1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package parse builds parse trees for templates as defined by text/template
// and html/template. Clients should use those packages to construct templates
// rather than this one, which provides shared internal data structures not
// intended for general use.
package parse
import (
"bytes"
"fmt"
"runtime"
"strconv"
"strings"
)
// Tree is the representation of a single parsed template.
type Tree struct {
Name string // name of the template represented by the tree.
ParseName string // name of the top-level template during parsing, for error messages.
Root *ListNode // top-level root of the tree.
text string // text parsed to create the template (or its parent)
// Parsing only; cleared after parse.
funcs []map[string]interface{}
lex *lexer
token [3]item // three-token lookahead for parser.
peekCount int
vars []string // variables defined at the moment.
}
// Copy returns a copy of the Tree. Any parsing state is discarded.
func (t *Tree) Copy() *Tree {
if t == nil {
return nil
}
return &Tree{
Name: t.Name,
ParseName: t.ParseName,
Root: t.Root.CopyList(),
text: t.text,
}
}
// Parse returns a map from template name to parse.Tree, created by parsing the
// templates described in the argument string. The top-level template will be
// given the specified name. If an error is encountered, parsing stops and an
// empty map is returned with the error.
func Parse(name, text, leftDelim, rightDelim string, funcs ...map[string]interface{}) (treeSet map[string]*Tree, err error) {
treeSet = make(map[string]*Tree)
t := New(name)
t.text = text
_, err = t.Parse(text, leftDelim, rightDelim, treeSet, funcs...)
return
}
// next returns the next token.
func (t *Tree) next() item {
if t.peekCount > 0 {
t.peekCount--
} else {
t.token[0] = t.lex.nextItem()
}
return t.token[t.peekCount]
}
// backup backs the input stream up one token.
func (t *Tree) backup() {
t.peekCount++
}
// backup2 backs the input stream up two tokens.
// The zeroth token is already there.
func (t *Tree) backup2(t1 item) {
t.token[1] = t1
t.peekCount = 2
}
// backup3 backs the input stream up three tokens
// The zeroth token is already there.
func (t *Tree) backup3(t2, t1 item) { // Reverse order: we're pushing back.
t.token[1] = t1
t.token[2] = t2
t.peekCount = 3
}
// peek returns but does not consume the next token.
func (t *Tree) peek() item {
if t.peekCount > 0 {
return t.token[t.peekCount-1]
}
t.peekCount = 1
t.token[0] = t.lex.nextItem()
return t.token[0]
}
// nextNonSpace returns the next non-space token.
func (t *Tree) nextNonSpace() (token item) {
for {
token = t.next()
if token.typ != itemSpace {
break
}
}
return token
}
// peekNonSpace returns but does not consume the next non-space token.
func (t *Tree) peekNonSpace() (token item) {
for {
token = t.next()
if token.typ != itemSpace {
break
}
}
t.backup()
return token
}
// Parsing.
// New allocates a new parse tree with the given name.
func New(name string, funcs ...map[string]interface{}) *Tree {
return &Tree{
Name: name,
funcs: funcs,
}
}
// ErrorContext returns a textual representation of the location of the node in the input text.
func (t *Tree) ErrorContext(n Node) (location, context string) {
pos := int(n.Position())
text := t.text[:pos]
byteNum := strings.LastIndex(text, "\n")
if byteNum == -1 {
byteNum = pos // On first line.
} else {
byteNum++ // After the newline.
byteNum = pos - byteNum
}
lineNum := 1 + strings.Count(text, "\n")
context = n.String()
if len(context) > 20 {
context = fmt.Sprintf("%.20s...", context)
}
return fmt.Sprintf("%s:%d:%d", t.ParseName, lineNum, byteNum), context
}
// errorf formats the error and terminates processing.
func (t *Tree) errorf(format string, args ...interface{}) {
t.Root = nil
format = fmt.Sprintf("template: %s:%d: %s", t.ParseName, t.lex.lineNumber(), format)
panic(fmt.Errorf(format, args...))
