summaryrefslogtreecommitdiff
path: root/src/runtime/malloc.c
blob: b79c30b72049a38aa6b5b81ce7a7705a53f2f171 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// See malloc.h for overview.
//
// TODO(rsc): double-check stats.

#include "runtime.h"
#include "arch_GOARCH.h"
#include "malloc.h"
#include "type.h"
#include "typekind.h"
#include "race.h"
#include "stack.h"
#include "textflag.h"

// Mark mheap as 'no pointers', it does not contain interesting pointers but occupies ~45K.
#pragma dataflag NOPTR
MHeap runtime·mheap;
#pragma dataflag NOPTR
MStats runtime·memstats;

int32
runtime·mlookup(void *v, byte **base, uintptr *size, MSpan **sp)
{
	uintptr n, i;
	byte *p;
	MSpan *s;

	g->m->mcache->local_nlookup++;
	if (sizeof(void*) == 4 && g->m->mcache->local_nlookup >= (1<<30)) {
		// purge cache stats to prevent overflow
		runtime·lock(&runtime·mheap.lock);
		runtime·purgecachedstats(g->m->mcache);
		runtime·unlock(&runtime·mheap.lock);
	}

	s = runtime·MHeap_LookupMaybe(&runtime·mheap, v);
	if(sp)
		*sp = s;
	if(s == nil) {
		if(base)
			*base = nil;
		if(size)
			*size = 0;
		return 0;
	}

	p = (byte*)((uintptr)s->start<<PageShift);
	if(s->sizeclass == 0) {
		// Large object.
		if(base)
			*base = p;
		if(size)
			*size = s->npages<<PageShift;
		return 1;
	}

	n = s->elemsize;
	if(base) {
		i = ((byte*)v - p)/n;
		*base = p + i*n;
	}
	if(size)
		*size = n;

	return 1;
}

#pragma textflag NOSPLIT
void
runtime·purgecachedstats(MCache *c)
{
	MHeap *h;
	int32 i;

	// Protected by either heap or GC lock.
	h = &runtime·mheap;
	mstats.heap_alloc += c->local_cachealloc;
	c->local_cachealloc = 0;
	mstats.tinyallocs += c->local_tinyallocs;
	c->local_tinyallocs = 0;
	mstats.nlookup += c->local_nlookup;
	c->local_nlookup = 0;
	h->largefree += c->local_largefree;
	c->local_largefree = 0;
	h->nlargefree += c->local_nlargefree;
	c->local_nlargefree = 0;
	for(i=0; i<nelem(c->local_nsmallfree); i++) {
		h->nsmallfree[i] += c->local_nsmallfree[i];
		c->local_nsmallfree[i] = 0;
	}
}

// Size of the trailing by_size array differs between Go and C,
// and all data after by_size is local to C, not exported to Go.
// NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
// sizeof_C_MStats is what C thinks about size of Go struct.
uintptr runtime·sizeof_C_MStats = offsetof(MStats, by_size[61]);

#define MaxArena32 (2U<<30)

// For use by Go. If it were a C enum it would be made available automatically,
// but the value of MaxMem is too large for enum.
uintptr runtime·maxmem = MaxMem;

void
runtime·mallocinit(void)
{
	byte *p, *p1;
	uintptr arena_size, bitmap_size, spans_size, p_size;
	extern byte runtime·end[];
	uintptr limit;
	uint64 i;
	bool reserved;

	p = nil;
	p_size = 0;
	arena_size = 0;
	bitmap_size = 0;
	spans_size = 0;
	reserved = false;

	// for 64-bit build
	USED(p);
	USED(p_size);
	USED(arena_size);
	USED(bitmap_size);
	USED(spans_size);

	runtime·InitSizes();

	if(runtime·class_to_size[TinySizeClass] != TinySize)
		runtime·throw("bad TinySizeClass");

	// limit = runtime·memlimit();
	// See https://code.google.com/p/go/issues/detail?id=5049
	// TODO(rsc): Fix after 1.1.
	limit = 0;

