{* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *} {$ifndef APR_POOLS_H} {$define APR_POOLS_H} {** * @file apr_pools.h * @brief APR memory allocation * * Resource allocation routines... * * designed so that we don't have to keep track of EVERYTHING so that * it can be explicitly freed later (a fundamentally unsound strategy --- * particularly in the presence of die()). * * Instead, we maintain pools, and allocate items (both memory and I/O * handlers) from the pools --- currently there are two, one for * per-transaction info, and one for config info. When a transaction is * over, we can delete everything in the per-transaction apr_pool_t without * fear, and without thinking too hard about it either. * * Note that most operations on pools are not thread-safe: a single pool * should only be accessed by a single thread at any given time. The one * exception to this rule is creating a subpool of a given pool: one or more * threads can safely create subpools at the same time that another thread * accesses the parent pool. *} //#include "apr.h" //#include "apr_errno.h" //#include "apr_general.h" /* for APR_STRINGIFY */ //#define APR_WANT_MEMFUNC /**< for no good reason? */ //#include "apr_want.h" (** * @defgroup apr_pools Memory Pool Functions * @ingroup APR * @{ *) //** The fundamental pool type */ //typedef struct apr_pool_t apr_pool_t; {fpc -> apr_pool_t is found in apr-X.X.X/memory/unix/apr_pools.c , not in header files} type apr_pool_t = record end; Papr_pool_t = ^apr_pool_t; PPapr_pool_t = ^Papr_pool_t; {** * Declaration helper macro to construct apr_foo_pool_get()s. * * This standardized macro is used by opaque (APR) data types to return * the apr_pool_t that is associated with the data type. * * APR_POOL_DECLARE_ACCESSOR() is used in a header file to declare the * accessor function. A typical usage and result would be: *
* APR_POOL_DECLARE_ACCESSOR(file); * becomes: * APR_DECLARE(apr_pool_t *) apr_file_pool_get(apr_file_t *ob); ** @remark Doxygen unwraps this macro (via doxygen.conf) to provide * actual help for each specific occurance of apr_foo_pool_get. * @remark the linkage is specified for APR. It would be possible to expand * the macros to support other linkages. *} //#define APR_POOL_DECLARE_ACCESSOR(type) \ // APR_DECLARE(apr_pool_t *) apr_##type##_pool_get \ // (const apr_##type##_t *the##type) {** * Implementation helper macro to provide apr_foo_pool_get()s. * * In the implementation, the APR_POOL_IMPLEMENT_ACCESSOR() is used to * actually define the function. It assumes the field is named "pool". *} //#define APR_POOL_IMPLEMENT_ACCESSOR(type) \ // APR_DECLARE(apr_pool_t *) apr_##type##_pool_get \ // (const apr_##type##_t *the##type) \ // { return the##type->pool; } {** * Pool debug levels * *
* | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | * --------------------------------- * | | | | | | | | x | General debug code enabled (useful in * combination with --with-efence). * * | | | | | | | x | | Verbose output on stderr (report * CREATE, CLEAR, DESTROY). * * | | | | x | | | | | Verbose output on stderr (report * PALLOC, PCALLOC). * * | | | | | | x | | | Lifetime checking. On each use of a * pool, check its lifetime. If the pool * is out of scope, abort(). * In combination with the verbose flag * above, it will output LIFE in such an * event prior to aborting. * * | | | | | x | | | | Pool owner checking. On each use of a * pool, check if the current thread is the * pools owner. If not, abort(). In * combination with the verbose flag above, * it will output OWNER in such an event * prior to aborting. Use the debug * function apr_pool_owner_set() to switch * a pools ownership. * * When no debug level was specified, assume general debug mode. * If level 0 was specified, debugging is switched off **} {#if defined(APR_POOL_DEBUG) /* If APR_POOL_DEBUG is blank, we get 1; if it is a number, we get -1. */ #if (APR_POOL_DEBUG - APR_POOL_DEBUG -1 == 1) #undef