event, addtimer
// wakes timerproc early.
static void
timerproc(void)
{
int64 delta, now;
Timer *t;
void (*f)(int64, Eface);
Eface arg;
for(;;) {
runtime·lock(&timers);
now = runtime·nanotime();
for(;;) {
if(timers.len == 0) {
delta = -1;
break;
}
t = timers.t[0];
delta = t->when - now;
if(delta > 0)
break;
if(t->period > 0) {
// leave in heap but adjust next time to fire
t->when += t->period * (1 + -delta/t->period);
siftdown(0);
} else {
// remove from heap
timers.t[0] = timers.t[--timers.len];
timers.t[0]->i = 0;
siftdown(0);
t->i = -1; // mark as removed
}
f = (void*)t->fv->fn;
arg = t->arg;
runtime·unlock(&timers);
if(raceenabled)
runtime·raceacquire(t);
f(now, arg);
runtime·lock(&timers);
}
if(delta < 0) {
// No timers left - put goroutine to sleep.
timers.rescheduling = true;
runtime·park(runtime·unlock, &timers, "timer goroutine (idle)");
continue;
}
// At least one timer pending. Sleep until then.
timers.sleeping = true;
runtime·noteclear(&timers.waitnote);
runtime·unlock(&timers);
runtime·entersyscallblock();
runtime·notetsleep(&timers.waitnote, delta);
runtime·exitsyscall();
}
}
// heap maintenance algorithms.
static void
siftup(int32 i)
{
int32 p;
Timer **t, *tmp;
t = timers.t;
while(i > 0) {
p = (i-1)/2; // parent
if(t[i]->when >= t[p]->when)
break;
tmp = t[i];
t[i] = t[p];
t[p] = tmp;
t[i]->i = i;
t[p]->i = p;
i = p;
}
}
static void
siftdown(int32 i)
{
int32 c, len;
Timer **t, *tmp;
t = timers.t;
len = timers.len;
for(;;) {
c = i*2 + 1; // left child
if(c >= len) {
break;
}
if(c+1 < len && t[c+1]->when < t[c]->when)
c++;
if(t[c]->when >= t[i]->when)
break;
tmp = t[i];
t[i] = t[c];
t[c] = tmp;
t[i]->i = i;
t[c]->i = c;
i = c;
}
}
|