summaryrefslogtreecommitdiff
path: root/usr/austin/eval/expr.go
blob: a96e293d01e3319823ee850a1fcb57187b7884be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
// Copyright 2009 The Go Authors.  All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package eval

import (
	"bignum";
	"eval";
	"go/ast";
	"go/token";
	"log";
	"strconv";
	"strings";
)

// An exprContext stores information used throughout the compilation
// of an entire expression.
type exprContext struct {
	scope *Scope;
	constant bool;
	// TODO(austin) Error list
}

// An exprCompiler compiles a single node in an expression.  It stores
// the whole expression's context plus information specific to this node.
// After compilation, it stores the type of the expression and its
// evaluator function.
type exprCompiler struct {
	*exprContext;
	pos token.Position;
	t Type;
	// TODO(austin) Should there be separate f's for each specific
	// Value interface?  We spend a lot of time calling f's and
	// just blindly casting the result since we already know its type.
	f func (f *Frame) Value;
	// A short string describing this expression for error
	// messages.  Only necessary if t != nil.
	desc string;
	// True if the address-of operator can be applied to this
	// result.
	addressable bool;
}

func newExprCompiler(c *exprContext, pos token.Position) *exprCompiler {
	return &exprCompiler{c, pos, nil, nil, "<missing description>", false};
}

func (a *exprCompiler) fork(x ast.Expr) *exprCompiler {
	ec := newExprCompiler(a.exprContext, x.Pos());
	x.Visit(ec);
	return ec;
}

func (a *exprCompiler) diag(format string, args ...) {
	diag(a.pos, format, args);
}

func (a *exprCompiler) diagOpType(op token.Token, vt Type) {
	a.diag("illegal operand type for '%v' operator\n\t%v", op, vt);
}

func (a *exprCompiler) diagOpTypes(op token.Token, lt Type, rt Type) {
	a.diag("illegal operand types for '%v' operator\n\t%v\n\t%v", op, lt, rt);
}

func (a *exprCompiler) DoBadExpr(x *ast.BadExpr) {
	// Do nothing.  Already reported by parser.
}

func (a *exprCompiler) DoIdent(x *ast.Ident) {
	def, dscope := a.scope.Lookup(x.Value);
	if def == nil {
		a.diag("%s: undefined", x.Value);
		return;
	}
	switch def := def.(type) {
	case *Constant:
		a.t = def.Type;
		a.f = func (*Frame) Value { return def.Value };
		a.desc = "constant";
	case *Variable:
		if a.constant {
			a.diag("expression must be a constant");
			return;
		}
		a.t = def.Type;
		defidx := def.Index;
		a.f = func (f *Frame) Value {
			// TODO(austin) Make Frame do this?
			for f.Scope != dscope {
				f = f.Outer;
			}
			return f.Vars[defidx];
		};
		a.desc = "variable";
		a.addressable = true;
	case Type:
		a.diag("type %v used as expression", x.Value);
	default:
		log.Crashf("name %s has unknown type %T", x.Value, def);
	}
}

func (a *exprCompiler) doIdealInt(i *bignum.Integer) {
	a.t = IdealIntType;
	val := &idealIntV{i};
	a.f = func (*Frame) Value { return val };
}

func (a *exprCompiler) DoIntLit(x *ast.IntLit) {
	i, _, _2 := bignum.IntFromString(string(x.Value), 0);
	a.doIdealInt(i);
	a.desc = "integer literal";
}

func (a *exprCompiler) DoCharLit(x *ast.CharLit) {
	if x.Value[0] != '\'' {
		// Shouldn't get past the parser
		log.Crashf("unexpected character literal %s at %v", x.Value, x.Pos());
	}
	v, mb, tail, err := strconv.UnquoteChar(string(x.Value[1:len(x.Value)]), '\'');
	if err != nil {
		a.diag("illegal character literal, %v", err);
		return;
	}
	if tail != "'" {
		a.diag("character literal must contain only one character");
		return;
	}
	a.doIdealInt(bignum.Int(int64(v)));
	a.desc = "character literal";
}

func (a *exprCompiler) DoFloatLit(x *ast.FloatLit) {
	a.t = IdealFloatType;
	i, _, _2 := bignum.RatFromString(string(x.Value), 0);
	val := &idealFloatV{i};
	a.f = func (*Frame) Value { return val };
	a.desc = "float literal";
}