APR_POOL_DEBUG #define APR_POOL_DEBUG 1 #endif #else} const APR_POOL_DEBUG = 0; //#endif //** the place in the code where the particular function was called */ //#define APR_POOL__FILE_LINE__ __FILE__ ":" APR_STRINGIFY(__LINE__) //** A function that is called when allocation fails. */ //typedef int (*apr_abortfunc_t)(int retcode); type apr_abortfunc_t = function (retcode: Integer): Integer; {* * APR memory structure manipulators (pools, tables, and arrays). *} {* * Initialization *} {** * Setup all of the internal structures required to use pools * @remark Programs do NOT need to call this directly. APR will call this * automatically from apr_initialize. * @internal *} //APR_DECLARE(apr_status_t) apr_pool_initialize(void); function apr_pool_initialize: apr_status_t; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_initialize' + LibSuff0; {** * Tear down all of the internal structures required to use pools * @remark Programs do NOT need to call this directly. APR will call this * automatically from apr_terminate. * @internal *} //APR_DECLARE(void) apr_pool_terminate(void); procedure apr_pool_terminate; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_terminate' + LibSuff0; {* * Pool creation/destruction *} {$include apr_allocator.inc} {** * Create a new pool. * @param newpool The pool we have just created. * @param parent The parent pool. If this is NULL, the new pool is a root * pool. If it is non-NULL, the new pool will inherit all * of its parent pool's attributes, except the apr_pool_t will * be a sub-pool. * @param abort_fn A function to use if the pool cannot allocate more memory. * @param allocator The allocator to use with the new pool. If NULL the * allocator of the parent pool will be used. * @remark This function is thread-safe, in the sense that multiple threads * can safely create subpools of the same parent pool concurrently. * Similarly, a subpool can be created by one thread at the same * time that another thread accesses the parent pool. *} //APR_DECLARE(apr_status_t) apr_pool_create_ex(apr_pool_t **newpool, // apr_pool_t *parent, // apr_abortfunc_t abort_fn, // apr_allocator_t *allocator); function apr_pool_create_ex(newpool: PPapr_pool_t; parent: Papr_pool_t; abort_fn: apr_abortfunc_t; allocator: Papr_allocator_t): apr_status_t; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_create_ex' + LibSuff16; {** * Create a new pool. * @deprecated @see apr_pool_create_unmanaged_ex. *} //APR_DECLARE(apr_status_t) apr_pool_create_core_ex(apr_pool_t **newpool, // apr_abortfunc_t abort_fn, // apr_allocator_t *allocator); function apr_pool_create_core_ex(newpool: PPapr_pool_t; abort_fn: apr_abortfunc_t; allocator: Papr_allocator_t): apr_status_t; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_create_core_ex' + LibSuff12; {** * Create a new unmanaged pool. * @param newpool The pool we have just created. * @param abort_fn A function to use if the pool cannot allocate more memory. * @param allocator The allocator to use with the new pool. If NULL a * new allocator will be crated with newpool as owner. * @remark An unmanaged pool is a special pool without a parent; it will * NOT be destroyed upon apr_terminate. It must be explicitly * destroyed by calling apr_pool_destroy, to prevent memory leaks. * Use of this function is discouraged, think twice about whether * you really really need it. *} //APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex(apr_pool_t **newpool, // apr_abortfunc_t abort_fn, // apr_allocator_t *allocator); function apr_pool_create_unmanaged_ex(newpool: PPapr_pool_t; abort_fn: apr_abortfunc_t; allocator: Papr_allocator_t): apr_status_t; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_create_unmanaged_ex' + LibSuff12; {** * Debug version of apr_pool_create_ex. * @param newpool @see apr_pool_create. * @param parent @see apr_pool_create. * @param abort_fn @see apr_pool_create. * @param allocator @see apr_pool_create. * @param