{ This file is part of the Numlib package. Copyright (c) 1986-2000 by Kees van Ginneken, Wil Kortsmit and Loek van Reij of the Computational centre of the Eindhoven University of Technology FPC port Code by Marco van de Voort (marco@freepascal.org) documentation by Michael van Canneyt (Michael@freepascal.org) Calculate inverses for different kinds of matrices (different with respect to symmetry) See the file COPYING.FPC, included in this distribution, for details about the copyright. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. **********************************************************************} unit inv; {$I DIRECT.INC} interface uses typ; {Calc inverse for a matrix with unknown symmetry. General version. } procedure invgen(n, rwidth: ArbInt; var ai: ArbFloat; var term: ArbInt); {Calc inverse for a symmetrical matrix} procedure invgsy(n, rwidth: ArbInt; var ai: ArbFloat; var term: ArbInt); {Calc inverse for a positive definite symmetrical matrix} procedure invgpd(n, rwidth: ArbInt; var ai: ArbFloat; var term: ArbInt); implementation uses mdt, dsl; procedure invgen(n, rwidth: ArbInt; var ai: ArbFloat; var term: ArbInt); var success : boolean; inn, ii, i, j, k, kk, indexpivot : ArbInt; ca, h, pivot, s : ArbFloat; pa, save : ^arfloat1; p : ^arint1; begin if (n<1) or (rwidth<1) then begin term:=3; exit end; {wrong input} pa:=@ai; getmem(p, n*sizeof(ArbInt)); getmem(save, n*sizeof(ArbFloat)); mdtgen(n, rwidth, pa^[1], p^[1], ca, term); if term=1 then begin inn:=(n-1)*rwidth+n; pivot:=pa^[inn]; if pivot=0 then success:=false else begin success:=true; pa^[inn]:=1/pivot; k:=n; while (k>1) and success do begin k:=k-1; kk:=(k-1)*rwidth; for i:=k+1 to n do save^[i]:=-pa^[(i-1)*rwidth+k]; for i:=k+1 to n do begin ii:=(i-1)*rwidth; s:=0; for j:=k+1 to n do s:=s+pa^[ii+j]*save^[j]; pa^[ii+k]:=s end; {i} for j:=k+1 to n do save^[j]:=pa^[kk+j]; pivot:=pa^[kk+k]; if pivot=0 then success:=false else begin s:=0; for i:=k+1 to n do s:=s-save^[i]*pa^[(i-1)*rwidth+k]; pa^[kk+k]:=(1+s)/pivot; for j:=k+1 to n do begin s:=0; for i:=k+1 to n do s:=s-save^[i]*pa^[(i-1)*rwidth+j]; pa^[(k-1)*rwidth+j]:=s/pivot end {j} end {pivot <> 0} end; {k} if success then for k:=n downto 1 do begin indexpivot:=p^[k]; if indexpivot <> k then for i:=1 to n do begin ii:=(i-1)*rwidth; h:=pa^[ii+k]; pa^[ii+k]:=pa^[ii+indexpivot]; pa^[ii+indexpivot]:=h end {i} end {k} end; {pivot <> 0} if (not success) then term:=2 end else term:=2; freemem(p, n*sizeof(ArbInt)); freemem(save, n*sizeof(ArbFloat)); end; {invgen} procedure invgsy(n, rwidth: ArbInt; var ai: ArbFloat; var term: ArbInt); var ind, ind1, i, m, pk, j, kmin1, k, imin2, nsr, imin1, jmin1, iplus1 : ArbInt; success : boolean; di, h, ca : ArbFloat; pa, l, d, u, v, e, e1, x : ^arfloat1; p : ^arint1; q : ^arbool1; begin if (n<1) or (rwidth<1) then begin term:=3; exit end; {wrong input} pa:=@ai; getmem(p, n*sizeof(ArbInt)); getmem(q, n*sizeof(boolean)); nsr:=n*sizeof(ArbFloat); getmem(l, nsr); getmem(d, nsr); getmem(u, nsr); getmem(v, nsr); getmem(e, nsr); getmem(e1, nsr); getmem(x, ((n+1)*nsr) div 2); mdtgsy(n, rwidth, pa^[1], p^[1], q^[1], ca, term); if term=1 then begin success:=true; i:=1; ind:=1; while (i<>n+1) and success do begin success:=pa^[ind]<>0; ind:=ind+rwidth+1; i:=i+1 end; {i} if success then begin d^[1]:=pa^[1]; di:=d^[1]; l^[1]:=pa^[rwidth+1]; d^[2]:=pa^[rwidth+2]; di:=d^[2]; u^[1]:=pa^[2]; imin1:=1; i:=2; while i2 do begin iplus1:=i; i:=imin1; imin1:=imin1-1; h:=e1^[i]; for j:=iplus1 to n do h:=h-pa^[(j-1)*rwidth+imin1]*e1^[j]; e1^[i]:=h end; {i} for i:=k to n do begin m:=m+1; x^[m]:=e1^[i] end end; {k} m:=0; for k:=1 to n do for i:=k to n do begin m:=m+1; pa^[(i-1)*rwidth+k]:=x^[m] end; {i,k} for k:=n-1 downto 2 do begin pk:=p^[k]; if pk <> k then begin kmin1:=k-1; ind:=(k-1)*rwidth; ind1:=(pk-1)*rwidth; for j:=1 to kmin1 do begin h:=pa^[ind+j]; pa^[ind+j]:=pa^[ind1+j]; pa^[ind1+j]:=h end; {j} for j:=pk downto k do begin ind:=(j-1)*rwidth; h:=pa^[ind+k]; pa^[ind+k]:=pa^[ind1+j]; pa^[ind1+j]:=h end; {j} for i:=pk to n do begin ind:=(i-1)*rwidth; h:=pa^[ind+k]; pa^[ind+k]:=pa^[ind+pk]; pa^[ind+pk]:=h end {i} end {pk <> k} end {k} end; {success} if (not success) then term:=2 else for i:=1 to n do begin ind:=(i-1)*rwidth; for j:=i+1 to n do pa^[ind+j]:=pa^[(j-1)*rwidth+i] end {i} end else term:=2; freemem(l, nsr); freemem(d, nsr); freemem(u, nsr); freemem(v, nsr); freemem(e, nsr); freemem(e1, nsr); freemem(x, ((n+1)*nsr) div 2); end; {invgsy} procedure invgpd(n, rwidth: ArbInt; var ai: ArbFloat; var term: ArbInt); var success : boolean; i, j, k, ind : ArbInt; tk, h, ca : ArbFloat; pa, t : ^arfloat1; begin if (n<1) or (rwidth<1) then begin term:=3; exit end; {wrong input} pa:=@ai; mdtgpd(n, rwidth, pa^[1], ca, term); getmem(t, n*sizeof(ArbFloat)); if term=1 then begin success:=true; ind:=1; k:=1; while (k<>n+1) and success do begin success:=pa^[ind]<>0; k:=k+1; ind:=ind+rwidth+1 end; {k} if success then begin for k:=n downto 1 do begin for i:=k to n do t^[i]:=pa^[(i-1)*rwidth+k]; tk:=t^[k]; for i:=n downto k do begin if i=k then h:=1/tk else h:=0; ind:=(i-1)*rwidth; for j:=k+1 to i do h:=h-pa^[ind+j]*t^[j]; for j:=i+1 to n do h:=h-pa^[(j-1)*rwidth+i]*t^[j]; pa^[ind+k]:=h/tk end {i} end {k} end; {success} if (not success) then term:=2 else for i:=1 to n do begin ind:=(i-1)*rwidth; for j:=i+1 to n do pa^[ind+j]:=pa^[(j-1)*rwidth+i] end; {i} end; {term=1} freemem(t, n*sizeof(ArbFloat)); end; {invgpd} end.