/************************************************* * Perl-Compatible Regular Expressions * *************************************************/ /* PCRE is a library of functions to support regular expressions whose syntax and semantics are as close as possible to those of the Perl 5 language. Written by Philip Hazel Copyright (c) 1997-2010 University of Cambridge ----------------------------------------------------------------------------- Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the University of Cambridge nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ----------------------------------------------------------------------------- */ /* This module contains the external function pcre_study(), along with local supporting functions. */ #include "config.h" #include "pcre_internal.h" #define SET_BIT(c) start_bits[c/8] |= (1 << (c&7)) /* Returns from set_start_bits() */ enum { SSB_FAIL, SSB_DONE, SSB_CONTINUE }; /************************************************* * Find the minimum subject length for a group * *************************************************/ /* Scan a parenthesized group and compute the minimum length of subject that is needed to match it. This is a lower bound; it does not mean there is a string of that length that matches. In UTF8 mode, the result is in characters rather than bytes. Arguments: code pointer to start of group (the bracket) startcode pointer to start of the whole pattern options the compiling options Returns: the minimum length -1 if \C was encountered -2 internal error (missing capturing bracket) */ static int find_minlength(const uschar *code, const uschar *startcode, int options) { int length = -1; BOOL utf8 = (options & PCRE_UTF8) != 0; BOOL had_recurse = FALSE; register int branchlength = 0; register uschar *cc = (uschar *)code + 1 + LINK_SIZE; if (*code == OP_CBRA || *code == OP_SCBRA) cc += 2; /* Scan along the opcodes for this branch. If we get to the end of the branch, check the length against that of the other branches. */ for (;;) { int d, min; uschar *cs, *ce; register int op = *cc; switch (op) { case OP_COND: case OP_SCOND: /* If there is only one branch in a condition, the implied branch has zero length, so we don't add anything. This covers the DEFINE "condition" automatically. */ cs = cc + GET(cc, 1); if (*cs != OP_ALT) { cc = cs + 1 + LINK_SIZE; break; } /* Otherwise we can fall through and treat it the same as any other subpattern. */ case OP_CBRA: case OP_SCBRA: case OP_BRA: case OP_SBRA: case OP_ONCE: d = find_minlength(cc, startcode, options); if (d < 0) return d; branchlength += d; do cc += GET(cc, 1); while (*cc == OP_ALT); cc += 1 + LINK_SIZE; break; /* Reached end of a branch; if it's a ket it is the end of a nested call. If it's ALT it is an alternation in a nested call. If it is END it's the end of the outer call. All can be handled by the same code. */ case OP_ALT: case OP_KET: case OP_KETRMAX: case OP_KETRMIN: case OP_END: if (length < 0 || (!had_recurse && branchlength < length)) length = branchlength; if (*cc != OP_ALT) return length; cc += 1 + LINK_SIZE; branchlength = 0; had_recurse = FALSE; break; /* Skip over assertive subpatterns */ case OP_ASSERT: case OP_ASSERT_NOT: case OP_ASSERTBACK: case OP_ASSERTBACK_NOT: do cc += GET(cc, 1); while (*cc == OP_ALT); /* Fall through */ /* Skip over things that don't match chars */ case OP_REVERSE: case OP_CREF: case OP_NCREF: case OP_RREF: case OP_NRREF: case OP_DEF: case OP_OPT: case OP_CALLOUT: case OP_SOD: case OP_SOM: case OP_EOD: case OP_EODN: case OP_CIRC: case OP_DOLL: case OP_NOT_WORD_BOUNDARY: case OP_WORD_BOUNDARY: cc += _pcre_OP_lengths[*cc]; break; /* Skip