file_line Where the function is called from. * This is usually APR_POOL__FILE_LINE__. * @remark Only available when APR_POOL_DEBUG is defined. * Call this directly if you have you apr_pool_create_ex * calls in a wrapper function and wish to override * the file_line argument to reflect the caller of * your wrapper function. If you do not have * apr_pool_create_ex in a wrapper, trust the macro * and don't call apr_pool_create_ex_debug directly. *} //APR_DECLARE(apr_status_t) apr_pool_create_ex_debug(apr_pool_t **newpool, // apr_pool_t *parent, // apr_abortfunc_t abort_fn, // apr_allocator_t *allocator, // const char *file_line); function apr_pool_create_ex_debug(newpool: PPapr_pool_t; parent: Papr_pool_t; abort_fn: apr_abortfunc_t; allocator: Papr_allocator_t; const file_line: PChar): apr_status_t; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_create_ex_debug' + LibSuff20; //#if APR_POOL_DEBUG //#define apr_pool_create_ex(newpool, parent, abort_fn, allocator) \ // apr_pool_create_ex_debug(newpool, parent, abort_fn, allocator, \ // APR_POOL__FILE_LINE__) //#endif {** * Debug version of apr_pool_create_core_ex. * @deprecated @see apr_pool_create_unmanaged_ex_debug. *} //APR_DECLARE(apr_status_t) apr_pool_create_core_ex_debug(apr_pool_t **newpool, // apr_abortfunc_t abort_fn, // apr_allocator_t *allocator, // const char *file_line); function apr_pool_create_core_ex_debug(newpool: PPapr_pool_t; abort_fn: apr_abortfunc_t; allocator: Papr_allocator_t; const file_line: PChar): apr_status_t; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_create_core_ex_debug' + LibSuff16; {** * Debug version of apr_pool_create_unmanaged_ex. * @param newpool @see apr_pool_create_unmanaged. * @param abort_fn @see apr_pool_create_unmanaged. * @param allocator @see apr_pool_create_unmanaged. * @param file_line Where the function is called from. * This is usually APR_POOL__FILE_LINE__. * @remark Only available when APR_POOL_DEBUG is defined. * Call this directly if you have you apr_pool_create_unmanaged_ex * calls in a wrapper function and wish to override * the file_line argument to reflect the caller of * your wrapper function. If you do not have * apr_pool_create_core_ex in a wrapper, trust the macro * and don't call apr_pool_create_core_ex_debug directly. *} //APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex_debug(apr_pool_t **newpool, // apr_abortfunc_t abort_fn, // apr_allocator_t *allocator, // const char *file_line); function apr_pool_create_unmanaged_ex_debug(newpool: PPapr_pool_t; abort_fn: apr_abortfunc_t; allocator: Papr_allocator_t; const file_line: PChar): apr_status_t; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_create_unmanaged_ex_debug' + LibSuff16; //#if APR_POOL_DEBUG //#define apr_pool_create_core_ex(newpool, abort_fn, allocator) \ // apr_pool_create_unmanaged_ex_debug(newpool, abort_fn, allocator, \ // APR_POOL__FILE_LINE__) // //#define apr_pool_create_unmanaged_ex(newpool, abort_fn, allocator) \ // apr_pool_create_unmanaged_ex_debug(newpool, abort_fn, allocator, \ // APR_POOL__FILE_LINE__) // //#endif {** * Create a new pool. * @param newpool The pool we have just created. * @param parent The parent pool. If this is NULL, the new pool is a root * pool. If it is non-NULL, the new pool will inherit all * of its parent pool's attributes, except the apr_pool_t will * be a sub-pool. * @remark This function is thread-safe, in the sense that multiple threads * can safely create subpools of the same parent pool concurrently. * Similarly, a subpool can be created by one thread at the same * time that another thread accesses the parent pool. *} //#if defined(DOXYGEN) //APR_DECLARE(apr_status_t) apr_pool_create(apr_pool_t **newpool, // apr_pool_t *parent); //#else //#if APR_POOL_DEBUG //#define apr_pool_create(newpool, parent) \ // apr_pool_create_ex_debug(newpool, parent, NULL, NULL, \ // APR_POOL__FILE_LINE__) //#else //#define apr_pool_create(newpool, parent) \ // apr_pool_create_ex(newpool, parent, NULL, NULL) //#endif //#endif {** * Create a new pool. * @param newpool The pool we have just created. *} //#if defined(DOXYGEN) //APR_DECLARE(apr_status_t) apr_pool_create_core(apr_pool_t **newpool); //APR_DECLARE(apr_status_t) apr_pool_create_unmanaged(apr_pool_t **newpool); //#else //#if APR_POOL_DEBUG //#define apr_pool_create_core(newpool) \ // apr_pool_create_unmanaged_ex_debug(newpool, NULL, NULL, \ // APR_POOL__FILE_LINE__) //#define apr_pool_create_unmanaged(newpool) \ // apr_pool_create_unmanaged_ex_debug(newpool, NULL, NULL, \ // APR_POOL__FILE_LINE__) //#else //#define apr_pool_create_core(newpool) \ // apr_pool_create_unmanaged_ex(newpool, NULL, NULL) //#define apr_pool_create_unmanaged(newpool) \ // apr_pool_create_unmanaged_ex(newpool, NULL, NULL) //#endif //#endif {** * Find the pool's allocator * @param pool The pool to get the allocator from. *} //APR_DECLARE(apr_allocator_t *) apr_pool_allocator_get(apr_pool_t *pool); function apr_pool_allocator_get(pool: Papr_pool_t): Papr_allocator_t; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_allocator_get' + LibSuff4; {** * Clear all memory in the pool and run all the cleanups. This also destroys all * subpools. * @param p The pool to clear * @remark This does not actually free the memory, it just allows the pool * to re-use this memory for the next allocation. * @see apr_pool_destroy() *} //APR_DECLARE(void) apr_pool_clear(apr_pool_t *p); procedure apr_pool_clear(p: Papr_pool_t); {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_clear' + LibSuff4; {** * Debug version of apr_pool_clear. * @param p See: apr_pool_clear. * @param file_line Where the function is called from. * This is usually APR_POOL__FILE_LINE__. * @remark Only available when APR_POOL_DEBUG is defined. * Call this directly if you have you apr_pool_clear * calls in a wrapper function and wish to override * the file_line argument to reflect the caller of * your wrapper function. If you do not have * apr_pool_clear in a wrapper, trust the macro * and don't call apr_pool_destroy_clear directly. *} //APR_DECLARE(void) apr_pool_clear_debug(apr_pool_t *p, // const char *file_line); procedure apr_pool_clear_debug(p: Papr_pool_t; const file_line: PChar); {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_clear_debug' + LibSuff8; //#if APR_POOL_DEBUG //#define apr_pool_clear(p) \ // apr_pool_clear_debug(p, APR_POOL__FILE_LINE__) //#endif {** * Destroy the pool. This takes similar action as apr_pool_clear() and then * frees all the memory. * @param p The pool to destroy * @remark This will actually free the memory *} //APR_DECLARE(void) apr_pool_destroy(apr_pool_t *p); procedure apr_pool_destroy(p: Papr_pool_t); {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_destroy' + LibSuff4; {** * Debug version of apr_pool_destroy. * @param p See: apr_pool_destroy. * @param file_line Where the function is called from. * This is usually APR_POOL__FILE_LINE__. * @remark Only available when APR_POOL_DEBUG is defined. * Call this directly if you have you apr_pool_destroy * calls in a wrapper function and wish to override * the file_line argument to reflect the caller of * your wrapper function. If you do not have * apr_pool_destroy in a wrapper, trust the macro * and don't call apr_pool_destroy_debug directly. *} //APR_DECLARE(void) apr_pool_destroy_debug(apr_pool_t *p, // const char *file_line); procedure apr_pool_destroy_debug(p: Papr_pool_t; const file_line: PChar); {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_destroy_debug' + LibSuff8; //#if APR_POOL_DEBUG //#define apr_pool_destroy(p) \ // apr_pool_destroy_debug(p, APR_POOL__FILE_LINE__) //#endif {* * Memory allocation *} {** * Allocate a block of memory from a pool * @param p The pool to allocate from * @param size The amount of memory to allocate * @return The allocated memory *} //APR_DECLARE(void *) apr_palloc(apr_pool_t *p, apr_size_t size); function