	// Set up the allocation arena, a contiguous area of memory where
	// allocated data will be found.  The arena begins with a bitmap large
	// enough to hold 4 bits per allocated word.
	if(sizeof(void*) == 8 && (limit == 0 || limit > (1<<30))) {
		// On a 64-bit machine, allocate from a single contiguous reservation.
		// 128 GB (MaxMem) should be big enough for now.
		//
		// The code will work with the reservation at any address, but ask
		// SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
		// Allocating a 128 GB region takes away 37 bits, and the amd64
		// doesn't let us choose the top 17 bits, so that leaves the 11 bits
		// in the middle of 0x00c0 for us to choose.  Choosing 0x00c0 means
		// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
		// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
		// UTF-8 sequences, and they are otherwise as far away from 
		// ff (likely a common byte) as possible.  If that fails, we try other 0xXXc0
		// addresses.  An earlier attempt to use 0x11f8 caused out of memory errors
		// on OS X during thread allocations.  0x00c0 causes conflicts with
		// AddressSanitizer which reserves all memory up to 0x0100.
		// These choices are both for debuggability and to reduce the
		// odds of the conservative garbage collector not collecting memory
		// because some non-pointer block of memory had a bit pattern
		// that matched a memory address.
		//
		// Actually we reserve 136 GB (because the bitmap ends up being 8 GB)
		// but it hardly matters: e0 00 is not valid UTF-8 either.
		//
		// If this fails we fall back to the 32 bit memory mechanism
		arena_size = MaxMem;
		bitmap_size = arena_size / (sizeof(void*)*8/4);
		spans_size = arena_size / PageSize * sizeof(runtime·mheap.spans[0]);
		spans_size = ROUND(spans_size, PageSize);
		for(i = 0; i <= 0x7f; i++) {
			p = (void*)(i<<40 | 0x00c0ULL<<32);
			p_size = bitmap_size + spans_size + arena_size + PageSize;
			p = runtime·SysReserve(p, p_size, &reserved);
			if(p != nil)
				break;
		}
	}
	if (p == nil) {
		// On a 32-bit machine, we can't typically get away
		// with a giant virtual address space reservation.
		// Instead we map the memory information bitmap
		// immediately after the data segment, large enough
		// to handle another 2GB of mappings (256 MB),
		// along with a reservation for another 512 MB of memory.
		// When that gets used up, we'll start asking the kernel
		// for any memory anywhere and hope it's in the 2GB
		// following the bitmap (presumably the executable begins
		// near the bottom of memory, so we'll have to use up
		// most of memory before the kernel resorts to giving out
		// memory before the beginning of the text segment).
		//
		// Alternatively we could reserve 512 MB bitmap, enough
		// for 4GB of mappings, and then accept any memory the
		// kernel threw at us, but normally that's a waste of 512 MB
		// of address space, which is probably too much in a 32-bit world.
		bitmap_size = MaxArena32 / (sizeof(void*)*8/4);
		arena_size = 512<<20;
		spans_size = MaxArena32 / PageSize * sizeof(runtime·mheap.spans[0]);
		if(limit > 0 && arena_size+bitmap_size+spans_size > limit) {
			bitmap_size = (limit / 9) & ~((1<<PageShift) - 1);
			arena_size = bitmap_size * 8;
			spans_size = arena_size / PageSize * sizeof(runtime·mheap.spans[0]);
		}
		spans_size = ROUND(spans_size, PageSize);

		// SysReserve treats the address we ask for, end, as a hint,
		// not as an absolute requirement.  If we ask for the end
		// of the data segment but the operating system requires
		// a little more space before we can start allocating, it will
		// give out a slightly higher pointer.  Except QEMU, which
		// is buggy, as usual: it won't adjust the pointer upward.
		// So adjust it upward a little bit ourselves: 1/4 MB to get
		// away from the running binary image and then round up
		// to a MB boundary.
		p = (byte*)ROUND((uintptr)runtime·end + (1<<18), 1<<20);
		p_size = bitmap_size + spans_size + arena_size + PageSize;
		p = runtime·SysReserve(p, p_size, &reserved);
		if(p == nil)
			runtime·throw("runtime: cannot reserve arena virtual address space");
	}

	// PageSize can be larger than OS definition of page size,
	// so SysReserve can give us a PageSize-unaligned pointer.
	// To overcome this we ask for PageSize more and round up the pointer.
	p1 = (byte*)ROUND((uintptr)p, PageSize);

	runtime·mheap.spans = (MSpan**)p1;
	runtime·mheap.bitmap = p1 + spans_size;
	runtime·mheap.arena_start = p1 + spans_size + bitmap_size;
	runtime·mheap.arena_used = runtime·mheap.arena_start;
	runtime·mheap.arena_end = p + p_size;
	runtime·mheap.arena_reserved = reserved;

	if(((uintptr)runtime·mheap.arena_start & (PageSize-1)) != 0)
		runtime·throw("misrounded allocation in mallocinit");