func (a *exprCompiler) doString(s string) {
	a.t = StringType;
	val := stringV(s);
	a.f = func (*Frame) Value { return &val };
}

func (a *exprCompiler) DoStringLit(x *ast.StringLit) {
	s, err := strconv.Unquote(string(x.Value));
	if err != nil {
		a.diag("illegal string literal, %v", err);
		return;
	}
	a.doString(s);
	a.desc = "string literal";
}

func (a *exprCompiler) DoStringList(x *ast.StringList) {
	ss := make([]string, len(x.Strings));
	for i := 0; i < len(x.Strings); i++ {
		s, err := strconv.Unquote(string(x.Strings[i].Value));
		if err != nil {
			a.diag("illegal string literal, %v", err);
			return;
		}
		ss[i] = s;
	}
	a.doString(strings.Join(ss, ""));
	a.desc = "string literal";
}

func (a *exprCompiler) DoFuncLit(x *ast.FuncLit) {
	log.Crash("Not implemented");
}

func (a *exprCompiler) DoCompositeLit(x *ast.CompositeLit) {
	log.Crash("Not implemented");
}

func (a *exprCompiler) DoParenExpr(x *ast.ParenExpr) {
	x.X.Visit(a);
}

func (a *exprCompiler) DoSelectorExpr(x *ast.SelectorExpr) {
	log.Crash("Not implemented");
}

func (a *exprCompiler) DoIndexExpr(x *ast.IndexExpr) {
	log.Crash("Not implemented");
}

func (a *exprCompiler) DoTypeAssertExpr(x *ast.TypeAssertExpr) {
	log.Crash("Not implemented");
}

func (a *exprCompiler) DoCallExpr(x *ast.CallExpr) {
	log.Crash("Not implemented");
}

func (a *exprCompiler) DoStarExpr(x *ast.StarExpr) {
	v := a.fork(x.X);
	if v.t == nil {
		return;
	}

	switch vt := v.t.(type) {
	case *PtrType:
		a.t = vt.Elem();
		vf := v.f;
		a.f = func (f *Frame) Value { return vf(f).(PtrValue).Get() };
		a.desc = "* expression";
		a.addressable = true;

	default:
		a.diagOpType(token.MUL, v.t);
	}
}

func (a *exprCompiler) DoUnaryExpr(x *ast.UnaryExpr) {
	switch x.Op {
	case token.SUB:
		// Negation
		v := a.fork(x.X);
		if v.t == nil {
			return;
		}

		a.t = v.t;
		vf := v.f;
		switch vt := v.t.literal().(type) {
		case *uintType:
			a.f = func (f *Frame) Value {
				return vt.value(-vf(f).(UintValue).Get());
			};
		case *intType:
			a.f = func (f *Frame) Value {
				return vt.value(-vf(f).(IntValue).Get());
			};
		case *idealIntType:
			val := vt.value(vf(nil).(IdealIntValue).Get().Neg());
			a.f = func (f *Frame) Value { return val };
		case *floatType:
			a.f = func (f *Frame) Value {
				return vt.value(-vf(f).(FloatValue).Get());
			};
		case *idealFloatType:
			val := vt.value(vf(nil).(IdealFloatValue).Get().Neg());
			a.f = func (f *Frame) Value { return val };
		default:
			a.t = nil;
			a.diagOpType(x.Op, v.t);
			return;
		}

	case token.AND:
		// Address-of
		v := a.fork(x.X);
		if v.t == nil {
			return;
		}

		// The unary prefix address-of operator & generates
		// the address of its operand, which must be a
		// variable, pointer indirection, field selector, or
		// array or slice indexing operation.
		if !v.addressable {
			a.diag("cannot take the address of %s", v.desc);
			return;
		}

		// TODO(austin) Implement "It is illegal to take the
		// address of a function result variable" once I have
		// function result variables.

		at := NewPtrType(v.t);
		a.t = at;

		vf := v.f;
		a.f = func (f *Frame) Value { return at.value(vf(f)) };
		a.desc = "& expression";

	default:
		log.Crashf("Unary op %v not implemented", x.Op);
	}
}

// a.convertTo(t) converts the value of the analyzed expression a,
// which must be a constant, ideal number, to a new analyzed
// expression with a constant value of type t.
func (a *exprCompiler) convertTo(t Type) *exprCompiler {
	if !a.t.isIdeal() {
		log.Crashf("attempted to convert from %v, expected ideal", a.t);
	}

	val := a.f(nil);
	var rat *bignum.Rational;