apr_palloc(p: Papr_pool_t; size: apr_size_t): Pointer; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_palloc' + LibSuff8; {** * Debug version of apr_palloc * @param p See: apr_palloc * @param size See: apr_palloc * @param file_line Where the function is called from. * This is usually APR_POOL__FILE_LINE__. * @return See: apr_palloc *} //APR_DECLARE(void *) apr_palloc_debug(apr_pool_t *p, apr_size_t size, // const char *file_line); function apr_palloc_debug(p: Papr_pool_t; size: apr_size_t; const file_line: PChar): Pointer; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_palloc_debug' + LibSuff12; //#if APR_POOL_DEBUG //#define apr_palloc(p, size) \ // apr_palloc_debug(p, size, APR_POOL__FILE_LINE__) //#endif {** * Allocate a block of memory from a pool and set all of the memory to 0 * @param p The pool to allocate from * @param size The amount of memory to allocate * @return The allocated memory *} //#if defined(DOXYGEN) //APR_DECLARE(void *) apr_pcalloc(apr_pool_t *p, apr_size_t size); //#elif !APR_POOL_DEBUG //#define apr_pcalloc(p, size) memset(apr_palloc(p, size), 0, size) //#endif function apr_pcalloc(p: Papr_pool_t; size: apr_size_t): Pointer; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pcalloc' + LibSuff8; {** * Debug version of apr_pcalloc * @param p See: apr_pcalloc * @param size See: apr_pcalloc * @param file_line Where the function is called from. * This is usually APR_POOL__FILE_LINE__. * @return See: apr_pcalloc *} //APR_DECLARE(void *) apr_pcalloc_debug(apr_pool_t *p, apr_size_t size, // const char *file_line); function apr_pcalloc_debug(p: Papr_pool_t; size: apr_size_t; const file_line: PChar): Pointer; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pcalloc_debug' + LibSuff12; //#if APR_POOL_DEBUG //#define apr_pcalloc(p, size) \ // apr_pcalloc_debug(p, size, APR_POOL__FILE_LINE__) //#endif {* * Pool Properties *} {** * Set the function to be called when an allocation failure occurs. * @remark If the program wants APR to exit on a memory allocation error, * then this function can be called to set the callback to use (for * performing cleanup and then exiting). If this function is not called, * then APR will return an error and expect the calling program to * deal with the error accordingly. *} //APR_DECLARE(void) apr_pool_abort_set(apr_abortfunc_t abortfunc, // apr_pool_t *pool); procedure apr_pool_abort_set(abortfunc: apr_abortfunc_t; pool: Papr_pool_t); {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_abort_set' + LibSuff8; {** * Get the abort function associated with the specified pool. * @param pool The pool for retrieving the abort function. * @return The abort function for the given pool. *} //APR_DECLARE(apr_abortfunc_t) apr_pool_abort_get(apr_pool_t *pool); function apr_pool_abort_get(pool: Papr_pool_t): apr_abortfunc_t; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_abort_get' + LibSuff4; {** * Get the parent pool of the specified pool. * @param pool The pool for retrieving the parent pool. * @return The parent of the given pool. *} //APR_DECLARE(apr_pool_t *) apr_pool_parent_get(apr_pool_t *pool); function apr_pool_parent_get(pool: Papr_pool_t): Papr_pool_t; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_parent_get' + LibSuff4; {** * Determine if pool a is an ancestor of pool b. * @param a The pool to search * @param b The pool to search for * @return True if a is an ancestor of b, NULL is considered an ancestor * of all pools. * @remark if compiled with APR_POOL_DEBUG, this function will also * return true if A is a pool which has been guaranteed by the caller * (using apr_pool_join) to have a lifetime at least as long as some * ancestor of pool B. *} //APR_DECLARE(int) apr_pool_is_ancestor(apr_pool_t *a, apr_pool_t *b); function apr_pool_is_ancestor(a, b: Papr_pool_t): Integer; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_is_ancestor' + LibSuff8; {** * Tag a pool (give it a name) * @param pool