{ This file is part of the Numlib package. Copyright (c) 1986-2000 by Kees van Ginneken, Wil Kortsmit and Loek van Reij of the Computational centre of the Eindhoven University of Technology FPC port Code by Marco van de Voort (marco@freepascal.org) documentation by Michael van Canneyt (Michael@freepascal.org) This is the most basic unit from NumLib. The most important items this unit defines are matrix types and machine constants See the file COPYING.FPC, included in this distribution, for details about the copyright. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. **********************************************************************} { In the FPC revision, instead of picking a certain floating point type, a new type "ArbFloat" is defined, which is used as floating point type throughout the entire library. If you change the floating point type, you should only have to change ArbFloat, and the machineconstants belonging to the type you want. However for IEEE Double (64bit) and Extended(80bit) these constants are already defined, and autoselected by the library. (the library tests the size of the float type in bytes for 8 and 10 and picks the appropiate constants Also some stuff had to be added to get ipf running (vector object and complex.inp and scale methods) } unit typ; {$I DIRECT.INC} {Contains "global" compilerswitches which are imported into every unit of the library } {$DEFINE ArbExtended} interface CONST numlib_version=2; {used to detect version conflicts between header unit and dll} highestelement=20000; {Maximal n x m dimensions of matrix. +/- highestelement*SIZEOF(arbfloat) is minimal size of matrix.} type {Definition of base types} {$IFDEF ArbExtended} ArbFloat = extended; {$ELSE} ArbFloat = double; {$ENDIF} ArbInt = LONGINT; ArbString = AnsiString; Float8Arb =ARRAY[0..7] OF BYTE; Float10Arb =ARRAY[0..9] OF BYTE; CONST {Some constants for the variables below, in binary formats.} {$IFNDEF ArbExtended} {First for REAL/Double} TC1 : Float8Arb = ($00,$00,$00,$00,$00,$00,$B0,$3C); TC2 : Float8Arb = ($FF,$FF,$FF,$FF,$FF,$FF,$EF,$7F); TC3 : Float8Arb = ($00,$00,$00,$00,$01,$00,$10,$00); TC4 : Float8Arb = ($00,$00,$00,$00,$00,$00,$F0,$7F); TC5 : Float8Arb = ($EF,$39,$FA,$FE,$42,$2E,$86,$40); TC6 : Float8Arb = ($D6,$BC,$FA,$BC,$2B,$23,$86,$C0); TC7 : Float8Arb = ($FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF); {$ENDIF} {For Extended} {$IFDEF ArbExtended} TC1 : Float10Arb = (0,0,$00,$00,$00,$00,0,128,192,63); {Eps} TC2 : Float10Arb = ($FF,$FF,$FF,$FF,$FF,$FF,$FF,$D6,$FE,127); {9.99188560553925115E+4931} TC3 : Float10Arb = (1,0,0,0,0,0,0,0,0,0); {3.64519953188247460E-4951} TC4 : Float10Arb = (0,0,0,0,0,0,0,$80,$FF,$7F); {Inf} TC5 : Float10Arb = (18,25,219,91,61,101,113,177,12,64); {1.13563488668777920E+0004} TC6 : Float10Arb = (108,115,3,170,182,56,27,178,12,192); {-1.13988053843083006E+0004} TC7 : Float10Arb = ($FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF); {NaN} {$ENDIF} { numdig is the number of useful (safe) decimal places of an "ArbFloat" for display. minform is the number of decimal places shown by the rtls write(x:ArbFloat) maxform is the maximal number of decimal positions } numdig = 25; minform = 10; maxform = 26; var macheps : ArbFloat absolute TC1; { macheps = r - 1, with r the smallest ArbFloat > 1} giant : ArbFloat absolute TC2; { the largest ArbFloat} midget : ArbFloat absolute TC3; { the smallest positive ArbFloat} infinity : ArbFloat absolute TC4; { INF as defined in IEEE-754(double) or intel (for extended)} LnGiant : ArbFloat absolute TC5; {ln of giant} LnMidget : ArbFloat absolute TC6; {ln of midget} NaN : ArbFloat absolute TC7; {Not A Number} {Copied from Det. Needs ArbExtended conditional} const { og = 8^-maxexp, ogý>=midget, bg = 8^maxexp, bgý<=giant midget and giant are defined in typ.pas} {$IFDEF ArbExtended} ogx: Float10Arb = (51,158,223,249,51,243,4,181,224,31); bgx: Float10Arb = (108,119,117,92,70,38,155,234,254,95); maxexpx : ArbInt = 2740; {$ELSE} ogx: Float8Arb= (84, 254, 32, 128, 32, 0, 0, 32); bgx: Float8Arb= (149, 255, 255, 255, 255, 255, 239, 95); maxexpx : ArbInt = 170; {$ENDIF} var og : ArbFloat absolute ogx; bg : ArbFloat absolute bgx; MaxExp : ArbInt absolute maxexpx; {Like standard EXP(), but for very small values (near lowest possible ArbFloat this version returns 0} Function exp(x: ArbFloat): ArbFloat; type Complex = object { Crude complex record. For me an example of useless OOP, specially if you have operator overloading } xreal, imag : ArbFloat; procedure Init (r, i: ArbFloat); procedure Add (c: complex); procedure Sub (c: complex); function Inp(z:complex):ArbFloat; procedure Conjugate; procedure Scale(s: ArbFloat); Function Norm : ArbFloat; Function Size : ArbFloat; Function Re : ArbFloat; procedure Unary; Function Im : ArbFloat; Function Arg : ArbFloat; procedure MinC(c: complex); procedure MaxC(c: complex); Procedure TransF(var t: complex); end; vector = object i, j, k: ArbFloat; procedure Init (vii, vjj, vkk: ArbFloat); procedure Unary; procedure Add (c: vector); procedure Sub (c: vector); function Vi : ArbFloat; function Vj : ArbFloat; function Vk : ArbFloat; function Norm : ArbFloat; Function Norm8 : ArbFloat; function Size : ArbFloat; function InProd(c: vector): ArbFloat; procedure Uitprod(c: vector; var e: vector); procedure Scale(s: ArbFloat); procedure DScale(s: ArbFloat); procedure Normalize; procedure Rotate(calfa, salfa: ArbFloat; axe: vector); procedure Show(p,q: ArbInt); end; transformorg = record offset: complex; ss, sc: real end; transform = record offsetx, offsety, scalex, scaley: ArbFloat end; {Standard Functions used in NumLib} rfunc1r = Function(x : ArbFloat): ArbFloat; rfunc2r = Function(x, y : ArbFloat): ArbFloat; {Complex version} rfunc1z = Function(z: complex): ArbFloat; {Special Functions} oderk1n = procedure(x: ArbFloat; var y, f: ArbFloat); roofnrfunc = procedure(var x, fx: ArbFloat; var deff: boolean); {Definition of matrix types in NumLib. First some vectors. The high boundery is a maximal number only. Vectors can be smaller, but not bigger. The difference is the starting number} arfloat0 = array[0..highestelement] of ArbFloat; arfloat1 = array[1..highestelement] of ArbFloat; arfloat2 = array[2..highestelement] of ArbFloat; arfloat_1 = array[-1..highestelement] of ArbFloat; {A matrix is an array of floats} ar2dr = array[0..highestelement] of ^arfloat0; ar2dr1 = array[1..highestelement] of ^arfloat1; {Matrices can get big, so we mosttimes allocate them on the heap.} par2dr1 = ^ar2dr1; {Integer vectors} arint0 = array[0..highestelement] of ArbInt; arint1 = array[1..highestelement] of ArbInt; {Boolean (true/false) vectors} arbool1 = array[1..highestelement] of boolean; {Complex vectors} arcomp0 = array[0..highestelement] of complex; arcomp1 = array[1..highestelement] of complex; arvect0 = array[0..highestelement] of vector; vectors = array[1..highestelement] of vector; parcomp = ^arcomp1; {(de) Allocate mxn matrix to A} procedure AllocateAr2dr(m, n: integer; var a: par2dr1); procedure DeAllocateAr2dr(m, n: integer; var a: par2dr1); {(de) allocate below-left triangle matrix for (de)convolution (a 3x3 matrix looks like this x x x x x x) } procedure AllocateL2dr(n: integer; var a: par2dr1); procedure DeAllocateL2dr(n: integer; var a: par2dr1); {Get the Re and Im parts of a complex type} Function Re(z: complex): ArbFloat; Function Im(z: complex): ArbFloat; { Creates a string from a floatingpoint value} Function R2S(x: ArbFloat; p, q: integer): string; {Calculate inproduct of V1 and V2, which are vectors with N elements; I1 and I2 are the SIZEOF the datatypes of V1 and V2 MvdV: Change this to "V1,V2:array of ArbFloat and forget the i1 and i2 parameters?} Function Inprod(var V1, V2; n, i1, i2: ArbInt): ArbFloat; {Return certain special machine constants.