	// It is erroneous to assign a value with a non-zero
	// fractional part to an integer, or if the assignment would
	// overflow or underflow, or in general if the value cannot be
	// represented by the type of the variable.
	switch a.t {
	case IdealFloatType:
		rat = val.(IdealFloatValue).Get();
		if t.isInteger() && !rat.IsInt() {
			a.diag("constant %v truncated to integer", ratToString(rat));
			return nil;
		}
	case IdealIntType:
		rat = bignum.MakeRat(val.(IdealIntValue).Get(), bignum.Nat(1));
	default:
		log.Crashf("unexpected ideal type %v", a.t);
	}

	// Check bounds
	if t, ok := t.(BoundedType); ok {
		if rat.Cmp(t.minVal()) < 0 {
			a.diag("constant %v underflows %v", ratToString(rat), t);
			return nil;
		}
		if rat.Cmp(t.maxVal()) > 0 {
			a.diag("constant %v overflows %v", ratToString(rat), t);
			return nil;
		}
	}

	// Convert rat to type t.
	switch t := t.(type) {
	case *uintType:
		n, d := rat.Value();
		f := n.Quo(bignum.MakeInt(false, d));
		v := f.Abs().Value();
		val = t.value(v);
	case *intType:
		n, d := rat.Value();
		f := n.Quo(bignum.MakeInt(false, d));
		v := f.Value();
		val = t.value(v);
	case *idealIntType:
		n, d := rat.Value();
		f := n.Quo(bignum.MakeInt(false, d));
		val = t.value(f);
	case *floatType:
		n, d := rat.Value();
		v := float64(n.Value())/float64(d.Value());
		val = t.value(v);
	case *idealFloatType:
		val = t.value(rat);
	default:
		log.Crashf("cannot convert to type %T", t);
	}

	res := newExprCompiler(a.exprContext, a.pos);
	res.t = t;
	res.f = func (*Frame) Value { return val };
	res.desc = a.desc;
	return res;
}

var opDescs = make(map[token.Token] string)

func (a *exprCompiler) DoBinaryExpr(x *ast.BinaryExpr) {
	l, r := a.fork(x.X), a.fork(x.Y);
	if l.t == nil || r.t == nil {
		return;
	}

	// Save the original types of l.t and r.t for error messages.
	origlt := l.t;
	origrt := r.t;

	// XXX(Spec) What is the exact definition of a "named type"?

	// XXX(Spec) Arithmetic operators: "Integer types" apparently
	// means all types compatible with basic integer types, though
	// this is never explained.  Likewise for float types, etc.
	// This relates to the missing explanation of named types.

	// XXX(Spec) Operators: "If both operands are ideal numbers,
	// the conversion is to ideal floats if one of the operands is
	// an ideal float (relevant for / and %)."  How is that
	// relevant only for / and %?  If I add an ideal int and an
	// ideal float, I get an ideal float.

	// Except in shift expressions, if one operand has numeric
	// type and the other operand is an ideal number, the ideal
	// number is converted to match the type of the other operand.
	if x.Op != token.SHL && x.Op != token.SHR {
		if l.t.isInteger() && !l.t.isIdeal() && r.t.isIdeal() {
			r = r.convertTo(l.t);
		} else if r.t.isInteger() && !r.t.isIdeal() && l.t.isIdeal() {
			l = l.convertTo(r.t);
		}
		if l == nil || r == nil {
			return;
		}

		// Except in shift expressions, if both operands are
		// ideal numbers and one is an ideal float, the other
		// is converted to ideal float.
		if l.t.isIdeal() && r.t.isIdeal() {
			if l.t.isInteger() && r.t.isFloat() {
				l = l.convertTo(r.t);
			} else if l.t.isFloat() && r.t.isInteger() {
				r = r.convertTo(l.t);
			}
			if l == nil || r == nil {
				return;
			}
		}
	}

	// Useful type predicates
	compat := func() bool {
		return l.t.compatible(r.t);
	};
	integers := func() bool {
		return l.t.isInteger() && r.t.isInteger();
	};
	floats := func() bool {
		return l.t.isFloat() && r.t.isFloat();
	};
	strings := func() bool {
		// TODO(austin) Deal with named types
		return l.t == StringType && r.t == StringType;
	};
	booleans := func() bool {
		// TODO(austin) Deal with named types
		return l.t == BoolType && r.t == BoolType;
	};