}
// error terminates processing.
func (t *Tree) error(err error) {
t.errorf("%s", err)
}
// expect consumes the next token and guarantees it has the required type.
func (t *Tree) expect(expected itemType, context string) item {
token := t.nextNonSpace()
if token.typ != expected {
t.unexpected(token, context)
}
return token
}
// expectOneOf consumes the next token and guarantees it has one of the required types.
func (t *Tree) expectOneOf(expected1, expected2 itemType, context string) item {
token := t.nextNonSpace()
if token.typ != expected1 && token.typ != expected2 {
t.unexpected(token, context)
}
return token
}
// unexpected complains about the token and terminates processing.
func (t *Tree) unexpected(token item, context string) {
t.errorf("unexpected %s in %s", token, context)
}
// recover is the handler that turns panics into returns from the top level of Parse.
func (t *Tree) recover(errp *error) {
e := recover()
if e != nil {
if _, ok := e.(runtime.Error); ok {
panic(e)
}
if t != nil {
t.stopParse()
}
*errp = e.(error)
}
return
}
// startParse initializes the parser, using the lexer.
func (t *Tree) startParse(funcs []map[string]interface{}, lex *lexer) {
t.Root = nil
t.lex = lex
t.vars = []string{"$"}
t.funcs = funcs
}
// stopParse terminates parsing.
func (t *Tree) stopParse() {
t.lex = nil
t.vars = nil
t.funcs = nil
}
// Parse parses the template definition string to construct a representation of
// the template for execution. If either action delimiter string is empty, the
// default ("{{" or "}}") is used. Embedded template definitions are added to
// the treeSet map.
func (t *Tree) Parse(text, leftDelim, rightDelim string, treeSet map[string]*Tree, funcs ...map[string]interface{}) (tree *Tree, err error) {
defer t.recover(&err)
t.ParseName = t.Name
t.startParse(funcs, lex(t.Name, text, leftDelim, rightDelim))
t.text = text
t.parse(treeSet)
t.add(treeSet)
t.stopParse()
return t, nil
}
// add adds tree to the treeSet.
func (t *Tree) add(treeSet map[string]*Tree) {
tree := treeSet[t.Name]
if tree == nil || IsEmptyTree(tree.Root) {
treeSet[t.Name] = t
return
}
if !IsEmptyTree(t.Root) {
t.errorf("template: multiple definition of template %q", t.Name)
}
}
// IsEmptyTree reports whether this tree (node) is empty of everything but space.
func IsEmptyTree(n Node) bool {
switch n := n.(type) {
case nil:
return true
case *ActionNode:
case *IfNode:
case *ListNode:
for _, node := range n.Nodes {
if !IsEmptyTree(node) {
return false
}
}
return true
case *RangeNode:
case *TemplateNode:
case *TextNode:
return len(bytes.TrimSpace(n.Text)) == 0
case *WithNode:
default:
panic("unknown node: " + n.String())
}
return false
}
// parse is the top-level parser for a template, essentially the same
// as itemList except it also parses {{define}} actions.
// It runs to EOF.
func (t *Tree) parse(treeSet map[string]*Tree) (next Node) {
t.Root = newList(t.peek().pos)
for t.peek().typ != itemEOF {
if t.peek().typ == itemLeftDelim {
delim := t.next()
if t.nextNonSpace().typ == itemDefine {
newT := New("definition") // name will be updated once we know it.
newT.text = t.text
newT.ParseName = t.ParseName
newT.startParse(t.funcs, t.lex)
newT.parseDefinition(treeSet)
continue
}
t.backup2(delim)
}
n := t.textOrAction()
if n.Type() == nodeEnd {
t.errorf("unexpected %s", n)
}
t.Root.append(n)
}
return nil
}
// parseDefinition parses a {{define}} ... {{end}} template definition and
// installs the definition in the treeSet map. The "define" keyword has already
// been scanned.
func (t *Tree) parseDefinition(treeSet map[string]*Tree) {
const context = "define clause"
name := t.expectOneOf(itemString, itemRawString, context)
var err error
t.Name, err = strconv.Unquote(name.val)
if err != nil {
t.error(err)
}
t.expect(itemRightDelim, context)
var end Node
t.Root, end = t.itemList()
if end.Type() != nodeEnd {
t.errorf("unexpected %s in %s", end, context)
}
t.add(treeSet)
t.stopParse()
}
// itemList:
// textOrAction*
// Terminates at {{end}} or {{else}}, returned separately.
func (t *Tree) itemList() (list *ListNode, next Node) {
list = newList(t.peekNonSpace().pos)
for t.peekNonSpace().typ != itemEOF {
n := t.textOrAction()
switch n.Type() {
case nodeEnd, nodeElse:
return list, n
}
list.append(n)
}
t.errorf("unexpected EOF")
return
}
// textOrAction:
// text | action
func (t *Tree) textOrAction() Node {
switch token := t.nextNonSpace(); token.typ {
case itemText:
return newText(token.pos, token.val)
case itemLeftDelim:
return t.action()
default:
t.unexpected(token, "input")
}
return nil
}
// Action:
// control
// command ("|" command)*
// Left delim is past. Now get actions.