The pool to tag * @param tag The tag *} //APR_DECLARE(void) apr_pool_tag(apr_pool_t *pool, const char *tag); procedure apr_pool_tag(pool: Papr_pool_t; const tag: PChar); {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_tag' + LibSuff8; {* * User data management *} {** * Set the data associated with the current pool * @param data The user data associated with the pool. * @param key The key to use for association * @param cleanup The cleanup program to use to cleanup the data (NULL if none) * @param pool The current pool * @warning The data to be attached to the pool should have a life span * at least as long as the pool it is being attached to. * * Users of APR must take EXTREME care when choosing a key to * use for their data. It is possible to accidentally overwrite * data by choosing a key that another part of the program is using. * Therefore it is advised that steps are taken to ensure that unique * keys are used for all of the userdata objects in a particular pool * (the same key in two different pools or a pool and one of its * subpools is okay) at all times. Careful namespace prefixing of * key names is a typical way to help ensure this uniqueness. * *} //APR_DECLARE(apr_status_t) apr_pool_userdata_set( // const void *data, // const char *key, // apr_status_t (*cleanup)(void *), // apr_pool_t *pool); type cleanup_func_t = function(param: Pointer): apr_status_t; cdecl; function apr_pool_userdata_set( const data:pointer; const key:Pchar; cleanup: cleanup_func_t; pool:Papr_pool_t): apr_status_t {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_userdata_set' + LibSuff16; {** * Set the data associated with the current pool * @param data The user data associated with the pool. * @param key The key to use for association * @param cleanup The cleanup program to use to cleanup the data (NULL if none) * @param pool The current pool * @note same as apr_pool_userdata_set(), except that this version doesn't * make a copy of the key (this function is useful, for example, when * the key is a string literal) * @warning This should NOT be used if the key could change addresses by * any means between the apr_pool_userdata_setn() call and a * subsequent apr_pool_userdata_get() on that key, such as if a * static string is used as a userdata key in a DSO and the DSO could * be unloaded and reloaded between the _setn() and the _get(). You * MUST use apr_pool_userdata_set() in such cases. * @warning More generally, the key and the data to be attached to the * pool should have a life span at least as long as the pool itself. * *} //APR_DECLARE(apr_status_t) apr_pool_userdata_setn( // const void *data, // const char *key, // apr_status_t (*cleanup)(void *), // apr_pool_t *pool); function apr_pool_userdata_setn( const data:pointer; const key:Pchar; cleanup: cleanup_func_t; pool:Papr_pool_t): apr_status_t {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_userdata_setn' + LibSuff16; {** * Return the data associated with the current pool. * @param data The user data associated with the pool. * @param key The key for the data to retrieve * @param pool The current pool. *} //APR_DECLARE(apr_status_t) apr_pool_userdata_get(void **data, const char *key, // apr_pool_t *pool); function apr_pool_userdata_get(data: PPointer; const key: PChar; pool: Papr_pool_t): apr_status_t; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_userdata_get' + LibSuff12; (** * @defgroup PoolCleanup Pool Cleanup Functions * * Cleanups are performed in the reverse order they were registered. That is: * Last In, First Out. A cleanup function can safely allocate memory from * the pool that is being cleaned up. It can also safely register additional * cleanups which will be run LIFO, directly after the current cleanup * terminates. Cleanups have to take caution in calling functions that * create subpools. Subpools, created during cleanup will NOT automatically * be cleaned up. In other words, cleanups are to