	// Type check
	switch x.Op {
	case token.ADD:
		if !compat() || (!integers() && !floats() && !strings()) {
			a.diagOpTypes(x.Op, origlt, origrt);
			return;
		}
		a.t = l.t;

	case token.SUB, token.MUL, token.QUO:
		if !compat() || (!integers() && !floats()) {
			a.diagOpTypes(x.Op, origlt, origrt);
			return;
		}
		a.t = l.t;

	case token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
		if !compat() || !integers() {
			a.diagOpTypes(x.Op, origlt, origrt);
			return;
		}
		a.t = l.t;

	case token.SHL, token.SHR:
		// The right operand in a shift operation must be
		// always be of unsigned integer type or an ideal
		// number that can be safely converted into an
		// unsigned integer type.
		if r.t.isIdeal() {
			r = r.convertTo(UintType);
			if r == nil {
				return;
			}
		}

		if !integers() {
			a.diagOpTypes(x.Op, origlt, origrt);
			return;
		}
		if _, ok := r.t.literal().(*uintType); !ok {
			a.diag("right operand of shift must be unsigned");
			return;
		}
		a.t = l.t;

	case token.LOR, token.LAND:
		if !booleans() {
			return;
		}
		// XXX(Spec) There's no mention of *which* boolean
		// type the logical operators return.  From poking at
		// 6g, it appears to be the named boolean type, NOT
		// the type of the left operand, and NOT an unnamed
		// boolean type.

		// TODO(austin) Named bool type
		a.t = BoolType;

	case token.ARROW:
		// The operands in channel sends differ in type: one
		// is always a channel and the other is a variable or
		// value of the channel's element type.
		log.Crash("Binary op <- not implemented");
		a.t = BoolType;

	case token.LSS, token.GTR, token.LEQ, token.GEQ:
		// ... booleans may be compared only for equality or
		// inequality.
		if l.t.literal() == BoolType || r.t.literal() == BoolType {
			a.diagOpTypes(x.Op, origlt, origrt);
			return;
		}

		fallthrough;
	case token.EQL, token.NEQ:
		// When comparing two operands of channel type, the
		// channel value types must be compatible but the
		// channel direction is ignored.

		// XXX(Spec) Operators: "When comparing two operands
		// of channel type, the channel value types must be
		// compatible but the channel direction is ignored."
		// By "compatible" this really means "comparison
		// compatible".  Really, the rules for type checking
		// comparison operators are entirely different from
		// other binary operators, but this just barely hints
		// at that.

		// XXX(Spec) Comparison operators: "All comparison
		// operators apply to basic types except bools."
		// "except bools" is really weird here, since this is
		// actually explained in the Comparison compatibility
		// section.
		log.Crashf("Binary op %v not implemented", x.Op);
		// TODO(austin) Unnamed bool?  Named bool?
		a.t = BoolType;

	default:
		log.Crashf("unknown binary operator %v", x.Op);
	}

	var ok bool;
	a.desc, ok = opDescs[x.Op];
	if !ok {
		a.desc = x.Op.String() + " expression";
		opDescs[x.Op] = a.desc;
	}

	// Compile
	// TODO(austin) There has got to be a better way to do this.
	lf := l.f;
	rf := r.f;
	switch x.Op {
	case token.ADD:
		switch lt := l.t.literal().(type) {
		case *uintType:
			// TODO(austin) lt.value allocates.  It would
			// be awesome if we could avoid that for
			// intermediate values.  That might be
			// possible if we pass the closure a place to
			// store its result.
			a.f = func (f *Frame) Value {
				return lt.value(lf(f).(UintValue).Get() + rf(f).(UintValue).Get());
			};
		case *intType:
			a.f = func (f *Frame) Value {
				return lt.value(lf(f).(IntValue).Get() + rf(f).(IntValue).Get());
			};
		case *idealIntType:
			val := lt.value(lf(nil).(IdealIntValue).Get().Add(rf(nil).(IdealIntValue).Get()));
			a.f = func (f *Frame) Value { return val };
		case *floatType:
			a.f = func (f *Frame) Value {
				return lt.value(lf(f).(FloatValue).Get() + rf(f).(FloatValue).Get());
			};
		case *idealFloatType:
			val := lt.value(lf(nil).(IdealFloatValue).Get().Add(rf(nil).(IdealFloatValue).Get()));
			a.f = func (f *Frame) Value { return val };
		case *stringType:
			a.f = func (f *Frame) Value {
				return lt.value(lf(f).(StringValue).Get() + rf(f).(StringValue).Get());
			};
		default:
			// Shouldn't have passed type checking
			log.Crashf("unexpected left operand type %v at %v", l.t.literal(), x.Pos());
		}

