% % part of numlib docs. In time this won't be a standalone pdf anymore, but part of a larger part. % for now I keep it directly compliable. Uses fpc.sty from fpc-docs pkg. % \documentclass{report} \usepackage{fpc} \lstset{% basicstyle=\small, language=delphi, commentstyle=\itshape, keywordstyle=\bfseries, showstringspaces=false, frame= } \makeindex \newcommand{\FunctionDescription}{\item[Description]\rmfamily} \newcommand{\Dataorganisation}{\item[Data Struct]\rmfamily} \newcommand{\DeclarationandParams}{\item[Declaration]\rmfamily} \newcommand{\References}{\item[References]\rmfamily} \newcommand{\Method}{\item[Method]\rmfamily} \newcommand{\Precision}{\item[Precision]\rmfamily} \newcommand{\Remarks}{\item[Remarks]\rmfamily} \newcommand{\Example}{\item[Example]\rmfamily} \newcommand{\ProgramData}{\item[Example Data]\rmfamily} \newcommand{\ProgramResults}{\item[Example Result]\rmfamily} \makeatletter \@ifpackageloaded{tex4ht}{% \newcommand{\NUMLIBexample}[1]{ \par \file{\textbf{Listing:} \exampledir/#1.pas}% \HCode{
}% \listinginput[9999]{5000}{\exampledir/#1.pas}% \HCode{
}% }% }{% else ifpackageloaded \newcommand{\NUMLIBexample}[1]{% \par \file{\textbf{Listing:} \exampledir/#1.pas}% \lstinputlisting{\exampledir/#1.pas}% }% End of FPCExample }% End of ifpackageloaded. \makeatother % \begin{document} \FPCexampledir{../examples} \section{general comments} \textbf{Original comments:} \\ The used floating point type \textbf{real} depends on the used version, see the general introduction for more information. You'll need to USE units typ an inv to use these routines. \textbf{MvdV notes:} \\ Integers used for parameters are of type "ArbInt" to avoid problems with systems that define integer differently depending on mode. Floating point values are of type "ArbFloat" to allow writing code that is independent of the exact real type. (Contrary to directly specifying single, real, double or extended in library and examples). Typ.pas and the central includefile have some conditional code to switch between floating point types. These changes were already prepared somewhat when I got the lib, but weren't consequently applied. I did that while porting to FPC. \section{Unit inv} \begin{procedure}{invgen} \FunctionDescription Procedure to calculate the inverse of a matrix. \Dataorganisation The procedure assumes that the calling program has declared a two dimensional matrix containing the matrix elements in a square partial block. \DeclarationandParams \lstinline|procedure invgen(n, rwidth: ArbInt; var ai: ArbFloat;var term: ArbInt);| \begin{description} \item[n: integer] \mbox{ } \\ The parameter {\bf n} describes the size of the matrix \item[rwidth: integer] \mbox{} \\ The parameter {\bf rwidth} describes the declared rowlength of the two dimensional matrix. \item[var ai: real] \mbox{} \\ The parameter {\bf ai} must contain to the two dimensional array element that is top-left in the matrix. After the function has ended successfully (\textbf{term=1}) then the input matrix has been changed into its inverse, otherwise the contents of the input matrix are undefined. \item[var term: integer] \mbox{} \\ After the procedure has run, this variable contains the reason for the termination of the procedure:\\ {\bf term}=1, successful termination, the inverse has been calculated {\bf term}=2, inverse matrix could not be calculated because the matrix is (very close to) being singular. {\bf term}=3, wrong input n$<$1 \end{description} \Remarks This procedure does not do array range checks. When called with invalid parameters, invalid/nonsense responses or even crashes may be the result. \Example Calculate the inverse of \[ A= \left( \begin{array}{rrrr} 4 & 2 & 4 & 1 \\ 30 & 20 & 45 & 12 \\ 20 & 15 & 36 & 10 \\ 35 & 28 & 70 & 20 \end{array} \right) . \] Below is the source of the invgenex demo that demonstrates invgenex, some