{ ================================================================================================= Definitions of the Basic Linear Algebra Subprograms (BLAS) as provided Apple Computer. A few additional functions, unique to Mac OS, have also been provided. These are clearly documented as Apple extensions. Documentation on the BLAS standard, including reference implementations, can be found on the web starting from the BLAS FAQ page at these URLs (verified live as of April 2002): http://www.netlib.org/blas/faq.html http://www.netlib.org/blas/blast-forum/blast-forum.html ================================================================================================= } { Pascal Translation Updated: Jonas Maebe, , October 2009 } { Modified for use with Free Pascal Version 308 Please report any bugs to } {$ifc not defined MACOSALLINCLUDE or not MACOSALLINCLUDE} {$mode macpas} {$packenum 1} {$macro on} {$inline on} {$calling mwpascal} unit cblas; interface {$setc UNIVERSAL_INTERFACES_VERSION := $0400} {$setc GAP_INTERFACES_VERSION := $0308} {$ifc not defined USE_CFSTR_CONSTANT_MACROS} {$setc USE_CFSTR_CONSTANT_MACROS := TRUE} {$endc} {$ifc defined CPUPOWERPC and defined CPUI386} {$error Conflicting initial definitions for CPUPOWERPC and CPUI386} {$endc} {$ifc defined FPC_BIG_ENDIAN and defined FPC_LITTLE_ENDIAN} {$error Conflicting initial definitions for FPC_BIG_ENDIAN and FPC_LITTLE_ENDIAN} {$endc} {$ifc not defined __ppc__ and defined CPUPOWERPC32} {$setc __ppc__ := 1} {$elsec} {$setc __ppc__ := 0} {$endc} {$ifc not defined __ppc64__ and defined CPUPOWERPC64} {$setc __ppc64__ := 1} {$elsec} {$setc __ppc64__ := 0} {$endc} {$ifc not defined __i386__ and defined CPUI386} {$setc __i386__ := 1} {$elsec} {$setc __i386__ := 0} {$endc} {$ifc not defined __x86_64__ and defined CPUX86_64} {$setc __x86_64__ := 1} {$elsec} {$setc __x86_64__ := 0} {$endc} {$ifc not defined __arm__ and defined CPUARM} {$setc __arm__ := 1} {$elsec} {$setc __arm__ := 0} {$endc} {$ifc defined cpu64} {$setc __LP64__ := 1} {$elsec} {$setc __LP64__ := 0} {$endc} {$ifc defined __ppc__ and __ppc__ and defined __i386__ and __i386__} {$error Conflicting definitions for __ppc__ and __i386__} {$endc} {$ifc defined __ppc__ and __ppc__} {$setc TARGET_CPU_PPC := TRUE} {$setc TARGET_CPU_PPC64 := FALSE} {$setc TARGET_CPU_X86 := FALSE} {$setc TARGET_CPU_X86_64 := FALSE} {$setc TARGET_CPU_ARM := FALSE} {$setc TARGET_OS_MAC := TRUE} {$setc TARGET_OS_IPHONE := FALSE} {$setc TARGET_IPHONE_SIMULATOR := FALSE} {$elifc defined __ppc64__ and __ppc64__} {$setc TARGET_CPU_PPC := FALSE} {$setc TARGET_CPU_PPC64 := TRUE} {$setc TARGET_CPU_X86 := FALSE} {$setc TARGET_CPU_X86_64 := FALSE} {$setc TARGET_CPU_ARM := FALSE} {$setc TARGET_OS_MAC := TRUE} {$setc TARGET_OS_IPHONE := FALSE} {$setc TARGET_IPHONE_SIMULATOR := FALSE} {$elifc defined __i386__ and __i386__} {$setc TARGET_CPU_PPC := FALSE} {$setc TARGET_CPU_PPC64 := FALSE} {$setc TARGET_CPU_X86 := TRUE} {$setc TARGET_CPU_X86_64 := FALSE} {$setc TARGET_CPU_ARM := FALSE} {$ifc defined(iphonesim)} {$setc TARGET_OS_MAC := FALSE} {$setc TARGET_OS_IPHONE := TRUE} {$setc TARGET_IPHONE_SIMULATOR := TRUE} {$elsec} {$setc TARGET_OS_MAC := TRUE} {$setc TARGET_OS_IPHONE := FALSE} {$setc TARGET_IPHONE_SIMULATOR := FALSE} {$endc} {$elifc defined __x86_64__ and __x86_64__} {$setc TARGET_CPU_PPC := FALSE} {$setc TARGET_CPU_PPC64 := FALSE} {$setc TARGET_CPU_X86 := FALSE} {$setc TARGET_CPU_X86_64 := TRUE} {$setc TARGET_CPU_ARM := FALSE} {$setc TARGET_OS_MAC := TRUE} {$setc TARGET_OS_IPHONE := FALSE} {$setc TARGET_IPHONE_SIMULATOR := FALSE} {$elifc defined __arm__ and __arm__} {$setc TARGET_CPU_PPC := FALSE} {$setc TARGET_CPU_PPC64 := FALSE} {$setc TARGET_CPU_X86 := FALSE} {$setc TARGET_CPU_X86_64 := FALSE} {$setc TARGET_CPU_ARM := TRUE} { will require compiler define when/if other Apple devices with ARM cpus ship } {$setc TARGET_OS_MAC := FALSE} {$setc TARGET_OS_IPHONE := TRUE} {$setc TARGET_IPHONE_SIMULATOR := FALSE} {$elsec} {$error __ppc__ nor __ppc64__ nor __i386__ nor __x86_64__ nor __arm__ is defined.} {$endc} {$ifc defined __LP64__ and __LP64__ } {$setc TARGET_CPU_64 := TRUE} {$elsec} {$setc TARGET_CPU_64 := FALSE} {$endc} {$ifc defined FPC_BIG_ENDIAN} {$setc TARGET_RT_BIG_ENDIAN := TRUE} {$setc TARGET_RT_LITTLE_ENDIAN := FALSE} {$elifc defined FPC_LITTLE_ENDIAN} {$setc TARGET_RT_BIG_ENDIAN := FALSE} {$setc TARGET_RT_LITTLE_ENDIAN := TRUE} {$elsec} {$error Neither FPC_BIG_ENDIAN nor FPC_LITTLE_ENDIAN are defined.} {$endc} {$setc ACCESSOR_CALLS_ARE_FUNCTIONS := TRUE} {$setc CALL_NOT_IN_CARBON := FALSE} {$setc OLDROUTINENAMES := FALSE} {$setc OPAQUE_TOOLBOX_STRUCTS := TRUE} {$setc OPAQUE_UPP_TYPES := TRUE} {$setc OTCARBONAPPLICATION := TRUE} {$setc OTKERNEL := FALSE} {$setc PM_USE_SESSION_APIS := TRUE} {$setc TARGET_API_MAC_CARBON := TRUE} {$setc TARGET_API_MAC_OS8 := FALSE} {$setc TARGET_API_MAC_OSX := TRUE} {$setc TARGET_CARBON := TRUE} {$setc TARGET_CPU_68K := FALSE} {$setc TARGET_CPU_MIPS := FALSE} {$setc TARGET_CPU_SPARC := FALSE} {$setc TARGET_OS_UNIX := FALSE} {$setc TARGET_OS_WIN32 := FALSE} {$setc TARGET_RT_MAC_68881 := FALSE} {$setc TARGET_RT_MAC_CFM := FALSE} {$setc TARGET_RT_MAC_MACHO := TRUE} {$setc TYPED_FUNCTION_POINTERS := TRUE} {$setc TYPE_BOOL := FALSE} {$setc TYPE_EXTENDED := FALSE} {$setc TYPE_LONGLONG := TRUE} uses MacTypes; {$endc} {not MACOSALLINCLUDE} {$ifc TARGET_OS_MAC} {$ALIGN POWER} { ================================================================================================= Matrix shape and storage ======================== Keeping the various matrix shape and storage parameters straight can be difficult. The BLAS documentation generally makes a distinction between the concpetual "matrix" and the physical "array". However there are a number of places where this becomes fuzzy because of the overall bias towards FORTRAN's column major storage. The confusion is made worse by style differences between the level 2 and level 3 functions. It is amplified further by the explicit choice of row or column major storage in the C interface. The storage order does not affect the actual computation that is performed. That is, it does not affect the results other than where they appear in memory. It does affect the values passed for so-called "leading dimension" parameters, such as lda in sgemv. These are always the major stride in storage, allowing operations on rectangular subsets of larger matrices. For row major storage this is the number of columns in the parent matrix, and for column