Unit JcTrans; { This file contains library routines for transcoding compression, that is, writing raw DCT coefficient arrays to an output JPEG file. The routines in jcapimin.c will also be needed by a transcoder. } { Original : jctrans.c - Copyright (C) 1995-1998, Thomas G. Lane. } interface {$I jconfig.inc} uses jmorecfg, jinclude, jdeferr, jerror, jutils, jpeglib, jcapimin, jcparam, jcomapi, jcmaster, jchuff, jcphuff, jcmarker; { Compression initialization for writing raw-coefficient data. Before calling this, all parameters and a data destination must be set up. Call jpeg_finish_compress() to actually write the data. The number of passed virtual arrays must match cinfo^.num_components. Note that the virtual arrays need not be filled or even realized at the time write_coefficients is called; indeed, if the virtual arrays were requested from this compression object's memory manager, they typically will be realized during this routine and filled afterwards. } {GLOBAL} procedure jpeg_write_coefficients (cinfo : j_compress_ptr; coef_arrays : jvirt_barray_tbl_ptr); { Initialize the compression object with default parameters, then copy from the source object all parameters needed for lossless transcoding. Parameters that can be varied without loss (such as scan script and Huffman optimization) are left in their default states. } {GLOBAL} procedure jpeg_copy_critical_parameters (srcinfo : j_decompress_ptr; dstinfo : j_compress_ptr); implementation { Forward declarations } {LOCAL} procedure transencode_master_selection(cinfo : j_compress_ptr; coef_arrays : jvirt_barray_tbl_ptr); forward; {LOCAL} procedure transencode_coef_controller(cinfo : j_compress_ptr; coef_arrays : jvirt_barray_tbl_ptr); forward; { Compression initialization for writing raw-coefficient data. Before calling this, all parameters and a data destination must be set up. Call jpeg_finish_compress() to actually write the data. The number of passed virtual arrays must match cinfo^.num_components. Note that the virtual arrays need not be filled or even realized at the time write_coefficients is called; indeed, if the virtual arrays were requested from this compression object's memory manager, they typically will be realized during this routine and filled afterwards. } {GLOBAL} procedure jpeg_write_coefficients (cinfo : j_compress_ptr; coef_arrays : jvirt_barray_tbl_ptr); begin if (cinfo^.global_state <> CSTATE_START) then ERREXIT1(j_common_ptr(cinfo), JERR_BAD_STATE, cinfo^.global_state); { Mark all tables to be written } jpeg_suppress_tables(cinfo, FALSE); { (Re)initialize error mgr and destination modules } cinfo^.err^.reset_error_mgr (j_common_ptr(cinfo)); cinfo^.dest^.init_destination (cinfo); { Perform master selection of active modules } transencode_master_selection(cinfo, coef_arrays); { Wait for jpeg_finish_compress() call } cinfo^.next_scanline := 0; { so jpeg_write_marker works } cinfo^.global_state := CSTATE_WRCOEFS; end; { Initialize the compression object with default parameters, then copy from the source object all parameters needed for lossless transcoding. Parameters that can be varied without loss (such as scan script and Huffman optimization) are left in their default states. } {GLOBAL} procedure jpeg_copy_critical_parameters (srcinfo : j_decompress_ptr; dstinfo : j_compress_ptr); var qtblptr : ^JQUANT_TBL_PTR; incomp, outcomp : jpeg_component_info_ptr; c_quant, slot_quant : JQUANT_TBL_PTR; tblno, ci, coefi : int; begin { Safety check to ensure start_compress not called yet. } if (dstinfo^.global_state <> CSTATE_START) then ERREXIT1(j_common_ptr(dstinfo), JERR_BAD_STATE, dstinfo^.global_state); { Copy fundamental image dimensions } dstinfo^.image_width := srcinfo^.image_width; dstinfo^.image_height := srcinfo^.image_height; dstinfo^.input_components := srcinfo^.num_components; dstinfo^.in_color_space := srcinfo^.jpeg_color_space; { Initialize all parameters to default values } jpeg_set_defaults(dstinfo); { jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB. Fix it to get the right header markers for the image colorspace. } jpeg_set_colorspace(dstinfo, srcinfo^.jpeg_color_space); dstinfo^.data_precision := srcinfo^.data_precision; dstinfo^.CCIR601_sampling := srcinfo^.CCIR601_sampling; { Copy the source's quantization tables. } for tblno := 0 to pred(NUM_QUANT_TBLS) do begin if (srcinfo^.quant_tbl_ptrs[tblno] <> NIL) then begin qtblptr := @dstinfo^.quant_tbl_ptrs[tblno]; if (qtblptr^ = NIL) then qtblptr^ := jpeg_alloc_quant_table(j_common_ptr(dstinfo)); MEMCOPY(@(qtblptr^)^.quantval, @srcinfo^.quant_tbl_ptrs[tblno]^.quantval, SIZEOF((qtblptr^)^.quantval)); (qtblptr^)^.sent_table := FALSE; end; end; { Copy the source's per-component info. Note we assume jpeg_set_defaults has allocated the dest comp_info array. } dstinfo^.num_components := srcinfo^.num_components; if (dstinfo^.num_components < 1) or (dstinfo^.num_components > MAX_COMPONENTS) then ERREXIT2(j_common_ptr(dstinfo), JERR_COMPONENT_COUNT, dstinfo^.num_components, MAX_COMPONENTS); incomp := jpeg_component_info_ptr(srcinfo^.comp_info); outcomp := jpeg_component_info_ptr(dstinfo^.comp_info); for ci := 0 to pred(dstinfo^.num_components) do begin outcomp^.component_id := incomp^.component_id; outcomp^.h_samp_factor := incomp^.h_samp_factor; outcomp^.v_samp_factor := incomp^.v_samp_factor; outcomp^.quant_tbl_no := incomp^.quant_tbl_no; { Make sure saved quantization table for component matches the qtable slot. If not, the input file re-used this qtable slot. IJG encoder currently cannot duplicate this. } tblno := outcomp^.quant_tbl_no; if (tblno < 0) or (tblno >= NUM_QUANT_TBLS) or (srcinfo^.quant_tbl_ptrs[tblno] = NIL) then ERREXIT1(j_common_ptr(dstinfo), JERR_NO_QUANT_TABLE, tblno); slot_quant := srcinfo^.quant_tbl_ptrs[tblno]; c_quant := incomp^.quant_table; if (c_quant <> NIL) then begin for coefi := 0 to pred(DCTSIZE2) do begin if (c_quant^.quantval[coefi] <> slot_quant^.quantval[coefi]) then ERREXIT1(j_common_ptr(dstinfo), JERR_MISMATCHED_QUANT_TABLE, tblno); end; end; { Note: we do not copy the source's Huffman table assignments; instead we rely on jpeg_set_colorspace to have made a suitable choice. } Inc(incomp); Inc(outcomp); end; { Also copy JFIF version and resolution information, if available. Strictly speaking this isn't "critical" info, but it's nearly always appropriate to copy it if available. In particular, if the application chooses to copy JFIF 1.02 extension markers from the source file, we need to copy the version to make sure we don't emit a file that has 1.02 extensions but a claimed version of 1.01. We will *not*, however, copy version info from mislabeled "2.01" files. } if (srcinfo^.saw_JFIF_marker) then begin if (srcinfo^.JFIF_major_version = 1) then begin dstinfo^.JFIF_major_version := srcinfo^.JFIF_major_version; dstinfo^.JFIF_minor_version := srcinfo^.JFIF_minor_version; end; dstinfo^.density_unit := srcinfo^.density_unit; dstinfo^.X_density := srcinfo^.X_density; dstinfo^.Y_density := srcinfo^.Y_density; end; end; { Master selection of compression modules for transcoding. This substitutes for jcinit.c's initialization of the full compressor. } {LOCAL} procedure transencode_master_selection (cinfo : j_compress_ptr; coef_arrays : jvirt_barray_tbl_ptr); begin { Although we don't actually use input_components for transcoding, jcmaster.c's initial_setup will complain if input_components is 