routines of iom were used to construct matrices. \NUMLIBexample{invgenex} \ProgramData The input datafile looks like: \begin{verbatim} 4 2 4 1 30 20 45 12 20 15 36 10 35 28 70 20 \end{verbatim} \ProgramResults \begin{verbatim} program results invgenex A = 4.0000000000000000E+0000 2.0000000000000000E+0000 3.0000000000000000E+0001 2.0000000000000000E+0001 2.0000000000000000E+0001 1.5000000000000000E+0001 3.5000000000000000E+0001 2.8000000000000000E+0001 4.0000000000000000E+0000 1.0000000000000000E+0000 4.5000000000000000E+0001 1.2000000000000000E+0001 3.6000000000000000E+0001 1.0000000000000000E+0001 7.0000000000000000E+0001 2.0000000000000000E+0001 term= 1 inverse of A = 4.0000000000000000E+0000 -2.0000000000000000E+0000 -3.0000000000000000E+0001 2.0000000000000000E+0001 2.0000000000000000E+0001 -1.5000000000000000E+0001 -3.4999999999999999E+0001 2.7999999999999999E+0001 3.9999999999999999E+0000 -1.0000000000000000E+0000 -4.4999999999999999E+0001 1.2000000000000000E+0001 3.5999999999999999E+0001 -1.0000000000000000E+0001 -6.9999999999999999E+0001 2.0000000000000000E+0001 \end{verbatim} \Precision The procedure doesn't supply information about the precision of the operation after termination. \Method The calculation of the inverse is based on LU decomposition with partial pivoting. \References Wilkinson, J.H. and Reinsch, C.\\ Handbook for Automatic Computation.\\ Volume II, Linear Algebra.\\ Springer Verlag, Contribution I/7, 1971. \end{procedure} \begin{procedure}{invgpd} \FunctionDescription Procedure to calculate the inverse of a symmetrical, positive definitive matrix \Dataorganisation The procedure assumes that the calling program has declared a two dimensional matrix containing the matrix elements in a square partial block. \DeclarationandParams \lstinline|procedure invgpd(n, rwidth: ArbInt; var ai: ArbFloat; var term: ArbInt);| \begin{description} \item[n: integer] \mbox{ } \\ The parameter {\bf n} describes the size of the matrix \item[rwidth: integer] \mbox{} \\ The parameter {\bf rwidth} describes the declared row length of the two dimensional matrix. \item[var ai: real] \mbox{} \\ The parameter {\bf ai} must contain to the two dimensional array element that is top-left in the matrix. After the function has ended successfully (\textbf{term=1}) then the input matrix has been changed into its inverse, otherwise the contents of the input matrix are undefined. \item[var term: integer] \mbox{} \\ After the procedure has run, this variable contains the reason for the termination of the procedure:\\ {\bf term}=1, successful termination, the inverse has been calculated {\bf term}=2, inverse matrix could not be calculated because the matrix is (very close to) being singular. {\bf term}=3, wrong input n$<$1 \end{description} \Remarks \begin{itemize} \item Only the bottom left part of the matrix $A$ needs to be passed. \item \textbf{Warning} This procedure does not do array range checks. When called with invalid parameters, invalid/nonsense responses or even crashes may be the result. \end{itemize} \Example Calculate the inverse of \[ A= \left( \begin{array}{rrrr} 5 & 7 & 6 & 5 \\ 7 & 10 & 8 & 7 \\ 6 & 8 & 10 & 9 \\ 5 & 7 & 9 & 10 \end{array} \right) . \] \NUMLIBexample{invgpdex} \ProgramData \begin{verbatim} 5 7 10 6 8 10 5 7 9 10 \end{verbatim} \ProgramResults \begin{verbatim} program results invgpdex A = 5.0000000000000000E+0000 7.0000000000000000E+0000 7.0000000000000000E+0000 1.0000000000000000E+0001 6.0000000000000000E+0000 8.0000000000000000E+0000 5.0000000000000000E+0000 7.0000000000000000E+0000 6.0000000000000000E+0000 5.0000000000000000E+0000 8.0000000000000000E+0000 7.0000000000000000E+0000 1.0000000000000000E+0001 9.0000000000000000E+0000 9.0000000000000000E+0000 1.0000000000000000E+0001 term= 1 inverse of A = 6.8000000000000000E+0001 -4.1000000000000000E+0001 -4.1000000000000000E+0001 