	case token.SUB:
		switch lt := l.t.literal().(type) {
		case *uintType:
			a.f = func (f *Frame) Value {
				return lt.value(lf(f).(UintValue).Get() - rf(f).(UintValue).Get());
			};
		case *intType:
			a.f = func (f *Frame) Value {
				return lt.value(lf(f).(IntValue).Get() - rf(f).(IntValue).Get());
			};
		case *idealIntType:
			val := lt.value(lf(nil).(IdealIntValue).Get().Sub(rf(nil).(IdealIntValue).Get()));
			a.f = func (f *Frame) Value { return val };
		case *floatType:
			a.f = func (f *Frame) Value {
				return lt.value(lf(f).(FloatValue).Get() - rf(f).(FloatValue).Get());
			};
		case *idealFloatType:
			val := lt.value(lf(nil).(IdealFloatValue).Get().Sub(rf(nil).(IdealFloatValue).Get()));
			a.f = func (f *Frame) Value { return val };
		default:
			// Shouldn't have passed type checking
			log.Crashf("unexpected left operand type %v at %v", l.t.literal(), x.Pos());
		}

	case token.QUO:
		// TODO(austin) What if divisor is zero?
		switch lt := l.t.literal().(type) {
		case *uintType:
			a.f = func (f *Frame) Value {
				return lt.value(lf(f).(UintValue).Get() / rf(f).(UintValue).Get());
			};
		case *intType:
			a.f = func (f *Frame) Value {
				return lt.value(lf(f).(IntValue).Get() / rf(f).(IntValue).Get());
			};
		case *idealIntType:
			val := lt.value(lf(nil).(IdealIntValue).Get().Quo(rf(nil).(IdealIntValue).Get()));
			a.f = func (f *Frame) Value { return val };
		case *floatType:
			a.f = func (f *Frame) Value {
				return lt.value(lf(f).(FloatValue).Get() / rf(f).(FloatValue).Get());
			};
		case *idealFloatType:
			val := lt.value(lf(nil).(IdealFloatValue).Get().Quo(rf(nil).(IdealFloatValue).Get()));
			a.f = func (f *Frame) Value { return val };
		default:
			// Shouldn't have passed type checking
			log.Crashf("unexpected left operand type %v at %v", l.t.literal(), x.Pos());
		}

	default:
		log.Crashf("Compilation of binary op %v not implemented", x.Op);
	}
}

func (a *exprCompiler) DoKeyValueExpr(x *ast.KeyValueExpr) {
	log.Crash("Not implemented");
}

func (a *exprCompiler) DoEllipsis(x *ast.Ellipsis) {
	log.Crash("Not implemented");
}

func (a *exprCompiler) DoArrayType(x *ast.ArrayType) {
	log.Crash("Not implemented");
}

func (a *exprCompiler) DoStructType(x *ast.StructType) {
	log.Crash("Not implemented");
}

func (a *exprCompiler) DoFuncType(x *ast.FuncType) {
	log.Crash("Not implemented");
}

func (a *exprCompiler) DoInterfaceType(x *ast.InterfaceType) {
	log.Crash("Not implemented");
}

func (a *exprCompiler) DoMapType(x *ast.MapType) {
	log.Crash("Not implemented");
}

func (a *exprCompiler) DoChanType(x *ast.ChanType) {
	log.Crash("Not implemented");
}

func compileExpr(expr ast.Expr, scope *Scope) *exprCompiler {
	ec := newExprCompiler(&exprContext{scope, false}, expr.Pos());
	expr.Visit(ec);
	if ec.t == nil {
		return nil;
	}
	return ec;
}

/*
 * Public interface
 */

type Expr struct {
	f func (f *Frame) Value;
}

func (expr *Expr) Eval(f *Frame) Value {
	return expr.f(f);
}

func CompileExpr(expr ast.Expr, scope *Scope) *Expr {
	ec := compileExpr(expr, scope);
	if ec == nil {
		return nil;
	}
	return &Expr{ec.f};
}