summaryrefslogtreecommitdiff
path: root/src/pkg/syscall/exec.go
blob: 4310b9e1ac93e690ac2ea9caac965a725127e45b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Fork, exec, wait, etc.

package syscall

import (
	"sync";
	"unsafe";
)

// Lock synchronizing creation of new file descriptors with fork.
//
// We want the child in a fork/exec sequence to inherit only the
// file descriptors we intend.  To do that, we mark all file
// descriptors close-on-exec and then, in the child, explicitly
// unmark the ones we want the exec'ed program to keep.
// Unix doesn't make this easy: there is, in general, no way to
// allocate a new file descriptor close-on-exec.  Instead you
// have to allocate the descriptor and then mark it close-on-exec.
// If a fork happens between those two events, the child's exec
// will inherit an unwanted file descriptor.
//
// This lock solves that race: the create new fd/mark close-on-exec
// operation is done holding ForkLock for reading, and the fork itself
// is done holding ForkLock for writing.  At least, that's the idea.
// There are some complications.
//
// Some system calls that create new file descriptors can block
// for arbitrarily long times: open on a hung NFS server or named
// pipe, accept on a socket, and so on.  We can't reasonably grab
// the lock across those operations.
//
// It is worse to inherit some file descriptors than others.
// If a non-malicious child accidentally inherits an open ordinary file,
// that's not a big deal.  On the other hand, if a long-lived child
// accidentally inherits the write end of a pipe, then the reader
// of that pipe will not see EOF until that child exits, potentially
// causing the parent program to hang.  This is a common problem
// in threaded C programs that use popen.
//
// Luckily, the file descriptors that are most important not to
// inherit are not the ones that can take an arbitrarily long time
// to create: pipe returns instantly, and the net package uses
// non-blocking I/O to accept on a listening socket.
// The rules for which file descriptor-creating operations use the
// ForkLock are as follows:
//
// 1) Pipe.    Does not block.  Use the ForkLock.
// 2) Socket.  Does not block.  Use the ForkLock.
// 3) Accept.  If using non-blocking mode, use the ForkLock.
//             Otherwise, live with the race.
// 4) Open.    Can block.  Use O_CLOEXEC if available (Linux).
//             Otherwise, live with the race.
// 5) Dup.     Does not block.  Use the ForkLock.
//             On Linux, could use fcntl F_DUPFD_CLOEXEC
//             instead of the ForkLock, but only for dup(fd, -1).

var ForkLock sync.RWMutex

// Convert array of string to array
// of NUL-terminated byte pointer.
func StringArrayPtr(ss []string) []*byte {
	bb := make([]*byte, len(ss)+1);
	for i := 0; i < len(ss); i++ {
		bb[i] = StringBytePtr(ss[i]);
	}
	bb[len(ss)] = nil;
	return bb;
}

func CloseOnExec(fd int)	{ fcntl(fd, F_SETFD, FD_CLOEXEC) }

func SetNonblock(fd int, nonblocking bool) (errno int) {
	flag, err := fcntl(fd, F_GETFL, 0);
	if err != 0 {
		return err;
	}
	if nonblocking {
		flag |= O_NONBLOCK;
	} else {
		flag &= ^O_NONBLOCK;
	}
	_, err = fcntl(fd, F_SETFL, flag);
	return err;
}


// Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child.
// If a dup or exec fails, write the errno int to pipe.
// (Pipe is close-on-exec so if exec succeeds, it will be closed.)
// In the child, this function must not acquire any locks, because
// they might have been locked at the time of the fork.  This means
// no rescheduling, no malloc calls, and no new stack segments.
// The calls to RawSyscall are okay because they are assembly
// functions that do not grow the stack.
func forkAndExecInChild(argv0 *byte, argv []*byte, envv []*byte, traceme bool, dir *byte, fd []int, pipe int) (pid int, err int) {
	// Declare all variables at top in case any
	// declarations require heap allocation (e.g., err1).
	var r1, r2, err1 uintptr;
	var nextfd int;
	var i int;

	darwin := OS == "darwin";

	// About to call fork.
	// No more allocation or calls of non-assembly functions.
	r1, r2, err1 = RawSyscall(SYS_FORK, 0, 0, 0);
	if err1 != 0 {
		return 0, int(err1);
	}

	// On Darwin:
	//	r1 = child pid in both parent and child.
	//	r2 = 0 in parent, 1 in child.
	// Convert to normal Unix r1 = 0 in child.
	if darwin && r2 == 1 {
		r1 = 0;
	}

	if r1 != 0 {
		// parent; return PID
		return int(r1), 0;
	}

	// Fork succeeded, now in child.