2.5000000000000000E+0001 -1.7000000000000000E+0001 1.0000000000000000E+0001 1.0000000000000000E+0001 -6.0000000000000000E+0000 -1.7000000000000000E+0001 1.0000000000000000E+0001 1.0000000000000000E+0001 -6.0000000000000000E+0000 5.0000000000000000E+0000 -3.0000000000000000E+0000 -3.0000000000000000E+0000 2.0000000000000000E+0000 \end{verbatim} \Precision The procedure doesn't supply information about the precision of the operation after termination. \Method The calculation of the inverse is based on Cholesky decomposition for a symmetrical positive definitive matrix. \References Wilkinson, J.H. and Reinsch, C.\\ Handbook for Automatic Computation.\\ Volume II, Linear Algebra.\\ Springer Verlag, Contribution I/7, 1971. \end{procedure} \begin{procedure}{invgsy} \FunctionDescription Procedure to calculate the inverse of a symmetrical matrix. \Dataorganisation The procedure assumes that the calling program has declared a two dimensional matrix containing the matrix elements in (the bottom left part of) a square partial block. \DeclarationandParams \lstinline|procedure invgsy(n, rwidth: ArbInt; var ai: ArbFloat;var term:ArbInt);| \begin{description} \item[n: integer] \mbox{ } \\ The parameter {\bf n} describes the size of the matrix \item[rwidth: integer] \mbox{} \\ The parameter {\bf rwidth} describes the declared row length of the two dimensional matrix. \item[var ai: real] \mbox{} \\ The parameter {\bf ai} must contain to the two dimensional array element that is top-left in the matrix. After the function has ended successfully (\textbf{term=1}) then the input matrix has been changed into its inverse, otherwise the contents of the input matrix are undefined. \item[var term: integer] \mbox{} \\ After the procedure has run, this variable contains the reason for the termination of the procedure:\\ {\bf term}=1, successful termination, the inverse has been calculated {\bf term}=2, inverse matrix could not be calculated because the matrix is (very close to) being singular. {\bf term}=3, wrong input n$<$1 \end{description} \Remarks \begin{itemize} \item Only the bottom left part of the matrix $A$ needs to be passed. \item \textbf{Warning} This procedure does not do array range checks. When called with invalid parameters, invalid/nonsense responses or even crashes may be the result. \end{itemize} \Example Calculating the inverse of \[ A= \left( \begin{array}{rrrr} 5 & 7 & 6 & 5 \\ 7 & 10 & 8 & 7 \\ 6 & 8 & 10 & 9 \\ 5 & 7 & 9 & 10 \end{array} \right) . \] \NUMLIBexample{invgsyex} \ProgramData \begin{verbatim} 5 7 10 6 8 10 5 7 9 10 \end{verbatim} \ProgramResults \begin{verbatim} program results invgsyex A = 5.0000000000000000E+0000 7.0000000000000000E+0000 7.0000000000000000E+0000 1.0000000000000000E+0001 6.0000000000000000E+0000 8.0000000000000000E+0000 5.0000000000000000E+0000 7.0000000000000000E+0000 6.0000000000000000E+0000 5.0000000000000000E+0000 8.0000000000000000E+0000 7.0000000000000000E+0000 1.0000000000000000E+0001 9.0000000000000000E+0000 9.0000000000000000E+0000 1.0000000000000000E+0001 term= 1 inverse of A = 6.8000000000000001E+0001 -4.1000000000000001E+0001 -4.1000000000000001E+0001 2.5000000000000000E+0001 -1.7000000000000000E+0001 1.0000000000000000E+0001 1.0000000000000000E+0001 -6.0000000000000001E+0000 -1.7000000000000000E+0001 1.0000000000000000E+0001 1.0000000000000000E+0001 -6.0000000000000001E+0000 5.0000000000000001E+0000 -3.0000000000000000E+0000 -3.0000000000000000E+0000 2.0000000000000000E+0000 \end{verbatim} \Precision The procedure doesn't supply information about the precision of the operation after termination. \Method The calculation of the inverse is based on reduction of a symmetrical matrix to a tridiagonal form. \References Aasen, J. O. \\ On the reduction of a symmetric matrix to tridiagonal form. \\ BIT, 11, (1971), pag. 223-242. \end{procedure} \end{document}