major storage this is the number of rows in the parent matrix. For the level 2 functions, which deal with only a single matrix, the matrix shape parameters are always M and N. These are the logical shape of the matrix, M rows by N columns. The transpose parameter, such as transA in sgemv, defines whether the regular matrix or its transpose is used in the operation. This affects the implicit length of the input and output vectors. For example, if the regular matrix A is used in sgemv, the input vector X has length N, the number of columns of A, and the output vector Y has length M, the number of rows of A. The length of the input and output vectors is not affected by the storage order of the matrix. The level 3 functions deal with 2 input matrices and one output matrix, the matrix shape parameters are M, N, and K. The logical shape of the output matrix is always M by N, while K is the common dimension of the input matrices. Like level 2, the transpose parameters, such as transA and transB in sgemm, define whether the regular input or its transpose is used in the operation. However unlike level 2, in level 3 the transpose parameters affect the implicit shape of the input matrix. Consider sgemm, which computes "C = (alpha * A * B) + (beta * C)", where A and B might be regular or transposed. The logical shape of C is always M rows by N columns. The physical shape depends on the storage order parameter. Using column major storage the declaration of C (the array) in C (the language) would be something like "float C[N][M]". The logical shape of A without transposition is M by K, and B is K by N. The one storage order parameter affects all three matrices. For those readers still wondering about the style differences between level 2 and level 3, they involve whether the input or output shapes are explicit. For level 2, the input matrix shape is always M by N. The input and output vector lengths are implicit and vary according to the transpose parameter. For level 3, the output matrix shape is always M by N. The input matrix shapes are implicit and vary according to the transpose parameters. ================================================================================================= } type CBLAS_ORDER = SInt32; const CblasRowMajor = 101; CblasColMajor = 102; type CBLAS_TRANSPOSE = SInt32; const CblasNoTrans = 111; CblasTrans = 112; CblasConjTrans = 113; AtlasConj = 114; type CBLAS_UPLO = SInt32; const CblasUpper = 121; CblasLower = 122; type CBLAS_DIAG = SInt32; const CblasNonUnit = 131; CblasUnit = 132; type CBLAS_SIDE = SInt32; const CblasLeft = 141; CblasRight = 142; type CBLAS_INDEX = SInt32; function cblas_errprn( ierr: SInt32; info: SInt32; var form: char; ... ): SInt32; external name '_cblas_errprn'; { * =========================================================================== * Prototypes for level 1 BLAS functions (complex are recast as routines) * =========================================================================== } function cblas_sdsdot( {const} N: SInt32; {const} alpha: Float32; X: Float32Ptr; {const} incX: SInt32; Y: Float32Ptr; {const} incY: SInt32 ): Float32; external name '_cblas_sdsdot'; function cblas_dsdot( {const} N: SInt32; X: Float32Ptr; {const} incX: SInt32; Y: Float32Ptr; {const} incY: SInt32 ): Float64; external name '_cblas_dsdot'; function cblas_sdot( {const} N: SInt32; X: Float32Ptr; {const} incX: SInt32; Y: Float32Ptr; {const} incY: SInt32 ): Float32; external name '_cblas_sdot'; function cblas_ddot( {const} N: SInt32; X: Float64Ptr; {const} incX: SInt32; Y: Float64Ptr; {const} incY: SInt32 ): Float64; external name '_cblas_ddot'; { * Functions having prefixes Z and C only } procedure cblas_cdotu_sub( {const} N: SInt32; X: {const} UnivPtr; {const} incX: SInt32; Y: {const} UnivPtr; {const} incY: SInt32; dotu: UnivPtr ); external name '_cblas_cdotu_sub'; procedure cblas_cdotc_sub( {const} N: SInt32; X: {const} UnivPtr; {const} incX: SInt32; Y: {const} UnivPtr; {const} incY: SInt32; dotc: UnivPtr ); external name '_cblas_cdotc_sub'; procedure cblas_zdotu_sub( {const} N: SInt32; X: {const} UnivPtr; {const} incX: SInt32; Y: {const} UnivPtr; {const} incY: SInt32; dotu: UnivPtr ); external name '_cblas_zdotu_sub'; procedure cblas_zdotc_sub( {const} N: SInt32; X: {const} UnivPtr; {const} incX: SInt32; Y: {const} UnivPtr; {const} incY: SInt32; dotc: UnivPtr ); external name '_cblas_zdotc_sub'; { * Functions having prefixes S D SC DZ } function cblas_snrm2( {const} N: SInt32; X: Float32Ptr; {const} incX: SInt32 ): Float32; external name '_cblas_snrm2'; function cblas_sasum( {const} N: SInt32; X: Float32Ptr; {const} incX: SInt32 ): Float32; external name '_cblas_sasum'; function cblas_dnrm2( {const} N: SInt32; X: Float64Ptr; {const} incX: SInt32 ): Float64; external name '_cblas_dnrm2'; function cblas_dasum( {const} N: SInt32; X: Float64Ptr; {const} incX: SInt32 ): Float64; external name '_cblas_dasum'; function cblas_scnrm2( {const} N: SInt32; X: {const} UnivPtr; {const} incX: SInt32 ): Float32; external name '_cblas_scnrm2'; function cblas_scasum( {const} N: SInt32; X: {const} UnivPtr; {const} incX: SInt32 ): Float32; external name '_cblas_scasum'; function cblas_dznrm2( {const} N: SInt32; X: {const} UnivPtr; {const} incX: SInt32 ): Float64; external name '_cblas_dznrm2'; function cblas_dzasum( {const} N: SInt32; X: {const} UnivPtr; {const} incX: SInt32 ): Float64; external name '_cblas_dzasum'; { * Functions having standard 4 prefixes (S D C Z) } function cblas_isamax( {const} N: SInt32; X: Float32Ptr; {const} incX: SInt32 ): CBLAS_INDEX; external name '_cblas_isamax'; function cblas_idamax( {const} N: SInt32; X: Float64Ptr; {const} incX: SInt32 ): CBLAS_INDEX; external name '_cblas_idamax'; function cblas_icamax( {const} N: SInt32; X: {const} UnivPtr; {const} incX: SInt32 ): CBLAS_INDEX; external name '_cblas_icamax'; function cblas_izamax( {const} N: SInt32; X: {const} UnivPtr; {const} incX: SInt32 ): CBLAS_INDEX; external name '_cblas_izamax'; { * =========================================================================== * Prototypes for level 1 BLAS routines * =========================================================================== } { * Routines with standard 4 prefixes (s, d, c, z) } procedure cblas_sswap( {const} N: SInt32; var X: Float32; {const} incX: SInt32; var Y: Float32; {const} incY: SInt32 ); external name '_cblas_sswap'; procedure cblas_scopy( {const} N: SInt32; X: Float32Ptr; {const} incX: SInt32; var Y: Float32; {const} incY: SInt32 ); external name '_cblas_scopy'; procedure cblas_saxpy( {const} N: SInt32; {const} alpha: Float32; X: Float32Ptr; {const} incX: SInt32; var Y: Float32; {const} incY: SInt32 ); external name '_cblas_saxpy'; procedure catlas_saxpby( {const} N: SInt32; {const} alpha: Float32; X: Float32Ptr; {const} incX: SInt32; {const} beta: Float32; var Y: Float32; {const} incY: SInt32 ); external name '_catlas_saxpby'; procedure catlas_sset( {const} N: SInt32; {const} alpha: Float32; var X: Float32; {const} incX: SInt32 ); external name '_catlas_sset'; procedure cblas_dswap( {const} N: SInt32; var X: Float64; {const} incX: SInt32; var Y: Float64; {const} incY: SInt32 ); external name '_cblas_dswap'; procedure cblas_dcopy( {const} N: SInt32; X: Float64Ptr; {const} incX: SInt32; var Y: Float64; {const} incY: SInt32 ); external name '_cblas_dcopy'; procedure cblas_daxpy( {const} N: SInt32; {const} alpha: Float64; X: Float64Ptr; {const} incX: SInt32; var Y: Float64; {const} incY: SInt32 ); external name '_cblas_daxpy'; procedure catlas_daxpby( {const} N: SInt32; {const} alpha: Float64; X: Float64Ptr; {const} incX: SInt32; {const} beta: Float64; var Y: Float64; {const} incY: SInt32 ); external name '_catlas_daxpby'; procedure catlas_dset( {const} N: SInt32; {const} alpha: Float64; var X: Float64; {const} incX: SInt32 ); external name '_catlas_dset'; procedure cblas_cswap( {const} N: SInt32; X: UnivPtr; {const} incX: SInt32; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_cswap'; procedure cblas_ccopy( {const} N: SInt32; X: {const} UnivPtr; {const} incX: SInt32; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_ccopy'; procedure cblas_caxpy( {const} N: SInt32; alpha: {const} UnivPtr; X: {const} UnivPtr; {const} incX: SInt32; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_caxpy'; procedure catlas_caxpby( {const} N: SInt32; alpha: {const} UnivPtr; X: {const} UnivPtr; {const} incX: SInt32; beta: {const} UnivPtr; Y: UnivPtr; {const} incY: SInt32 ); external name '_catlas_caxpby'; procedure catlas_cset( {const} N: SInt32; alpha: {const} UnivPtr; X: UnivPtr; {const} incX: SInt32 ); external name '_catlas_cset'; procedure cblas_zswap( {const} N: SInt32; X: UnivPtr; {const} incX: SInt32; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_zswap'; procedure cblas_zcopy( {const} N: SInt32; X: {const} UnivPtr; {const} incX: SInt32; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_zcopy'; procedure cblas_zaxpy( {const} N: SInt32; alpha: {const} UnivPtr; X: {const} UnivPtr; {const} incX: SInt32; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_zaxpy'; procedure catlas_zaxpby( {const} N: SInt32; alpha: {const} UnivPtr; X: {const} UnivPtr; {const} incX: SInt32; beta: {const} UnivPtr; Y: UnivPtr; {const} incY: SInt32 ); external name '_catlas_zaxpby'; procedure catlas_zset( {const} N: SInt32; alpha: {const} UnivPtr; X: UnivPtr; {const} incX: SInt32 ); external name '_catlas_zset'; { * Routines with S and D prefix only } procedure cblas_srotg( var a: Float32; var b: Float32; var c: Float32; var s: Float32 ); external name '_cblas_srotg'; procedure cblas_srotmg( var d1: Float32; var d2: Float32; var b1: Float32; {const} b2: Float32; var P: Float32 ); external name '_cblas_srotmg'; procedure cblas_srot( {const} N: SInt32; var X: Float32; {const} incX: SInt32; var Y: Float32; {const} incY: SInt32; {const} c: Float32; {const} s: Float32 ); external name '_cblas_srot'; procedure cblas_srotm( {const} N: SInt32; var X: Float32; {const} incX: SInt32; var Y: Float32; {const} incY: SInt32; P: Float32Ptr ); external name '_cblas_srotm'; procedure cblas_drotg( var a: Float64; var b: Float64; var c: Float64; var s: Float64 ); external name '_cblas_drotg'; procedure cblas_drotmg( var d1: Float64; var d2: Float64; var b1: Float64; {const} b2: Float64; var P: Float64 ); external name '_cblas_drotmg'; procedure cblas_drot( {const} N: SInt32; var X: Float64; {const} incX: SInt32; var Y: Float64; {const} incY: SInt32; {const} c: Float64; {const} s: Float64 ); external name '_cblas_drot'; procedure cblas_drotm( {const} N: SInt32; var X: Float64; {const} incX: SInt32; var Y: Float64; {const} incY: SInt32; P: Float64Ptr ); external name '_cblas_drotm'; { * Routines with S D C Z CS and ZD prefixes } procedure cblas_sscal( {const} N: SInt32; {const} alpha: Float32; var X: Float32; {const} incX: SInt32 ); external name '_cblas_sscal'; procedure cblas_dscal( {const} N: SInt32; {const} alpha: Float64; var X: Float64; {const} incX: SInt32 ); external name '_cblas_dscal'; procedure cblas_cscal( {const} N: SInt32; alpha: {const} UnivPtr; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_cscal'; procedure cblas_zscal( {const} N: SInt32; alpha: {const} UnivPtr; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_zscal'; procedure cblas_csscal( {const} N: SInt32; {const} alpha: Float32; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_csscal'; procedure cblas_zdscal( {const} N: SInt32; {const} alpha: Float64; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_zdscal'; { * Extra reference routines provided by ATLAS, but not mandated by the standard } procedure cblas_crotg( a: UnivPtr; b: UnivPtr; c: UnivPtr; s: UnivPtr ); external name '_cblas_crotg'; procedure cblas_zrotg( a: UnivPtr; b: UnivPtr; c: UnivPtr; s: UnivPtr ); external name '_cblas_zrotg'; procedure cblas_csrot( {const} N: SInt32; X: UnivPtr; {const} incX: SInt32; Y: UnivPtr; {const} incY: SInt32; {const} c: Float32; {const} s: Float32 ); external name '_cblas_csrot'; procedure cblas_zdrot( {const} N: SInt32; X: UnivPtr; {const} incX: SInt32; Y: UnivPtr; {const} incY: SInt32; {const} c: Float64; {const} s: Float64 ); external name '_cblas_zdrot'; { * =========================================================================== * Prototypes for level 2 BLAS * =========================================================================== } { * Routines with standard 4 prefixes (S, D, C, Z) } procedure cblas_sgemv( {const} Order: CBLAS_ORDER; {const} TransA: CBLAS_TRANSPOSE; {const} M: SInt32; {const} N: SInt32; {const} alpha: Float32; A: Float32Ptr; {const} lda: SInt32; X: Float32Ptr; {const} incX: SInt32; {const} beta: Float32; var Y: Float32; {const} incY: SInt32 ); external name '_cblas_sgemv'; procedure cblas_sgbmv( {const} Order: CBLAS_ORDER; {const} TransA: CBLAS_TRANSPOSE; {const} M: SInt32; {const} N: SInt32; {const} KL: SInt32; {const} KU: SInt32; {const} alpha: Float32; A: Float32Ptr; {const} lda: SInt32; X: Float32Ptr; {const} incX: SInt32; {const} beta: Float32; var Y: Float32; {const} incY: SInt32 ); external name '_cblas_sgbmv'; procedure cblas_strmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; A: Float32Ptr; {const} lda: SInt32; var X: Float32; {const} incX: SInt32 ); external name '_cblas_strmv'; procedure cblas_stbmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; {const} K: SInt32; A: Float32Ptr; {const} lda: SInt32; var X: Float32; {const} incX: SInt32 ); external name '_cblas_stbmv'; procedure cblas_stpmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; const (*var*) Ap: Float32; var X: Float32; {const} incX: SInt32 ); external name '_cblas_stpmv'; procedure cblas_strsv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; A: Float32Ptr; {const} lda: SInt32; var X: Float32; {const} incX: SInt32 ); external name '_cblas_strsv'; procedure cblas_stbsv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; {const} K: SInt32; A: Float32Ptr; {const} lda: SInt32; var X: Float32; {const} incX: SInt32 ); external name '_cblas_stbsv'; procedure cblas_stpsv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; const (*var*) Ap: Float32; var X: Float32; {const} incX: SInt32 ); external name '_cblas_stpsv'; procedure cblas_dgemv( {const} Order: CBLAS_ORDER; {const} TransA: CBLAS_TRANSPOSE; {const} M: SInt32; {const} N: SInt32; {const} alpha: Float64; A: Float64Ptr; {const} lda: SInt32; X: Float64Ptr; {const} incX: SInt32; {const} beta: Float64; var Y: Float64; {const} incY: SInt32 ); external name '_cblas_dgemv'; procedure cblas_dgbmv( {const} Order: CBLAS_ORDER; {const} TransA: CBLAS_TRANSPOSE; {const} M: SInt32; {const} N: SInt32; {const} KL: SInt32; {const} KU: SInt32; {const} alpha: Float64; A: Float64Ptr; {const} lda: SInt32; X: Float64Ptr; {const} incX: SInt32; {const} beta: Float64; var Y: Float64; {const} incY: SInt32 ); external name '_cblas_dgbmv'; procedure cblas_dtrmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; A: Float64Ptr; {const} lda: SInt32; var X: Float64; {const} incX: SInt32 ); external name '_cblas_dtrmv'; procedure cblas_dtbmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; {const} K: SInt32; A: Float64Ptr; {const} lda: SInt32; var X: Float64; {const} incX: SInt32 ); external name '_cblas_dtbmv'; procedure cblas_dtpmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; const (*var*) Ap: Float64; var X: Float64; {const} incX: SInt32 ); external name '_cblas_dtpmv'; procedure cblas_dtrsv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; A: Float64Ptr; {const} lda: SInt32; var X: Float64; {const} incX: SInt32 ); external name '_cblas_dtrsv'; procedure cblas_dtbsv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; {const} K: SInt32; A: Float64Ptr; {const} lda: SInt32; var X: Float64; {const} incX: SInt32 ); external name '_cblas_dtbsv'; procedure cblas_dtpsv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; const (*var*) Ap: Float64; var X: Float64; {const} incX: SInt32 ); external name '_cblas_dtpsv'; procedure cblas_cgemv( {const} Order: CBLAS_ORDER; {const} TransA: CBLAS_TRANSPOSE; {const} M: SInt32; {const} N: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; X: {const} UnivPtr; {const} incX: SInt32; beta: {const} UnivPtr; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_cgemv'; procedure cblas_cgbmv( {const} Order: CBLAS_ORDER; {const} TransA: CBLAS_TRANSPOSE; {const} M: SInt32; {const} N: SInt32; {const} KL: SInt32; {const} KU: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; X: {const} UnivPtr; {const} incX: SInt32; beta: {const} UnivPtr; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_cgbmv'; procedure cblas_ctrmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; A: {const} UnivPtr; {const} lda: SInt32; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_ctrmv'; procedure cblas_ctbmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; {const} K: SInt32; A: {const} UnivPtr; {const} lda: SInt32; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_ctbmv'; procedure cblas_ctpmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; Ap: {const} UnivPtr; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_ctpmv'; procedure cblas_ctrsv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; A: {const} UnivPtr; {const} lda: SInt32; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_ctrsv'; procedure cblas_ctbsv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; {const} K: SInt32; A: {const} UnivPtr; {const} lda: SInt32; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_ctbsv'; procedure cblas_ctpsv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; Ap: {const} UnivPtr; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_ctpsv'; procedure cblas_zgemv( {const} Order: CBLAS_ORDER; {const} TransA: CBLAS_TRANSPOSE; {const} M: SInt32; {const} N: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; X: {const} UnivPtr; {const} incX: SInt32; beta: {const} UnivPtr; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_zgemv'; procedure cblas_zgbmv( {const} Order: CBLAS_ORDER; {const} TransA: CBLAS_TRANSPOSE; {const} M: SInt32; {const} N: SInt32; {const} KL: SInt32; {const} KU: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; X: {const} UnivPtr; {const} incX: SInt32; beta: {const} UnivPtr; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_zgbmv'; procedure cblas_ztrmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; A: {const} UnivPtr; {const} lda: SInt32; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_ztrmv'; procedure cblas_ztbmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; {const} K: SInt32; A: {const} UnivPtr; {const} lda: SInt32; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_ztbmv'; procedure cblas_ztpmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; Ap: {const} UnivPtr; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_ztpmv'; procedure cblas_ztrsv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; A: {const} UnivPtr; {const} lda: SInt32; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_ztrsv'; procedure cblas_ztbsv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; {const} K: SInt32; A: {const} UnivPtr; {const} lda: SInt32; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_ztbsv'; procedure cblas_ztpsv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} N: SInt32; Ap: {const} UnivPtr; X: UnivPtr; {const} incX: SInt32 ); external name '_cblas_ztpsv'; { * Routines with S and D prefixes only } procedure cblas_ssymv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float32; A: Float32Ptr; {const} lda: SInt32; X: Float32Ptr; {const} incX: SInt32; {const} beta: Float32; var Y: Float32; {const} incY: SInt32 ); external name '_cblas_ssymv'; procedure cblas_ssbmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} K: SInt32; {const} alpha: Float32; A: Float32Ptr; {const} lda: SInt32; X: Float32Ptr; {const} incX: SInt32; {const} beta: Float32; var Y: Float32; {const} incY: SInt32 ); external name '_cblas_ssbmv'; procedure cblas_sspmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float32; const (*var*) Ap: Float32; X: Float32Ptr; {const} incX: SInt32; {const} beta: Float32; var Y: Float32; {const} incY: SInt32 ); external name '_cblas_sspmv'; procedure cblas_sger( {const} Order: CBLAS_ORDER; {const} M: SInt32; {const} N: SInt32; {const} alpha: Float32; X: Float32Ptr; {const} incX: SInt32; Y: Float32Ptr; {const} incY: SInt32; var A: Float32; {const} lda: SInt32 ); external name '_cblas_sger'; procedure cblas_ssyr( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float32; X: Float32Ptr; {const} incX: SInt32; var A: Float32; {const} lda: SInt32 ); external name '_cblas_ssyr'; procedure cblas_sspr( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float32; X: Float32Ptr; {const} incX: SInt32; var Ap: Float32 ); external name '_cblas_sspr'; procedure cblas_ssyr2( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float32; X: Float32Ptr; {const} incX: SInt32; Y: Float32Ptr; {const} incY: SInt32; var A: Float32; {const} lda: SInt32 ); external name '_cblas_ssyr2'; procedure cblas_sspr2( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float32; X: Float32Ptr; {const} incX: SInt32; Y: Float32Ptr; {const} incY: SInt32; var A: Float32 ); external name '_cblas_sspr2'; procedure cblas_dsymv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float64; A: Float64Ptr; {const} lda: SInt32; X: Float64Ptr; {const} incX: SInt32; {const} beta: Float64; var Y: Float64; {const} incY: SInt32 ); external name '_cblas_dsymv'; procedure cblas_dsbmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} K: SInt32; {const} alpha: Float64; A: Float64Ptr; {const} lda: SInt32; X: Float64Ptr; {const} incX: SInt32; {const} beta: Float64; var Y: Float64; {const} incY: SInt32 ); external name '_cblas_dsbmv'; procedure cblas_dspmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float64; const (*var*) Ap: Float64; X: Float64Ptr; {const} incX: SInt32; {const} beta: Float64; var Y: Float64; {const} incY: SInt32 ); external name '_cblas_dspmv'; procedure cblas_dger( {const} Order: CBLAS_ORDER; {const} M: SInt32; {const} N: SInt32; {const} alpha: Float64; X: Float64Ptr; {const} incX: SInt32; Y: Float64Ptr; {const} incY: SInt32; var A: Float64; {const} lda: SInt32 ); external name '_cblas_dger'; procedure cblas_dsyr( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float64; X: Float64Ptr; {const} incX: SInt32; var A: Float64; {const} lda: SInt32 ); external name '_cblas_dsyr'; procedure cblas_dspr( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float64; X: Float64Ptr; {const} incX: SInt32; var Ap: Float64 ); external name '_cblas_dspr'; procedure cblas_dsyr2( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float64; X: Float64Ptr; {const} incX: SInt32; Y: Float64Ptr; {const} incY: SInt32; var A: Float64; {const} lda: SInt32 ); external name '_cblas_dsyr2'; procedure cblas_dspr2( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float64; X: Float64Ptr; {const} incX: SInt32; Y: Float64Ptr; {const} incY: SInt32; var A: Float64 ); external name '_cblas_dspr2'; { * Routines with C and Z prefixes only } procedure cblas_chemv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; X: {const} UnivPtr; {const} incX: SInt32; beta: {const} UnivPtr; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_chemv'; procedure cblas_chbmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} K: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; X: {const} UnivPtr; {const} incX: SInt32; beta: {const} UnivPtr; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_chbmv'; procedure cblas_chpmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; alpha: {const} UnivPtr; Ap: {const} UnivPtr; X: {const} UnivPtr; {const} incX: SInt32; beta: {const} UnivPtr; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_chpmv'; procedure cblas_cgeru( {const} Order: CBLAS_ORDER; {const} M: SInt32; {const} N: SInt32; alpha: {const} UnivPtr; X: {const} UnivPtr; {const} incX: SInt32; Y: {const} UnivPtr; {const} incY: SInt32; A: UnivPtr; {const} lda: SInt32 ); external name '_cblas_cgeru'; procedure cblas_cgerc( {const} Order: CBLAS_ORDER; {const} M: SInt32; {const} N: SInt32; alpha: {const} UnivPtr; X: {const} UnivPtr; {const} incX: SInt32; Y: {const} UnivPtr; {const} incY: SInt32; A: UnivPtr; {const} lda: SInt32 ); external name '_cblas_cgerc'; procedure cblas_cher( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float32; X: {const} UnivPtr; {const} incX: SInt32; A: UnivPtr; {const} lda: SInt32 ); external name '_cblas_cher'; procedure cblas_chpr( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float32; X: {const} UnivPtr; {const} incX: SInt32; A: UnivPtr ); external name '_cblas_chpr'; procedure cblas_cher2( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; alpha: {const} UnivPtr; X: {const} UnivPtr; {const} incX: SInt32; Y: {const} UnivPtr; {const} incY: SInt32; A: UnivPtr; {const} lda: SInt32 ); external name '_cblas_cher2'; procedure cblas_chpr2( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; alpha: {const} UnivPtr; X: {const} UnivPtr; {const} incX: SInt32; Y: {const} UnivPtr; {const} incY: SInt32; Ap: UnivPtr ); external name '_cblas_chpr2'; procedure cblas_zhemv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; X: {const} UnivPtr; {const} incX: SInt32; beta: {const} UnivPtr; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_zhemv'; procedure cblas_zhbmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} K: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; X: {const} UnivPtr; {const} incX: SInt32; beta: {const} UnivPtr; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_zhbmv'; procedure cblas_zhpmv( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; alpha: {const} UnivPtr; Ap: {const} UnivPtr; X: {const} UnivPtr; {const} incX: SInt32; beta: {const} UnivPtr; Y: UnivPtr; {const} incY: SInt32 ); external name '_cblas_zhpmv'; procedure cblas_zgeru( {const} Order: CBLAS_ORDER; {const} M: SInt32; {const} N: SInt32; alpha: {const} UnivPtr; X: {const} UnivPtr; {const} incX: SInt32; Y: {const} UnivPtr; {const} incY: SInt32; A: UnivPtr; {const} lda: SInt32 ); external name '_cblas_zgeru'; procedure cblas_zgerc( {const} Order: CBLAS_ORDER; {const} M: SInt32; {const} N: SInt32; alpha: {const} UnivPtr; X: {const} UnivPtr; {const} incX: SInt32; Y: {const} UnivPtr; {const} incY: SInt32; A: UnivPtr; {const} lda: SInt32 ); external name '_cblas_zgerc'; procedure cblas_zher( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float64; X: {const} UnivPtr; {const} incX: SInt32; A: UnivPtr; {const} lda: SInt32 ); external name '_cblas_zher'; procedure cblas_zhpr( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; {const} alpha: Float64; X: {const} UnivPtr; {const} incX: SInt32; A: UnivPtr ); external name '_cblas_zhpr'; procedure cblas_zher2( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; alpha: {const} UnivPtr; X: {const} UnivPtr; {const} incX: SInt32; Y: {const} UnivPtr; {const} incY: SInt32; A: UnivPtr; {const} lda: SInt32 ); external name '_cblas_zher2'; procedure cblas_zhpr2( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} N: SInt32; alpha: {const} UnivPtr; X: {const} UnivPtr; {const} incX: SInt32; Y: {const} UnivPtr; {const} incY: SInt32; Ap: UnivPtr ); external name '_cblas_zhpr2'; { * =========================================================================== * Prototypes for level 3 BLAS * =========================================================================== } { * Routines with standard 4 prefixes (S, D, C, Z) } procedure cblas_sgemm( {const} Order: CBLAS_ORDER; {const} TransA: CBLAS_TRANSPOSE; {const} TransB: CBLAS_TRANSPOSE; {const} M: SInt32; {const} N: SInt32; {const} K: SInt32; {const} alpha: Float32; A: Float32Ptr; {const} lda: SInt32; B: Float32Ptr; {const} ldb: SInt32; {const} beta: Float32; var C: Float32; {const} ldc: SInt32 ); external name '_cblas_sgemm'; procedure cblas_ssymm( {const} Order: CBLAS_ORDER; {const} Side: CBLAS_SIDE; {const} Uplo: CBLAS_UPLO; {const} M: SInt32; {const} N: SInt32; {const} alpha: Float32; A: Float32Ptr; {const} lda: SInt32; B: Float32Ptr; {const} ldb: SInt32; {const} beta: Float32; var C: Float32; {const} ldc: SInt32 ); external name '_cblas_ssymm'; procedure cblas_ssyrk( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} Trans: CBLAS_TRANSPOSE; {const} N: SInt32; {const} K: SInt32; {const} alpha: Float32; A: Float32Ptr; {const} lda: SInt32; {const} beta: Float32; var C: Float32; {const} ldc: SInt32 ); external name '_cblas_ssyrk'; procedure cblas_ssyr2k( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} Trans: CBLAS_TRANSPOSE; {const} N: SInt32; {const} K: SInt32; {const} alpha: Float32; A: Float32Ptr; {const} lda: SInt32; B: Float32Ptr; {const} ldb: SInt32; {const} beta: Float32; var C: Float32; {const} ldc: SInt32 ); external name '_cblas_ssyr2k'; procedure cblas_strmm( {const} Order: CBLAS_ORDER; {const} Side: CBLAS_SIDE; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} M: SInt32; {const} N: SInt32; {const} alpha: Float32; A: Float32Ptr; {const} lda: SInt32; var B: Float32; {const} ldb: SInt32 ); external name '_cblas_strmm'; procedure cblas_strsm( {const} Order: CBLAS_ORDER; {const} Side: CBLAS_SIDE; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} M: SInt32; {const} N: SInt32; {const} alpha: Float32; A: Float32Ptr; {const} lda: SInt32; var B: Float32; {const} ldb: SInt32 ); external name '_cblas_strsm'; procedure cblas_dgemm( {const} Order: CBLAS_ORDER; {const} TransA: CBLAS_TRANSPOSE; {const} TransB: CBLAS_TRANSPOSE; {const} M: SInt32; {const} N: SInt32; {const} K: SInt32; {const} alpha: Float64; A: Float64Ptr; {const} lda: SInt32; B: Float64Ptr; {const} ldb: SInt32; {const} beta: Float64; var C: Float64; {const} ldc: SInt32 ); external name '_cblas_dgemm'; procedure cblas_dsymm( {const} Order: CBLAS_ORDER; {const} Side: CBLAS_SIDE; {const} Uplo: CBLAS_UPLO; {const} M: SInt32; {const} N: SInt32; {const} alpha: Float64; A: Float64Ptr; {const} lda: SInt32; B: Float64Ptr; {const} ldb: SInt32; {const} beta: Float64; var C: Float64; {const} ldc: SInt32 ); external name '_cblas_dsymm'; procedure cblas_dsyrk( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} Trans: CBLAS_TRANSPOSE; {const} N: SInt32; {const} K: SInt32; {const} alpha: Float64; A: Float64Ptr; {const} lda: SInt32; {const} beta: Float64; var C: Float64; {const} ldc: SInt32 ); external name '_cblas_dsyrk'; procedure cblas_dsyr2k( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} Trans: CBLAS_TRANSPOSE; {const} N: SInt32; {const} K: SInt32; {const} alpha: Float64; A: Float64Ptr; {const} lda: SInt32; B: Float64Ptr; {const} ldb: SInt32; {const} beta: Float64; var C: Float64; {const} ldc: SInt32 ); external name '_cblas_dsyr2k'; procedure cblas_dtrmm( {const} Order: CBLAS_ORDER; {const} Side: CBLAS_SIDE; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} M: SInt32; {const} N: SInt32; {const} alpha: Float64; A: Float64Ptr; {const} lda: SInt32; var B: Float64; {const} ldb: SInt32 ); external name '_cblas_dtrmm'; procedure cblas_dtrsm( {const} Order: CBLAS_ORDER; {const} Side: CBLAS_SIDE; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} M: SInt32; {const} N: SInt32; {const} alpha: Float64; A: Float64Ptr; {const} lda: SInt32; var B: Float64; {const} ldb: SInt32 ); external name '_cblas_dtrsm'; procedure cblas_cgemm( {const} Order: CBLAS_ORDER; {const} TransA: CBLAS_TRANSPOSE; {const} TransB: CBLAS_TRANSPOSE; {const} M: SInt32; {const} N: SInt32; {const} K: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; B: {const} UnivPtr; {const} ldb: SInt32; beta: {const} UnivPtr; C: UnivPtr; {const} ldc: SInt32 ); external name '_cblas_cgemm'; procedure cblas_csymm( {const} Order: CBLAS_ORDER; {const} Side: CBLAS_SIDE; {const} Uplo: CBLAS_UPLO; {const} M: SInt32; {const} N: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; B: {const} UnivPtr; {const} ldb: SInt32; beta: {const} UnivPtr; C: UnivPtr; {const} ldc: SInt32 ); external name '_cblas_csymm'; procedure cblas_csyrk( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} Trans: CBLAS_TRANSPOSE; {const} N: SInt32; {const} K: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; beta: {const} UnivPtr; C: UnivPtr; {const} ldc: SInt32 ); external name '_cblas_csyrk'; procedure cblas_csyr2k( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} Trans: CBLAS_TRANSPOSE; {const} N: SInt32; {const} K: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; B: {const} UnivPtr; {const} ldb: SInt32; beta: {const} UnivPtr; C: UnivPtr; {const} ldc: SInt32 ); external name '_cblas_csyr2k'; procedure