clean up after themselves. * * @{ *) {** * Register a function to be called when a pool is cleared or destroyed * @param p The pool register the cleanup with * @param data The data to pass to the cleanup function. * @param plain_cleanup The function to call when the pool is cleared * or destroyed * @param child_cleanup The function to call when a child process is about * to exec - this function is called in the child, obviously! *} //APR_DECLARE(void) apr_pool_cleanup_register( // apr_pool_t *p, // const void *data, // apr_status_t (*plain_cleanup)(void *), // apr_status_t (*child_cleanup)(void *)); procedure apr_pool_cleanup_register(p: Papr_pool_t; const data: Pointer; plain_cleanup, child_cleanup: cleanup_func_t); {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_cleanup_register' + LibSuff16; {** * Register a function to be called when a pool is cleared or destroyed. * * Unlike apr_pool_cleanup_register which register a cleanup * that is called AFTER all subpools are destroyed this function register * a function that will be called before any of the subpool is destoryed. * * @param p The pool register the cleanup with * @param data The data to pass to the cleanup function. * @param plain_cleanup The function to call when the pool is cleared * or destroyed *} //APR_DECLARE(void) apr_pool_pre_cleanup_register( // apr_pool_t *p, // const void *data, // apr_status_t (*plain_cleanup)(void *)); procedure apr_pool_pre_cleanup_register(p: Papr_pool_t; const data: Pointer; plain_cleanup: cleanup_func_t); {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_pre_cleanup_register' + LibSuff12; {** * Remove a previously registered cleanup function. * * The cleanup most recently registered with @a p having the same values of * @a data and @a cleanup will be removed. * * @param p The pool to remove the cleanup from * @param data The data of the registered cleanup * @param cleanup The function to remove from cleanup * @remarks For some strange reason only the plain_cleanup is handled by this * function *} //APR_DECLARE(void) apr_pool_cleanup_kill(apr_pool_t *p, const void *data, // apr_status_t (*cleanup)(void *)); procedure apr_pool_cleanup_kill(p: Papr_pool_t; const data: Pointer; plain_cleanup: cleanup_func_t); {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_cleanup_kill' + LibSuff12; {** * Replace the child cleanup function of a previously registered cleanup. * * The cleanup most recently registered with @a p having the same values of * @a data and @a plain_cleanup will have the registered child cleanup * function replaced with @a child_cleanup. * * @param p The pool of the registered cleanup * @param data The data of the registered cleanup * @param plain_cleanup The plain cleanup function of the registered cleanup * @param child_cleanup The function to register as the child cleanup *} //APR_DECLARE(void) apr_pool_child_cleanup_set( // apr_pool_t *p, // const void *data, // apr_status_t (*plain_cleanup)(void *), // apr_status_t (*child_cleanup)(void *)); procedure apr_pool_child_cleanup_set(p: Papr_pool_t; const data: Pointer; plain_cleanup, child_cleanup: cleanup_func_t); {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_child_cleanup_set' + LibSuff16; {** * Run the specified cleanup function immediately and unregister it. * * The cleanup most recently registered with @a p having the same values of * @a data and @a cleanup will be removed and @a cleanup will be called * with @a data as the argument. * * @param p The pool to remove the cleanup from * @param data The data to remove from cleanup * @param cleanup The function to remove from cleanup *} //APR_DECLARE(apr_status_t) apr_pool_cleanup_run( // apr_pool_t *p, // void *data, // apr_status_t (*cleanup)(void *)); procedure apr_pool_cleanup_run(p: Papr_pool_t; data: Pointer; cleanup: cleanup_func_t); {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_cleanup_run' + LibSuff12; {** * An empty cleanup