summaryrefslogtreecommitdiff
path: root/src/runtime/rt1_amd64_linux.c
blob: 30a04106677afdc639014759df640a8425d6474b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "runtime.h"
#include "amd64_linux.h"
#include "signals_linux.h"

/* From /usr/include/asm-x86_64/sigcontext.h */
struct _fpstate {
  uint16   cwd;
  uint16   swd;
  uint16   twd;    /* Note this is not the same as the 32bit/x87/FSAVE twd */
  uint16   fop;
  uint64   rip;
  uint32   rdp;
  uint32   mxcsr;
  uint32   mxcsr_mask;
  uint32   st_space[32];   /* 8*16 bytes for each FP-reg */
  uint32   xmm_space[64];  /* 16*16 bytes for each XMM-reg  */
  uint32   reserved2[24];
};

struct sigcontext {
  uint64 r8;
  uint64 r9;
  uint64 r10;
  uint64 r11;
  uint64 r12;
  uint64 r13;
  uint64 r14;
  uint64 r15;
  uint64 rdi;
  uint64 rsi;
  uint64 rbp;
  uint64 rbx;
  uint64 rdx;
  uint64 rax;
  uint64 rcx;
  uint64 rsp;
  uint64 rip;
  uint64 eflags;           /* RFLAGS */
  uint16 cs;
  uint16 gs;
  uint16 fs;
  uint16 __pad0;
  uint64 err;
  uint64 trapno;
  uint64 oldmask;
  uint64 cr2;
  struct _fpstate *fpstate;       /* zero when no FPU context */
  uint64 reserved1[8];
};


/* From /usr/include/asm-x86_64/signal.h */
typedef struct sigaltstack {
	void /*__user*/ *ss_sp;
	int32 ss_flags;
	uint64 ss_size;
} stack_t;

typedef uint64 sigset_t;


/* From /usr/include/asm-x86_64/ucontext.h */
struct ucontext {
  uint64            uc_flags;
  struct ucontext  *uc_link;
  stack_t           uc_stack;
  struct sigcontext uc_mcontext;
  sigset_t          uc_sigmask;   /* mask last for extensibility */
};


void
print_sigcontext(struct sigcontext *sc)
{
	prints("\nrax     ");  sys·printhex(sc->rax);
	prints("\nrbx     ");  sys·printhex(sc->rbx);
	prints("\nrcx     ");  sys·printhex(sc->rcx);
	prints("\nrdx     ");  sys·printhex(sc->rdx);
	prints("\nrdi     ");  sys·printhex(sc->rdi);
	prints("\nrsi     ");  sys·printhex(sc->rsi);
	prints("\nrbp     ");  sys·printhex(sc->rbp);
	prints("\nrsp     ");  sys·printhex(sc->rsp);
	prints("\nr8      ");  sys·printhex(sc->r8 );
	prints("\nr9      ");  sys·printhex(sc->r9 );
	prints("\nr10     ");  sys·printhex(sc->r10);
	prints("\nr11     ");  sys·printhex(sc->r11);
	prints("\nr12     ");  sys·printhex(sc->r12);
	prints("\nr13     ");  sys·printhex(sc->r13);
	prints("\nr14     ");  sys·printhex(sc->r14);
	prints("\nr15     ");  sys·printhex(sc->r15);
	prints("\nrip     ");  sys·printhex(sc->rip);
	prints("\nrflags  ");  sys·printhex(sc->eflags);
	prints("\ncs      ");  sys·printhex(sc->cs);
	prints("\nfs      ");  sys·printhex(sc->fs);
	prints("\ngs      ");  sys·printhex(sc->gs);
	prints("\n");
}


/*
 * This assembler routine takes the args from registers, puts them on the stack,
 * and calls sighandler().
 */
extern void sigtramp(void);
extern void sigignore(void);	// just returns
extern void sigreturn(void);	// calls sigreturn

/*
 * Rudimentary reverse-engineered definition of signal interface.
 * You'd think it would be documented.
 */
/* From /usr/include/bits/siginfo.h */
struct siginfo {
	int32	si_signo;		/* signal number */
	int32	si_errno;		/* errno association */
	int32	si_code;		/* signal code */
	int32	si_status;		/* exit value */
	void	*si_addr;		/* faulting address */
	/* more stuff here */
};