0. } cinfo^.input_components := 1; { Initialize master control (includes parameter checking/processing) } jinit_c_master_control(cinfo, TRUE { transcode only }); { Entropy encoding: either Huffman or arithmetic coding. } if (cinfo^.arith_code) then begin ERREXIT(j_common_ptr(cinfo), JERR_ARITH_NOTIMPL); end else begin if (cinfo^.progressive_mode) then begin {$ifdef C_PROGRESSIVE_SUPPORTED} jinit_phuff_encoder(cinfo); {$else} ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED); {$endif} end else jinit_huff_encoder(cinfo); end; { We need a special coefficient buffer controller. } transencode_coef_controller(cinfo, coef_arrays); jinit_marker_writer(cinfo); { We can now tell the memory manager to allocate virtual arrays. } cinfo^.mem^.realize_virt_arrays (j_common_ptr(cinfo)); { Write the datastream header (SOI, JFIF) immediately. Frame and scan headers are postponed till later. This lets application insert special markers after the SOI. } cinfo^.marker^.write_file_header (cinfo); end; { The rest of this file is a special implementation of the coefficient buffer controller. This is similar to jccoefct.c, but it handles only output from presupplied virtual arrays. Furthermore, we generate any dummy padding blocks on-the-fly rather than expecting them to be present in the arrays. } { Private buffer controller object } type my_coef_ptr = ^my_coef_controller; my_coef_controller = record pub : jpeg_c_coef_controller; { public fields } iMCU_row_num : JDIMENSION; { iMCU row # within image } mcu_ctr : JDIMENSION; { counts MCUs processed in current row } MCU_vert_offset : int; { counts MCU rows within iMCU row } MCU_rows_per_iMCU_row : int; { number of such rows needed } { Virtual block array for each component. } whole_image : jvirt_barray_tbl_ptr; { Workspace for constructing dummy blocks at right/bottom edges. } dummy_buffer : array[0..C_MAX_BLOCKS_IN_MCU-1] of JBLOCKROW; end; {my_coef_controller;} {LOCAL} procedure start_iMCU_row (cinfo : j_compress_ptr); { Reset within-iMCU-row counters for a new row } var coef : my_coef_ptr; begin coef := my_coef_ptr (cinfo^.coef); { In an interleaved scan, an MCU row is the same as an iMCU row. In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. But at the bottom of the image, process only what's left. } if (cinfo^.comps_in_scan > 1) then begin coef^.MCU_rows_per_iMCU_row := 1; end else begin if (coef^.iMCU_row_num < (cinfo^.total_iMCU_rows-1)) then coef^.MCU_rows_per_iMCU_row := cinfo^.cur_comp_info[0]^.v_samp_factor else coef^.MCU_rows_per_iMCU_row := cinfo^.cur_comp_info[0]^.last_row_height; end; coef^.mcu_ctr := 0; coef^.MCU_vert_offset := 0; end; { Initialize for a processing pass. } {METHODDEF} procedure start_pass_coef (cinfo : j_compress_ptr; pass_mode : J_BUF_MODE); far; var coef : my_coef_ptr; begin coef := my_coef_ptr (cinfo^.coef); if (pass_mode <> JBUF_CRANK_DEST) then ERREXIT(j_common_ptr(cinfo), JERR_BAD_BUFFER_MODE); coef^.iMCU_row_num := 0; start_iMCU_row(cinfo); end; { Process some data. We process the equivalent of one fully interleaved MCU row ("iMCU" row) per call, ie, v_samp_factor block rows for each component in the scan. The data is obtained from the virtual arrays and fed to the entropy coder. Returns TRUE if the iMCU row is completed, FALSE if suspended. NB: input_buf is ignored; it is likely to be a NIL pointer. } {METHODDEF} function compress_output (cinfo : j_compress_ptr; input_buf : JSAMPIMAGE) : boolean; far; var coef : my_coef_ptr; MCU_col_num : JDIMENSION; { index of current MCU within row } last_MCU_col : JDIMENSION; last_iMCU_row : JDIMENSION; blkn, ci, xindex, yindex, yoffset, blockcnt : int; start_col : JDIMENSION; buffer : array[0..MAX_COMPS_IN_SCAN-1] of