// First word could be a keyword such as range.
func (t *Tree) action() (n Node) {
switch token := t.nextNonSpace(); token.typ {
case itemElse:
return t.elseControl()
case itemEnd:
return t.endControl()
case itemIf:
return t.ifControl()
case itemRange:
return t.rangeControl()
case itemTemplate:
return t.templateControl()
case itemWith:
return t.withControl()
}
t.backup()
// Do not pop variables; they persist until "end".
return newAction(t.peek().pos, t.lex.lineNumber(), t.pipeline("command"))
}
// Pipeline:
// declarations? command ('|' command)*
func (t *Tree) pipeline(context string) (pipe *PipeNode) {
var decl []*VariableNode
pos := t.peekNonSpace().pos
// Are there declarations?
for {
if v := t.peekNonSpace(); v.typ == itemVariable {
t.next()
// Since space is a token, we need 3-token look-ahead here in the worst case:
// in "$x foo" we need to read "foo" (as opposed to ":=") to know that $x is an
// argument variable rather than a declaration. So remember the token
// adjacent to the variable so we can push it back if necessary.
tokenAfterVariable := t.peek()
if next := t.peekNonSpace(); next.typ == itemColonEquals || (next.typ == itemChar && next.val == ",") {
t.nextNonSpace()
variable := newVariable(v.pos, v.val)
decl = append(decl, variable)
t.vars = append(t.vars, v.val)
if next.typ == itemChar && next.val == "," {
if context == "range" && len(decl) < 2 {
continue
}
t.errorf("too many declarations in %s", context)
}
} else if tokenAfterVariable.typ == itemSpace {
t.backup3(v, tokenAfterVariable)
} else {
t.backup2(v)
}
}
break
}
pipe = newPipeline(pos, t.lex.lineNumber(), decl)
for {
switch token := t.nextNonSpace(); token.typ {
case itemRightDelim, itemRightParen:
if len(pipe.Cmds) == 0 {
t.errorf("missing value for %s", context)
}
if token.typ == itemRightParen {
t.backup()
}
return
case itemBool, itemCharConstant, itemComplex, itemDot, itemField, itemIdentifier,
itemNumber, itemNil, itemRawString, itemString, itemVariable, itemLeftParen:
t.backup()
pipe.append(t.command())
default:
t.unexpected(token, context)
}
}
}
func (t *Tree) parseControl(allowElseIf bool, context string) (pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) {
defer t.popVars(len(t.vars))
line = t.lex.lineNumber()
pipe = t.pipeline(context)
var next Node
list, next = t.itemList()
switch next.Type() {
case nodeEnd: //done
case nodeElse:
if allowElseIf {
// Special case for "else if". If the "else" is followed immediately by an "if",
// the elseControl will have left the "if" token pending. Treat
// {{if a}}_{{else if b}}_{{end}}
// as
// {{if a}}_{{else}}{{if b}}_{{end}}{{end}}.
// To do this, parse the if as usual and stop at it {{end}}; the subsequent{{end}}
// is assumed. This technique works even for long if-else-if chains.
// TODO: Should we allow else-if in with and range?
if t.peek().typ == itemIf {
t.next() // Consume the "if" token.
elseList = newList(next.Position())
elseList.append(t.ifControl())
// Do not consume the next item - only one {{end}} required.
break
}
}
elseList, next = t.itemList()
if next.Type() != nodeEnd {
t.errorf("expected end; found %s", next)
}
}
return pipe.Position(), line, pipe, list, elseList
}
// If:
// {{if pipeline}} itemList {{end}}
// {{if pipeline}} itemList {{else}} itemList {{end}}
// If keyword is past.
func (t *Tree) ifControl() Node {
return newIf(t.parseControl(true, "if"))
}
// Range:
// {{range pipeline}} itemList {{end}}
// {{range pipeline}} itemList {{else}} itemList {{end}}
// Range keyword is past.
func (t *Tree) rangeControl() Node {
return newRange(t.parseControl(false, "range"))
}
// With:
// {{with pipeline}} itemList {{end}}
// {{with pipeline}} itemList {{else}} itemList {{end}}
// If keyword is past.
func (t *Tree) withControl() Node {
return newWith(t.parseControl(false, "with"))
}
// End:
// {{end}}
// End keyword is past.
func (t *Tree) endControl() Node {
return newEnd(t.expect(itemRightDelim, "end").pos)
}
// Else:
// {{else}}
// Else keyword is past.
func (t *Tree) elseControl() Node {
// Special case for "else if".