// This is a struct sigaction from /usr/include/asm/signal.h
struct sigaction {
	void (*sa_handler)(int32, struct siginfo*, void*);
	uint64 sa_flags;
	void (*sa_restorer)(void);
	uint64 sa_mask;
};

void
sighandler(int32 sig, struct siginfo* info, void** context)
{
	if(panicking)	// traceback already printed
		sys·exit(2);

	struct sigcontext *sc = &(((struct ucontext *)context)->uc_mcontext);

	if(sig < 0 || sig >= NSIG){
		prints("Signal ");
		sys·printint(sig);
	}else{
		prints(sigtab[sig].name);
	}

	prints("\nFaulting address: ");  sys·printpointer(info->si_addr);
	prints("\npc: ");  sys·printhex(sc->rip);
	prints("\n\n");

	if(gotraceback()){
		traceback((void *)sc->rip, (void *)sc->rsp, (void *)sc->r15);
		tracebackothers((void*)sc->r15);
		print_sigcontext(sc);
	}

	sys·breakpoint();
	sys·exit(2);
}

struct stack_t {
	void *sp;
	int32 flags;
	int32 pad;
	int64 size;
};

void
signalstack(byte *p, int32 n)
{
	struct stack_t st;

	st.sp = p;
	st.size = n;
	st.pad = 0;
	st.flags = 0;
	sigaltstack(&st, nil);
}

void	rt_sigaction(int64, void*, void*, uint64);

enum {
	SA_RESTART = 0x10000000,
	SA_ONSTACK = 0x08000000,
	SA_RESTORER = 0x04000000,
	SA_SIGINFO = 0x00000004,
};

void
initsig(void)
{
	static struct sigaction sa;

	int32 i;
	sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER;
	sa.sa_mask = 0xFFFFFFFFFFFFFFFFULL;
	sa.sa_restorer = (void*)sigreturn;
	for(i = 0; i<NSIG; i++) {
		if(sigtab[i].flags) {
			if(sigtab[i].flags & SigCatch)
				sa.sa_handler = (void*)sigtramp;
			else
				sa.sa_handler = (void*)sigignore;
			if(sigtab[i].flags & SigRestart)
				sa.sa_flags |= SA_RESTART;
			else
				sa.sa_flags &= ~SA_RESTART;
			rt_sigaction(i, &sa, nil, 8);
		}
	}
}


// Linux futex.
//
//	futexsleep(uint32 *addr, uint32 val)
//	futexwakeup(uint32 *addr)
//
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
// Futexwakeup wakes up one thread sleeping on addr.
// Futexsleep is allowed to wake up spuriously.

enum
{
	FUTEX_WAIT = 0,
	FUTEX_WAKE = 1,

	EINTR = 4,
	EAGAIN = 11,
};

// TODO(rsc) I tried using 1<<40 here but futex woke up (-ETIMEDOUT).
// I wonder if the timespec that gets to the kernel
// actually has two 32-bit numbers in it, so tha
// a 64-bit 1<<40 ends up being 0 seconds,
// 1<<8 nanoseconds.
static struct timespec longtime =
{
	1<<30,	// 34 years
	0
};

// Atomically,
//	if(*addr == val) sleep
// Might be woken up spuriously; that's allowed.
static void
futexsleep(uint32 *addr, uint32 val)
{
	int64 ret;

	ret = futex(addr, FUTEX_WAIT, val, &longtime, nil, 0);
	if(ret >= 0 || ret == -EAGAIN || ret == -EINTR)
		return;

	prints("futexsleep addr=");
	sys·printpointer(addr);
	prints(" val=");
	sys·printint(val);
	prints(" returned ");
	sys·printint(ret);
	prints("\n");
	*(int32*)0x1005 = 0x1005;
}

// If any procs are sleeping on addr, wake up at least one.
static void
futexwakeup(uint32 *addr)
{
	int64 ret;

	ret = futex(addr, FUTEX_WAKE, 1, nil, nil, 0);

	if(ret >= 0)
		return;

	// I don't know that futex wakeup can return
	// EAGAIN or EINTR, but if it does, it would be
	// safe to loop and call futex again.

	prints("futexwakeup addr=");
	sys·printpointer(addr);
	prints(" returned ");
	sys·printint(ret);
	prints("\n");
	*(int32*)0x1006 = 0x1006;
}


// Lock and unlock.
//
// The lock state is a single 32-bit word that holds
// a 31-bit count of threads waiting for the lock
// and a single bit (the low bit) saying whether the lock is held.
// The uncontended case runs entirely in user space.
// When contention is detected, we defer to the kernel (futex).
//
// A reminder: compare-and-swap cas(addr, old, new) does
//	if(*addr == old) { *addr = new; return 1; }
// 	else return 0;
// but atomically.