JBLOCKARRAY; MCU_buffer : array[0..C_MAX_BLOCKS_IN_MCU-1] of JBLOCKROW; buffer_ptr : JBLOCKROW; compptr : jpeg_component_info_ptr; begin coef := my_coef_ptr (cinfo^.coef); last_MCU_col := cinfo^.MCUs_per_row - 1; last_iMCU_row := cinfo^.total_iMCU_rows - 1; { Align the virtual buffers for the components used in this scan. } for ci := 0 to pred(cinfo^.comps_in_scan) do begin compptr := cinfo^.cur_comp_info[ci]; buffer[ci] := cinfo^.mem^.access_virt_barray (j_common_ptr(cinfo), coef^.whole_image^[compptr^.component_index], coef^.iMCU_row_num * compptr^.v_samp_factor, JDIMENSION(compptr^.v_samp_factor), FALSE); end; { Loop to process one whole iMCU row } for yoffset := coef^.MCU_vert_offset to pred(coef^.MCU_rows_per_iMCU_row) do begin for MCU_col_num := coef^.mcu_ctr to pred(cinfo^.MCUs_per_row) do begin { Construct list of pointers to DCT blocks belonging to this MCU } blkn := 0; { index of current DCT block within MCU } for ci := 0 to pred(cinfo^.comps_in_scan) do begin compptr := cinfo^.cur_comp_info[ci]; start_col := MCU_col_num * compptr^.MCU_width; if (MCU_col_num < last_MCU_col) then blockcnt := compptr^.MCU_width else blockcnt := compptr^.last_col_width; for yindex := 0 to pred(compptr^.MCU_height) do begin if (coef^.iMCU_row_num < last_iMCU_row) or (yindex+yoffset < compptr^.last_row_height) then begin { Fill in pointers to real blocks in this row } buffer_ptr := JBLOCKROW(@ buffer[ci]^[yindex+yoffset]^[start_col]); for xindex := 0 to pred(blockcnt) do begin MCU_buffer[blkn] := buffer_ptr; Inc(blkn); Inc(JBLOCK_PTR(buffer_ptr)); end; xindex := blockcnt; end else begin { At bottom of image, need a whole row of dummy blocks } xindex := 0; end; { Fill in any dummy blocks needed in this row. Dummy blocks are filled in the same way as in jccoefct.c: all zeroes in the AC entries, DC entries equal to previous block's DC value. The init routine has already zeroed the AC entries, so we need only set the DC entries correctly. } while (xindex < compptr^.MCU_width) do begin MCU_buffer[blkn] := coef^.dummy_buffer[blkn]; MCU_buffer[blkn]^[0][0] := MCU_buffer[blkn-1]^[0][0]; Inc(xindex); Inc(blkn); end; end; end; { Try to write the MCU. } if (not cinfo^.entropy^.encode_mcu (cinfo, MCU_buffer)) then begin { Suspension forced; update state counters and exit } coef^.MCU_vert_offset := yoffset; coef^.mcu_ctr := MCU_col_num; compress_output := FALSE; exit; end; end; { Completed an MCU row, but perhaps not an iMCU row } coef^.mcu_ctr := 0; end; { Completed the iMCU row, advance counters for next one } Inc(coef^.iMCU_row_num); start_iMCU_row(cinfo); compress_output := TRUE; end; { Initialize coefficient buffer controller. Each passed coefficient array must be the right size for that coefficient: width_in_blocks wide and height_in_blocks high, with unitheight at least v_samp_factor. } {LOCAL} procedure transencode_coef_controller (cinfo : j_compress_ptr; coef_arrays : jvirt_barray_tbl_ptr); var coef : my_coef_ptr; buffer : JBLOCKROW; i : int; begin coef := my_coef_ptr( cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE, SIZEOF(my_coef_controller))); cinfo^.coef := jpeg_c_coef_controller_ptr (coef); coef^.pub.start_pass := start_pass_coef; coef^.pub.compress_data := compress_output; { Save pointer to virtual arrays } coef^.whole_image := coef_arrays; { Allocate and pre-zero space for dummy DCT blocks. } buffer := JBLOCKROW( cinfo^.mem^.alloc_large (j_common_ptr(cinfo), JPOOL_IMAGE, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)) ); jzero_far({FAR} voidp(buffer), C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); for i := 0 to pred(C_MAX_BLOCKS_IN_MCU) do begin coef^.dummy_buffer[i] := JBLOCKROW(@ buffer^[i]); end; end; end.