function. * * Passed to apr_pool_cleanup_register() when no cleanup is required. * * @param data The data to cleanup, will not be used by this function. *} //APR_DECLARE_NONSTD(apr_status_t) apr_pool_cleanup_null(void *data); function apr_pool_cleanup_null(data: Pointer): apr_status_t; cdecl; external LibAPR name 'apr_pool_cleanup_null'; {** * Run all registered child cleanups, in preparation for an exec() * call in a forked child -- close files, etc., but *don't* flush I/O * buffers, *don't* wait for subprocesses, and *don't* free any * memory. *} //APR_DECLARE(void) apr_pool_cleanup_for_exec(void); procedure apr_pool_cleanup_for_exec; {$IFDEF WINDOWS} stdcall; {$ELSE} cdecl; {$ENDIF} external LibAPR name LibNamePrefix + 'apr_pool_cleanup_for_exec' + LibSuff0; (** @} *) (** * @defgroup PoolDebug Pool Debugging functions. * * pools have nested lifetimes -- sub_pools are destroyed when the * parent pool is cleared. We allow certain liberties with operations * on things such as tables (and on other structures in a more general * sense) where we allow the caller to insert values into a table which * were not allocated from the table's pool. The table's data will * remain valid as long as all the pools from which its values are * allocated remain valid. * * For example, if B is a sub pool of A, and you build a table T in * pool B, then it's safe to insert data allocated in A or B into T * (because B lives at most as long as A does, and T is destroyed when * B is cleared/destroyed). On the other hand, if S is a table in * pool A, it is safe to insert data allocated in A into S, but it * is *not safe* to insert data allocated from B into S... because * B can be cleared/destroyed before A is (which would leave dangling * pointers in T's data structures). * * In general we say that it is safe to insert data into a table T * if the data is allocated in any ancestor of T's pool. This is the * basis on which the APR_POOL_DEBUG code works -- it tests these ancestor * relationships for all data inserted into tables. APR_POOL_DEBUG also * provides tools (apr_pool_find, and apr_pool_is_ancestor) for other * folks to implement similar restrictions for their own data * structures. * * However, sometimes this ancestor requirement is inconvenient -- * sometimes it's necessary to create a sub pool where the sub pool is * guaranteed to have the same lifetime as the parent pool. This is a * guarantee implemented by the *caller*, not by the pool code. That * is, the caller guarantees they won't destroy the sub pool * individually prior to destroying the parent pool. * * In this case the caller must call apr_pool_join() to indicate this * guarantee to the APR_POOL_DEBUG code. * * These functions are only implemented when #APR_POOL_DEBUG is set. * * @{ *) //#if APR_POOL_DEBUG || defined(DOXYGEN) {$if defined(APR_POOL_DEBUG) or defined(DOXYGEN)} {** * Guarantee that a subpool has the same lifetime as the parent. * @param p The parent pool * @param sub The subpool *} //APR_DECLARE(void) apr_pool_join(apr_pool_t *p, apr_pool_t *sub); {** * Find a pool from something allocated in it. * @param mem The thing allocated in the pool * @return The pool it is allocated in *} //APR_DECLARE(apr_pool_t *) apr_pool_find(const void *mem); {** * Report the number of bytes currently in the pool * @param p The pool to inspect * @param recurse Recurse/include the subpools' sizes * @return The number of bytes *} //APR_DECLARE(apr_size_t) apr_pool_num_bytes(apr_pool_t *p, int recurse); {** * Lock a pool * @param pool The pool to lock * @param flag The flag *} //APR_DECLARE(void) apr_pool_lock(apr_pool_t *pool, int flag); (* @} *) {$else} //* APR_POOL_DEBUG or DOXYGEN */ //#ifdef apr_pool_join //#undef apr_pool_join //#endif //#define apr_pool_join(a,b) // //#ifdef apr_pool_lock //#undef apr_pool_lock //#endif //#define apr_pool_lock(pool, lock) // {$endif} //* APR_POOL_DEBUG or DOXYGEN */ (** @} *) {$endif} //* !APR_POOLS_H */