	// Enable tracing if requested.
	if traceme {
		_, _, err1 = RawSyscall(SYS_PTRACE, uintptr(PTRACE_TRACEME), 0, 0);
		if err1 != 0 {
			goto childerror;
		}
	}

	// Chdir
	if dir != nil {
		_, _, err1 = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0);
		if err1 != 0 {
			goto childerror;
		}
	}

	// Pass 1: look for fd[i] < i and move those up above len(fd)
	// so that pass 2 won't stomp on an fd it needs later.
	nextfd = int(len(fd));
	if pipe < nextfd {
		_, _, err1 = RawSyscall(SYS_DUP2, uintptr(pipe), uintptr(nextfd), 0);
		if err1 != 0 {
			goto childerror;
		}
		RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC);
		pipe = nextfd;
		nextfd++;
	}
	for i = 0; i < len(fd); i++ {
		if fd[i] >= 0 && fd[i] < int(i) {
			_, _, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(nextfd), 0);
			if err1 != 0 {
				goto childerror;
			}
			RawSyscall(SYS_FCNTL, uintptr(nextfd), F_SETFD, FD_CLOEXEC);
			fd[i] = nextfd;
			nextfd++;
			if nextfd == pipe {	// don't stomp on pipe
				nextfd++;
			}
		}
	}

	// Pass 2: dup fd[i] down onto i.
	for i = 0; i < len(fd); i++ {
		if fd[i] == -1 {
			RawSyscall(SYS_CLOSE, uintptr(i), 0, 0);
			continue;
		}
		if fd[i] == int(i) {
			// dup2(i, i) won't clear close-on-exec flag on Linux,
			// probably not elsewhere either.
			_, _, err1 = RawSyscall(SYS_FCNTL, uintptr(fd[i]), F_SETFD, 0);
			if err1 != 0 {
				goto childerror;
			}
			continue;
		}
		// The new fd is created NOT close-on-exec,
		// which is exactly what we want.
		_, _, err1 = RawSyscall(SYS_DUP2, uintptr(fd[i]), uintptr(i), 0);
		if err1 != 0 {
			goto childerror;
		}
	}

	// By convention, we don't close-on-exec the fds we are
	// started with, so if len(fd) < 3, close 0, 1, 2 as needed.
	// Programs that know they inherit fds >= 3 will need
	// to set them close-on-exec.
	for i = len(fd); i < 3; i++ {
		RawSyscall(SYS_CLOSE, uintptr(i), 0, 0);
	}

	// Time to exec.
	_, _, err1 = RawSyscall(SYS_EXECVE,
		uintptr(unsafe.Pointer(argv0)),
		uintptr(unsafe.Pointer(&argv[0])),
		uintptr(unsafe.Pointer(&envv[0])));

childerror:
	// send error code on pipe
	RawSyscall(SYS_WRITE, uintptr(pipe), uintptr(unsafe.Pointer(&err1)), uintptr(unsafe.Sizeof(err1)));
	for {
		RawSyscall(SYS_EXIT, 253, 0, 0);
	}

	// Calling panic is not actually safe,
	// but the for loop above won't break
	// and this shuts up the compiler.
	panic("unreached");
}

func forkExec(argv0 string, argv []string, envv []string, traceme bool, dir string, fd []int) (pid int, err int) {
	var p [2]int;
	var n int;
	var err1 uintptr;
	var wstatus WaitStatus;

	p[0] = -1;
	p[1] = -1;

	// Convert args to C form.
	argv0p := StringBytePtr(argv0);
	argvp := StringArrayPtr(argv);
	envvp := StringArrayPtr(envv);
	var dirp *byte;
	if len(dir) > 0 {
		dirp = StringBytePtr(dir);
	}

	// Acquire the fork lock so that no other threads
	// create new fds that are not yet close-on-exec
	// before we fork.
	ForkLock.Lock();

	// Allocate child status pipe close on exec.
	if err = Pipe(&p); err != 0 {
		goto error;
	}
	if _, err = fcntl(p[0], F_SETFD, FD_CLOEXEC); err != 0 {
		goto error;
	}
	if _, err = fcntl(p[1], F_SETFD, FD_CLOEXEC); err != 0 {
		goto error;
	}

	// Kick off child.
	pid, err = forkAndExecInChild(argv0p, argvp, envvp, traceme, dirp, fd, p[1]);
	if err != 0 {
	error:
		if p[0] >= 0 {
			Close(p[0]);
			Close(p[1]);
		}
		ForkLock.Unlock();
		return 0, err;
	}
	ForkLock.Unlock();

	// Read child error status from pipe.
	Close(p[1]);
	n, err = read(p[0], (*byte)(unsafe.Pointer(&err1)), unsafe.Sizeof(err1));
	Close(p[0]);
	if err != 0 || n != 0 {
		if n == unsafe.Sizeof(err1) {
			err = int(err1);
		}
		if err == 0 {
			err = EPIPE;
		}

		// Child failed; wait for it to exit, to make sure
		// the zombies don't accumulate.
		_, err1 := Wait4(pid, &wstatus, 0, nil);
		for err1 == EINTR {
			_, err1 = Wait4(pid, &wstatus, 0, nil);
		}
		return 0, err;
	}

	// Read got EOF, so pipe closed on exec, so exec succeeded.
	return pid, 0;
}

// Combination of fork and exec, careful to be thread safe.
func ForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) {
	return forkExec(argv0, argv, envv, false, dir, fd);
}

// PtraceForkExec is like ForkExec, but starts the child in a traced state.
func PtraceForkExec(argv0 string, argv []string, envv []string, dir string, fd []int) (pid int, err int) {
	return forkExec(argv0, argv, envv, true, dir, fd);
}

// Ordinary exec.
func Exec(argv0 string, argv []string, envv []string) (err int) {
	_, _, err1 := RawSyscall(SYS_EXECVE,
		uintptr(unsafe.Pointer(StringBytePtr(argv0))),
		uintptr(unsafe.Pointer(&StringArrayPtr(argv)[0])),
		uintptr(unsafe.Pointer(&StringArrayPtr(envv)[0])));
	return int(err1);
}