void
lock(Lock *l)
{
	uint32 v;

again:
	v = l->key;
	if((v&1) == 0){
		if(cas(&l->key, v, v|1)){
			// Lock wasn't held; we grabbed it.
			return;
		}
		goto again;
	}

	// Lock was held; try to add ourselves to the waiter count.
	if(!cas(&l->key, v, v+2))
		goto again;

	// We're accounted for, now sleep in the kernel.
	//
	// We avoid the obvious lock/unlock race because
	// the kernel won't put us to sleep if l->key has
	// changed underfoot and is no longer v+2.
	//
	// We only really care that (v&1) == 1 (the lock is held),
	// and in fact there is a futex variant that could
	// accomodate that check, but let's not get carried away.)
	futexsleep(&l->key, v+2);

	// We're awake: remove ourselves from the count.
	for(;;){
		v = l->key;
		if(v < 2)
			throw("bad lock key");
		if(cas(&l->key, v, v-2))
			break;
	}

	// Try for the lock again.
	goto again;
}

void
unlock(Lock *l)
{
	uint32 v;

	// Atomically get value and clear lock bit.
again:
	v = l->key;
	if((v&1) == 0)
		throw("unlock of unlocked lock");
	if(!cas(&l->key, v, v&~1))
		goto again;

	// If there were waiters, wake one.
	if(v & ~1)
		futexwakeup(&l->key);
}


// One-time notifications.
//
// Since the lock/unlock implementation already
// takes care of sleeping in the kernel, we just reuse it.
// (But it's a weird use, so it gets its own interface.)
//
// We use a lock to represent the event:
// unlocked == event has happened.
// Thus the lock starts out locked, and to wait for the
// event you try to lock the lock.  To signal the event,
// you unlock the lock.

void
noteclear(Note *n)
{
	n->lock.key = 0;	// memset(n, 0, sizeof *n)
	lock(&n->lock);
}

void
notewakeup(Note *n)
{
	unlock(&n->lock);
}

void
notesleep(Note *n)
{
	lock(&n->lock);
	unlock(&n->lock);	// Let other sleepers find out too.
}


// Clone, the Linux rfork.
enum
{
	CLONE_VM = 0x100,
	CLONE_FS = 0x200,
	CLONE_FILES = 0x400,
	CLONE_SIGHAND = 0x800,
	CLONE_PTRACE = 0x2000,
	CLONE_VFORK = 0x4000,
	CLONE_PARENT = 0x8000,
	CLONE_THREAD = 0x10000,
	CLONE_NEWNS = 0x20000,
	CLONE_SYSVSEM = 0x40000,
	CLONE_SETTLS = 0x80000,
	CLONE_PARENT_SETTID = 0x100000,
	CLONE_CHILD_CLEARTID = 0x200000,
	CLONE_UNTRACED = 0x800000,
	CLONE_CHILD_SETTID = 0x1000000,
	CLONE_STOPPED = 0x2000000,
	CLONE_NEWUTS = 0x4000000,
	CLONE_NEWIPC = 0x8000000,
};

void
newosproc(M *m, G *g, void *stk, void (*fn)(void))
{
	int64 ret;
	int32 flags;

	flags = CLONE_PARENT	/* getppid doesn't change in child */
		| CLONE_VM	/* share memory */
		| CLONE_FS	/* share cwd, etc */
		| CLONE_FILES	/* share fd table */
		| CLONE_SIGHAND	/* share sig handler table */
		| CLONE_PTRACE	/* revisit - okay for now */
		| CLONE_THREAD	/* revisit - okay for now */
		;

	if(0){
		prints("newosproc stk=");
		sys·printpointer(stk);
		prints(" m=");
		sys·printpointer(m);
		prints(" g=");
		sys·printpointer(g);
		prints(" fn=");
		sys·printpointer(fn);
		prints(" clone=");
		sys·printpointer(clone);
		prints("\n");
	}

	ret = clone(flags, stk, m, g, fn);
	if(ret < 0)
		*(int32*)123 = 123;
}

void
osinit(void)
{
}

// Called to initialize a new m (including the bootstrap m).
void
minit(void)
{
	// Initialize signal handling.
	m->gsignal = malg(32*1024);	// OS X wants >=8K, Linux >=2K
	signalstack(m->gsignal->stackguard, 32*1024);
}