	// Initialize the rest of the allocator.	
	runtime·MHeap_Init(&runtime·mheap);
	g->m->mcache = runtime·allocmcache();
}

void*
runtime·MHeap_SysAlloc(MHeap *h, uintptr n)
{
	byte *p, *p_end;
	uintptr p_size;
	bool reserved;

	if(n > h->arena_end - h->arena_used) {
		// We are in 32-bit mode, maybe we didn't use all possible address space yet.
		// Reserve some more space.
		byte *new_end;

		p_size = ROUND(n + PageSize, 256<<20);
		new_end = h->arena_end + p_size;
		if(new_end <= h->arena_start + MaxArena32) {
			// TODO: It would be bad if part of the arena
			// is reserved and part is not.
			p = runtime·SysReserve(h->arena_end, p_size, &reserved);
			if(p == h->arena_end) {
				h->arena_end = new_end;
				h->arena_reserved = reserved;
			}
			else if(p+p_size <= h->arena_start + MaxArena32) {
				// Keep everything page-aligned.
				// Our pages are bigger than hardware pages.
				h->arena_end = p+p_size;
				h->arena_used = p + (-(uintptr)p&(PageSize-1));
				h->arena_reserved = reserved;
			} else {
				uint64 stat;
				stat = 0;
				runtime·SysFree(p, p_size, &stat);
			}
		}
	}
	if(n <= h->arena_end - h->arena_used) {
		// Keep taking from our reservation.
		p = h->arena_used;
		runtime·SysMap(p, n, h->arena_reserved, &mstats.heap_sys);
		h->arena_used += n;
		runtime·MHeap_MapBits(h);
		runtime·MHeap_MapSpans(h);
		if(raceenabled)
			runtime·racemapshadow(p, n);
		
		if(((uintptr)p & (PageSize-1)) != 0)
			runtime·throw("misrounded allocation in MHeap_SysAlloc");
		return p;
	}
	
	// If using 64-bit, our reservation is all we have.
	if(h->arena_end - h->arena_start >= MaxArena32)
		return nil;

	// On 32-bit, once the reservation is gone we can
	// try to get memory at a location chosen by the OS
	// and hope that it is in the range we allocated bitmap for.
	p_size = ROUND(n, PageSize) + PageSize;
	p = runtime·sysAlloc(p_size, &mstats.heap_sys);
	if(p == nil)
		return nil;

	if(p < h->arena_start || p+p_size - h->arena_start >= MaxArena32) {
		runtime·printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n",
			p, h->arena_start, h->arena_start+MaxArena32);
		runtime·SysFree(p, p_size, &mstats.heap_sys);
		return nil;
	}
	
	p_end = p + p_size;
	p += -(uintptr)p & (PageSize-1);
	if(p+n > h->arena_used) {
		h->arena_used = p+n;
		if(p_end > h->arena_end)
			h->arena_end = p_end;
		runtime·MHeap_MapBits(h);
		runtime·MHeap_MapSpans(h);
		if(raceenabled)
			runtime·racemapshadow(p, n);
	}
	
	if(((uintptr)p & (PageSize-1)) != 0)
		runtime·throw("misrounded allocation in MHeap_SysAlloc");
	return p;
}

void
runtime·setFinalizer_m(void)
{
	FuncVal *fn;
	void *arg;
	uintptr nret;
	Type *fint;
	PtrType *ot;

	fn = g->m->ptrarg[0];
	arg = g->m->ptrarg[1];
	nret = g->m->scalararg[0];
	fint = g->m->ptrarg[2];
	ot = g->m->ptrarg[3];
	g->m->ptrarg[0] = nil;
	g->m->ptrarg[1] = nil;
	g->m->ptrarg[2] = nil;
	g->m->ptrarg[3] = nil;

	g->m->scalararg[0] = runtime·addfinalizer(arg, fn, nret, fint, ot);
}

void
runtime·removeFinalizer_m(void)
{
	void *p;

	p = g->m->ptrarg[0];
	g->m->ptrarg[0] = nil;
	runtime·removefinalizer(p);
}

// mcallable cache refill
void 
runtime·mcacheRefill_m(void)
{
	runtime·MCache_Refill(g->m->mcache, (int32)g->m->scalararg[0]);
}

void
runtime·largeAlloc_m(void)
{
	uintptr npages, size;
	MSpan *s;
	void *v;
	int32 flag;

	//runtime·printf("largeAlloc size=%D\n", g->m->scalararg[0]);
	// Allocate directly from heap.
	size = g->m->scalararg[0];
	flag = (int32)g->m->scalararg[1];
	if(size + PageSize < size)
		runtime·throw("out of memory");
	npages = size >> PageShift;
	if((size & PageMask) != 0)
		npages++;
	s = runtime·MHeap_Alloc(&runtime·mheap, npages, 0, 1, !(flag & FlagNoZero));
	if(s == nil)
		runtime·throw("out of memory");
	s->limit = (byte*)(s->start<<PageShift) + size;
	v = (void*)(s->start << PageShift);
	// setup for mark sweep
	runtime·markspan(v, 0, 0, true);
	g->m->ptrarg[0] = s;
}