peek := t.peekNonSpace()
if peek.typ == itemIf {
// We see "{{else if ... " but in effect rewrite it to {{else}}{{if ... ".
return newElse(peek.pos, t.lex.lineNumber())
}
return newElse(t.expect(itemRightDelim, "else").pos, t.lex.lineNumber())
}
// Template:
// {{template stringValue pipeline}}
// Template keyword is past. The name must be something that can evaluate
// to a string.
func (t *Tree) templateControl() Node {
var name string
token := t.nextNonSpace()
switch token.typ {
case itemString, itemRawString:
s, err := strconv.Unquote(token.val)
if err != nil {
t.error(err)
}
name = s
default:
t.unexpected(token, "template invocation")
}
var pipe *PipeNode
if t.nextNonSpace().typ != itemRightDelim {
t.backup()
// Do not pop variables; they persist until "end".
pipe = t.pipeline("template")
}
return newTemplate(token.pos, t.lex.lineNumber(), name, pipe)
}
// command:
// operand (space operand)*
// space-separated arguments up to a pipeline character or right delimiter.
// we consume the pipe character but leave the right delim to terminate the action.
func (t *Tree) command() *CommandNode {
cmd := newCommand(t.peekNonSpace().pos)
for {
t.peekNonSpace() // skip leading spaces.
operand := t.operand()
if operand != nil {
cmd.append(operand)
}
switch token := t.next(); token.typ {
case itemSpace:
continue
case itemError:
t.errorf("%s", token.val)
case itemRightDelim, itemRightParen:
t.backup()
case itemPipe:
default:
t.errorf("unexpected %s in operand; missing space?", token)
}
break
}
if len(cmd.Args) == 0 {
t.errorf("empty command")
}
return cmd
}
// operand:
// term .Field*
// An operand is a space-separated component of a command,
// a term possibly followed by field accesses.
// A nil return means the next item is not an operand.
func (t *Tree) operand() Node {
node := t.term()
if node == nil {
return nil
}
if t.peek().typ == itemField {
chain := newChain(t.peek().pos, node)
for t.peek().typ == itemField {
chain.Add(t.next().val)
}
// Compatibility with original API: If the term is of type NodeField
// or NodeVariable, just put more fields on the original.
// Otherwise, keep the Chain node.
// TODO: Switch to Chains always when we can.
switch node.Type() {
case NodeField:
node = newField(chain.Position(), chain.String())
case NodeVariable:
node = newVariable(chain.Position(), chain.String())
default:
node = chain
}
}
return node
}
// term:
// literal (number, string, nil, boolean)
// function (identifier)
// .
// .Field
// $
// '(' pipeline ')'
// A term is a simple "expression".
// A nil return means the next item is not a term.
func (t *Tree) term() Node {
switch token := t.nextNonSpace(); token.typ {
case itemError:
t.errorf("%s", token.val)
case itemIdentifier:
if !t.hasFunction(token.val) {
t.errorf("function %q not defined", token.val)
}
return NewIdentifier(token.val).SetPos(token.pos)
case itemDot:
return newDot(token.pos)
case itemNil:
return newNil(token.pos)
case itemVariable:
return t.useVar(token.pos, token.val)
case itemField:
return newField(token.pos, token.val)
case itemBool:
return newBool(token.pos, token.val == "true")
case itemCharConstant, itemComplex, itemNumber:
number, err := newNumber(token.pos, token.val, token.typ)
if err != nil {
t.error(err)
}
return number
case itemLeftParen:
pipe := t.pipeline("parenthesized pipeline")
if token := t.next(); token.typ != itemRightParen {
t.errorf("unclosed right paren: unexpected %s", token)
}
return pipe
case itemString, itemRawString:
s, err := strconv.Unquote(token.val)
if err != nil {
t.error(err)
}
return newString(token.pos, token.val, s)
}
t.backup()
return nil
}
// hasFunction reports if a function name exists in the Tree's maps.
func (t *Tree) hasFunction(name string) bool {
for _, funcMap := range t.funcs {
if funcMap == nil {
continue
}
if funcMap[name] != nil {
return true
}
}
return false
}
// popVars trims the variable list to the specified length
func (t *Tree) popVars(n int) {
t.vars = t.vars[:n]
}
// useVar returns a node for a variable reference. It errors if the
// variable is not defined.
func (t *Tree) useVar(pos Pos, name string) Node {
v := newVariable(pos, name)
for _, varName := range t.vars {
if varName == v.Ident[0] {
return v
}
}
t.errorf("undefined variable %q", v.Ident[0])
return nil
}
|