(macheps=1, Nan=7)} Function MachCnst(n: ArbInt): ArbFloat; function dllversion:LONGINT; implementation Function MachCnst(n: ArbInt): ArbFloat; begin case n of 1: MachCnst := macheps; 2: MachCnst := giant; 3: MachCnst := midget; 4: MachCnst := infinity; 5: MachCnst := LnGiant; 6: MachCnst := LnMidget; 7: MachCnst := Nan; end end; { Are used in many of the example programs} Function Re(z: complex): ArbFloat; begin Re := z.xreal end; Function Im(z: complex): ArbFloat; begin Im := z.imag end; {Kind of Sysutils.TrimRight and TrimLeft called after eachother} procedure Compress(var s: string); var i, j: LONGINT; begin j := length(s); while (j>0) and (s[j]=' ') do dec(j); i := 1; while (i<=j) and (s[i]=' ') do Inc(i); s := copy(s, i, j+1-i) end; Function R2S(x: ArbFloat; p, q: integer): string; var s: string; i, j, k: integer; begin if q=-1 then begin Str(x:p, s); i := Pos('E', s)-1; k := i+1; j := i+3; while (jxreal then xreal := c.xreal; if c.imag>imag then imag := c.imag end; procedure Complex.Add(c: complex); begin xreal := xreal + c.xreal; imag := imag + c.imag end; procedure Complex.Sub(c: complex); begin xreal := xreal - c.xreal; imag := imag - c.imag end; Function Complex.Norm: ArbFloat; begin Norm := Sqr(xreal) + Sqr(imag) end; Function Complex.Size: ArbFloat; begin Size := Sqrt(Norm) end; Function Complex.Re: ArbFloat; begin Re := xreal; end; Function Complex.Im: ArbFloat; begin Im := imag end; Procedure Complex.TransF(var t: complex); var w: complex; tt: transformorg absolute t; begin w := Self; Conjugate; with tt do begin w.scale(ss); scale(sc); Add(offset) end; Add(w) end; procedure Complex.Unary; begin xreal := -xreal; imag := -imag end; procedure Complex.Scale(s:ArbFloat); begin xreal := xreal*s; imag := imag*s end; Function Complex.Arg: ArbFloat; begin if xreal=0 then if imag>0 then Arg := 0.5*pi else if imag=0 then Arg := 0 else Arg := -0.5*pi else if xReal>0 then Arg := ArcTan(imag/xReal) else if imag>=0 then Arg := ArcTan(imag/xReal) + pi else Arg := ArcTan(imag/xReal) - pi end; Function exp(x: ArbFloat): ArbFloat; begin if xSIZEOF(ArbFloat) THEN BEGIN WRITELN('1 Something went probably wrong while porting!'); HALT; END; p1 := @v1; p2 := @v2; s := 0; for i:=1 to n do begin s := s + p1^*p2^; Inc(ptrint(p1), i1); Inc(ptrint(p2), i2) end; Inprod := s end; procedure Vector.Init(vii, vjj, vkk: ArbFloat); begin i := vii; j := vjj; k := vkk end; procedure Vector.Unary; begin i := -i; j := -j; k := -k end; procedure Vector.Add(c: vector); begin i := i + c.i; j := j + c.j; k := k + c.k end; procedure Vector.Sub(c: vector); begin i := i - c.i; j := j - c.j; k := k - c.k end; function Vector.Vi : ArbFloat; begin Vi := i end; function Vector.Vj : ArbFloat; begin Vj := j end; function Vector.Vk : ArbFloat; begin Vk := k end; function Vector.Norm:ArbFloat; begin Norm := Sqr(i) + Sqr(j) + Sqr(k) end; function Vector.Norm8:ArbFloat; var r: ArbFloat; begin r := abs(i); if abs(j)>r then r := abs(j); if abs(k)>r then r := abs(k); Norm8 := r end; function Vector.Size: ArbFloat; begin Size := Sqrt(Norm) end; function Vector.InProd(c: vector): ArbFloat; begin InProd := i*c.i + j*c.j + k*c.k end; procedure Vector.Uitprod(c: vector; var e: vector); begin e.i := j*c.k - k*c.j; e.j := k*c.i - i*c.k; e.k := i*c.j - j*c.i end; procedure Vector.Scale(s: ArbFloat); begin i := i*s; j := j*s; k := k*s end; procedure Vector.DScale(s: ArbFloat); begin i := i/s; j := j/s; k := k/s end; procedure Vector.Normalize; begin DScale(Size) end; procedure Vector.Show(p,q:ArbInt); begin writeln(i:p:q, 'I', j:p:q, 'J', k:p:q, 'K') end; procedure Vector.Rotate(calfa, salfa: arbfloat; axe: vector); var qv : vector; begin Uitprod(axe, qv); qv.scale(salfa); axe.scale((1-calfa)*Inprod(axe)); scale(calfa); sub(qv); add(axe) end; function dllversion:LONGINT; BEGIN dllversion:=numlib_version; END; END.