cblas_ctrmm( {const} Order: CBLAS_ORDER; {const} Side: CBLAS_SIDE; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} M: SInt32; {const} N: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; B: UnivPtr; {const} ldb: SInt32 ); external name '_cblas_ctrmm'; procedure cblas_ctrsm( {const} Order: CBLAS_ORDER; {const} Side: CBLAS_SIDE; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} M: SInt32; {const} N: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; B: UnivPtr; {const} ldb: SInt32 ); external name '_cblas_ctrsm'; procedure cblas_zgemm( {const} Order: CBLAS_ORDER; {const} TransA: CBLAS_TRANSPOSE; {const} TransB: CBLAS_TRANSPOSE; {const} M: SInt32; {const} N: SInt32; {const} K: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; B: {const} UnivPtr; {const} ldb: SInt32; beta: {const} UnivPtr; C: UnivPtr; {const} ldc: SInt32 ); external name '_cblas_zgemm'; procedure cblas_zsymm( {const} Order: CBLAS_ORDER; {const} Side: CBLAS_SIDE; {const} Uplo: CBLAS_UPLO; {const} M: SInt32; {const} N: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; B: {const} UnivPtr; {const} ldb: SInt32; beta: {const} UnivPtr; C: UnivPtr; {const} ldc: SInt32 ); external name '_cblas_zsymm'; procedure cblas_zsyrk( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} Trans: CBLAS_TRANSPOSE; {const} N: SInt32; {const} K: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; beta: {const} UnivPtr; C: UnivPtr; {const} ldc: SInt32 ); external name '_cblas_zsyrk'; procedure cblas_zsyr2k( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} Trans: CBLAS_TRANSPOSE; {const} N: SInt32; {const} K: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; B: {const} UnivPtr; {const} ldb: SInt32; beta: {const} UnivPtr; C: UnivPtr; {const} ldc: SInt32 ); external name '_cblas_zsyr2k'; procedure cblas_ztrmm( {const} Order: CBLAS_ORDER; {const} Side: CBLAS_SIDE; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} M: SInt32; {const} N: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; B: UnivPtr; {const} ldb: SInt32 ); external name '_cblas_ztrmm'; procedure cblas_ztrsm( {const} Order: CBLAS_ORDER; {const} Side: CBLAS_SIDE; {const} Uplo: CBLAS_UPLO; {const} TransA: CBLAS_TRANSPOSE; {const} Diag: CBLAS_DIAG; {const} M: SInt32; {const} N: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; B: UnivPtr; {const} ldb: SInt32 ); external name '_cblas_ztrsm'; { * Routines with prefixes C and Z only } procedure cblas_chemm( {const} Order: CBLAS_ORDER; {const} Side: CBLAS_SIDE; {const} Uplo: CBLAS_UPLO; {const} M: SInt32; {const} N: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; B: {const} UnivPtr; {const} ldb: SInt32; beta: {const} UnivPtr; C: UnivPtr; {const} ldc: SInt32 ); external name '_cblas_chemm'; procedure cblas_cherk( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} Trans: CBLAS_TRANSPOSE; {const} N: SInt32; {const} K: SInt32; {const} alpha: Float32; A: {const} UnivPtr; {const} lda: SInt32; {const} beta: Float32; C: UnivPtr; {const} ldc: SInt32 ); external name '_cblas_cherk'; procedure cblas_cher2k( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} Trans: CBLAS_TRANSPOSE; {const} N: SInt32; {const} K: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; B: {const} UnivPtr; {const} ldb: SInt32; {const} beta: Float32; C: UnivPtr; {const} ldc: SInt32 ); external name '_cblas_cher2k'; procedure cblas_zhemm( {const} Order: CBLAS_ORDER; {const} Side: CBLAS_SIDE; {const} Uplo: CBLAS_UPLO; {const} M: SInt32; {const} N: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; B: {const} UnivPtr; {const} ldb: SInt32; beta: {const} UnivPtr; C: UnivPtr; {const} ldc: SInt32 ); external name '_cblas_zhemm'; procedure cblas_zherk( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} Trans: CBLAS_TRANSPOSE; {const} N: SInt32; {const} K: SInt32; {const} alpha: Float64; A: {const} UnivPtr; {const} lda: SInt32; {const} beta: Float64; C: UnivPtr; {const} ldc: SInt32 ); external name '_cblas_zherk'; procedure cblas_zher2k( {const} Order: CBLAS_ORDER; {const} Uplo: CBLAS_UPLO; {const} Trans: CBLAS_TRANSPOSE; {const} N: SInt32; {const} K: SInt32; alpha: {const} UnivPtr; A: {const} UnivPtr; {const} lda: SInt32; B: {const} UnivPtr; {const} ldb: SInt32; {const} beta: Float64; C: UnivPtr; {const} ldc: SInt32 ); external name '_cblas_zher2k'; { Apple extensions follow. } { The level 3 BLAS may allocate a large (approximately 4Mb) buffer to hold intermediate operands and results. These intermediate quantities are organized in memory for efficient access and so contribute to optimal performance. By default, this buffer is retained across calls to the BLAS. This strategy has substantial advantages when the BLAS are executed repeatedly. Clients who wish to free this buffer and return the memory allocation to the malloc heap can call the following routine at any time. Note that subsequent calls to the level 3 BLAS may allocate this buffer again. } procedure ATLU_DestroyThreadMemory; external name '_ATLU_DestroyThreadMemory'; { ------------------------------------------------------------------------------------------------- The BLAS standard requires that parameter errors be reported and cause the program to terminate. The default behavior for the Mac OS implementation of the BLAS is to print a message in English to stdout using printf and call exit with EXIT_FAILURE as the status. If this is adequate, then you need do nothing more or worry about error handling. The BLAS standard also mentions a function, cblas_xerbla, suggesting that a program provide its own implementation to override the default error handling. This will not work in the shared library environment of Mac OS. Instead the Mac OS implementation provides a means to install an error handler. There can only be one active error handler, installing a new one causes any previous handler to be forgotten. Passing a null function pointer installs the default handler. The default handler is automatically installed at startup and implements the default behavior defined above. An error handler may return, it need not abort the program. If the error handler returns, the BLAS routine also returns immediately without performing any processing. Level 1 functions that return a numeric value return zero if the error handler returns. ------------------------------------------------------------------------------------------------- } type BLASParamErrorProc = procedure( funcName: ConstCStringPtr; paramName: ConstCStringPtr; (*const*) var paramPos: SInt32; (*const*) var paramValue: SInt32 ); procedure SetBLASParamErrorProc( ErrorProc: BLASParamErrorProc ); external name '_SetBLASParamErrorProc'; {$ifc not undefined TARGET_CPU_PPC or defined TARGET_CPU_PPC64} {$elsec} {$ifc not undefined TARGET_CPU_X86 or defined TARGET_CPU_X86_64} {$elsec} {$error Unknown architecture} {$endc} {$endc} {$ifc not undefined __VEC__ or defined __SSE__} (* { ------------------------------------------------------------------------------------------------- These routines provide optimized, SIMD-only support for common small matrix multiplications. They do not check for the availability of SIMD instructions or parameter errors. They just do the multiplication as fast as possible. Matrices are presumed to use row major storage. Because these are all square, column major matrices can be multiplied by simply reversing the parameters. ------------------------------------------------------------------------------------------------- } procedure vMultVecMat_4x4( ConstVectorFloat X[1]; ConstVectorFloat A[4][1]; VectorFloat Y[1] ); external name '_vMultVecMat_4x4'; procedure vMultMatVec_4x4( ConstVectorFloat A[4][1]; ConstVectorFloat X[1]; VectorFloat Y[1] ); external name '_vMultMatVec_4x4'; procedure vMultMatMat_4x4( ConstVectorFloat A[4][1]; ConstVectorFloat B[4][1]; VectorFloat C[4][1] ); external name '_vMultMatMat_4x4'; procedure vMultVecMat_8x8( ConstVectorFloat X[2]; ConstVectorFloat A[8][2]; VectorFloat Y[2] ); external name '_vMultVecMat_8x8'; procedure vMultMatVec_8x8( ConstVectorFloat A[8][2]; ConstVectorFloat X[2]; VectorFloat Y[2] ); external name '_vMultMatVec_8x8'; procedure vMultMatMat_8x8( ConstVectorFloat A[8][2]; ConstVectorFloat B[8][2]; VectorFloat C[8][2] ); external name '_vMultMatMat_8x8'; procedure vMultVecMat_16x16( ConstVectorFloat X[4]; ConstVectorFloat A[16][4]; VectorFloat Y[4] ); external name '_vMultVecMat_16x16'; procedure vMultMatVec_16x16( ConstVectorFloat A[16][4]; ConstVectorFloat X[4]; VectorFloat Y[4] ); external name '_vMultMatVec_16x16'; procedure vMultMatMat_16x16( ConstVectorFloat A[16][4]; ConstVectorFloat B[16][4]; VectorFloat C[16][4] ); external name '_vMultMatMat_16x16'; procedure vMultVecMat_32x32( ConstVectorFloat X[8]; ConstVectorFloat A[32][8]; VectorFloat Y[8] ); external name '_vMultVecMat_32x32'; procedure vMultMatVec_32x32( ConstVectorFloat A[32][8]; ConstVectorFloat X[8]; VectorFloat Y[8] ); external name '_vMultMatVec_32x32'; procedure vMultMatMat_32x32( ConstVectorFloat A[32][8]; ConstVectorFloat B[32][8]; VectorFloat C[32][8] ); external name '_vMultMatMat_32x32'; { ------------------------------------------------------------------------------------------------- These routines provide optimized support for common small matrix multiplications. They use the scalar floating point unit and have no dependancy on SIMD instructions. They are intended as complements to the AltiVec-only routines above. They do not check for parameter errors. They just do the multiplication as fast as possible. Matrices are presumed to use row major storage. Because these are all square, column major matrices can be multiplied by simply reversing the parameters. ------------------------------------------------------------------------------------------------- } procedure sMultVecMat_4x4( ConstVectorFloat X[1]; ConstVectorFloat A[4][1]; VectorFloat Y[1] ); external name '_sMultVecMat_4x4'; procedure sMultMatVec_4x4( ConstVectorFloat A[4][1]; ConstVectorFloat X[1]; VectorFloat Y[1] ); external name '_sMultMatVec_4x4'; procedure sMultMatMat_4x4( ConstVectorFloat A[4][1]; ConstVectorFloat B[4][1]; VectorFloat C[4][1] ); external name '_sMultMatMat_4x4'; procedure sMultVecMat_8x8( ConstVectorFloat X[2]; ConstVectorFloat A[8][2]; VectorFloat Y[2] ); external name '_sMultVecMat_8x8'; procedure sMultMatVec_8x8( ConstVectorFloat A[8][2]; ConstVectorFloat X[2]; VectorFloat Y[2] ); external name '_sMultMatVec_8x8'; procedure sMultMatMat_8x8( ConstVectorFloat A[8][2]; ConstVectorFloat B[8][2]; VectorFloat C[8][2] ); external name '_sMultMatMat_8x8'; procedure sMultVecMat_16x16( ConstVectorFloat X[4]; ConstVectorFloat A[16][4]; VectorFloat Y[4] ); external name '_sMultVecMat_16x16'; procedure sMultMatVec_16x16( ConstVectorFloat A[16][4]; ConstVectorFloat X[4]; VectorFloat Y[4] ); external name '_sMultMatVec_16x16'; procedure sMultMatMat_16x16( ConstVectorFloat A[16][4]; ConstVectorFloat B[16][4]; VectorFloat C[16][4] ); external name '_sMultMatMat_16x16'; procedure sMultVecMat_32x32( ConstVectorFloat X[8]; ConstVectorFloat A[32][8]; VectorFloat Y[8] ); external name '_sMultVecMat_32x32'; procedure sMultMatVec_32x32( ConstVectorFloat A[32][8]; ConstVectorFloat X[8]; VectorFloat Y[8] ); external name '_sMultMatVec_32x32'; procedure sMultMatMat_32x32( ConstVectorFloat A[32][8]; ConstVectorFloat B[32][8]; VectorFloat C[32][8] ); external name '_sMultMatMat_32x32'; procedure dMultVecMat_4x4( const double X[4]; const double A[4][4]; double Y[4] ); external name '_dMultVecMat_4x4'; procedure dMultMatVec_4x4( const double A[4][4]; const double X[4]; double Y[4] ); external name '_dMultMatVec_4x4'; procedure dMultMatMat_4x4( const double A[4][4]; const double B[4][4]; double C[4][4] ); external name '_dMultMatMat_4x4'; procedure dMultVecMat_8x8( const double X[8]; const double A[8][8]; double Y[8] ); external name '_dMultVecMat_8x8'; procedure dMultMatVec_8x8( const double A[8][8]; const double X[8]; double Y[8] ); external name '_dMultMatVec_8x8'; procedure dMultMatMat_8x8( const double A[8][8]; const double B[8][8]; double C[8][8] ); external name '_dMultMatMat_8x8'; procedure dMultVecMat_16x16( const double X[16]; const double A[16][16]; double Y[16] ); external name '_dMultVecMat_16x16'; procedure dMultMatVec_16x16( const double A[16][16]; const double X[16]; double Y[16] ); external name '_dMultMatVec_16x16'; procedure dMultMatMat_16x16( const double A[16][16]; const double B[16][16]; double C[16][16] ); external name '_dMultMatMat_16x16'; procedure dMultVecMat_32x32( const double X[32]; const double A[32][32]; double Y[32] ); external name '_dMultVecMat_32x32'; procedure dMultMatVec_32x32( const double A[32][32]; const double X[32]; double Y[32] ); external name '_dMultMatVec_32x32'; procedure dMultMatMat_32x32( const double A[32][32]; const double B[32][32]; double C[32][32] ); external name '_dMultMatMat_32x32'; *) {$endc} { defined(__VEC__) || defined(__SSE__)} {$endc} {TARGET_OS_MAC} {$ifc not defined MACOSALLINCLUDE or not MACOSALLINCLUDE} end. {$endc} {not MACOSALLINCLUDE}