over a subpattern that has a {0} or {0,x} quantifier */ case OP_BRAZERO: case OP_BRAMINZERO: case OP_SKIPZERO: cc += _pcre_OP_lengths[*cc]; do cc += GET(cc, 1); while (*cc == OP_ALT); cc += 1 + LINK_SIZE; break; /* Handle literal characters and + repetitions */ case OP_CHAR: case OP_CHARNC: case OP_NOT: case OP_PLUS: case OP_MINPLUS: case OP_POSPLUS: case OP_NOTPLUS: case OP_NOTMINPLUS: case OP_NOTPOSPLUS: branchlength++; cc += 2; #ifdef SUPPORT_UTF8 if (utf8 && cc[-1] >= 0xc0) cc += _pcre_utf8_table4[cc[-1] & 0x3f]; #endif break; case OP_TYPEPLUS: case OP_TYPEMINPLUS: case OP_TYPEPOSPLUS: branchlength++; cc += (cc[1] == OP_PROP || cc[1] == OP_NOTPROP)? 4 : 2; break; /* Handle exact repetitions. The count is already in characters, but we need to skip over a multibyte character in UTF8 mode. */ case OP_EXACT: case OP_NOTEXACT: branchlength += GET2(cc,1); cc += 4; #ifdef SUPPORT_UTF8 if (utf8 && cc[-1] >= 0xc0) cc += _pcre_utf8_table4[cc[-1] & 0x3f]; #endif break; case OP_TYPEEXACT: branchlength += GET2(cc,1); cc += (cc[3] == OP_PROP || cc[3] == OP_NOTPROP)? 6 : 4; break; /* Handle single-char non-literal matchers */ case OP_PROP: case OP_NOTPROP: cc += 2; /* Fall through */ case OP_NOT_DIGIT: case OP_DIGIT: case OP_NOT_WHITESPACE: case OP_WHITESPACE: case OP_NOT_WORDCHAR: case OP_WORDCHAR: case OP_ANY: case OP_ALLANY: case OP_EXTUNI: case OP_HSPACE: case OP_NOT_HSPACE: case OP_VSPACE: case OP_NOT_VSPACE: branchlength++; cc++; break; /* "Any newline" might match two characters */ case OP_ANYNL: branchlength += 2; cc++; break; /* The single-byte matcher means we can't proceed in UTF-8 mode */ case OP_ANYBYTE: #ifdef SUPPORT_UTF8 if (utf8) return -1; #endif branchlength++; cc++; break; /* For repeated character types, we have to test for \p and \P, which have an extra two bytes of parameters. */ case OP_TYPESTAR: case OP_TYPEMINSTAR: case OP_TYPEQUERY: case OP_TYPEMINQUERY: case OP_TYPEPOSSTAR: case OP_TYPEPOSQUERY: if (cc[1] == OP_PROP || cc[1] == OP_NOTPROP) cc += 2; cc += _pcre_OP_lengths[op]; break; case OP_TYPEUPTO: case OP_TYPEMINUPTO: case OP_TYPEPOSUPTO: if (cc[3] == OP_PROP || cc[3] == OP_NOTPROP) cc += 2; cc += _pcre_OP_lengths[op]; break; /* Check a class for variable quantification */ #ifdef SUPPORT_UTF8 case OP_XCLASS: cc += GET(cc, 1) - 33; /* Fall through */ #endif case OP_CLASS: case OP_NCLASS: cc += 33; switch (*cc) { case OP_CRPLUS: case OP_CRMINPLUS: branchlength++; /* Fall through */ case OP_CRSTAR: case OP_CRMINSTAR: case OP_CRQUERY: case OP_CRMINQUERY: cc++; break; case OP_CRRANGE: case OP_CRMINRANGE: branchlength += GET2(cc,1); cc += 5; break; default: branchlength++; break; } break; /* Backreferences and subroutine calls are treated in the same way: we find the minimum length for the subpattern. A recursion, however, causes an a flag to be set that causes the length of this branch to be ignored. The logic is that a recursion can only make sense if there is another alternation that stops the recursing. That will provide the minimum length (when no recursion happens). A backreference within the group that it is referencing behaves in the same way. If PCRE_JAVASCRIPT_COMPAT is set, a backreference to an unset bracket matches an empty string (by default it causes a matching failure), so in that case we must set the minimum length to zero. */ case OP_REF: if ((options & PCRE_JAVASCRIPT_COMPAT) == 0) { ce = cs = (uschar *)_pcre_find_bracket(startcode, utf8, GET2(cc, 1)); if (cs == NULL) return -2; do ce += GET(ce, 1); while (*ce == OP_ALT); if (cc > cs && cc < ce) { d = 0; had_recurse = TRUE; } else d = find_minlength(cs, startcode, options); } else d = 0; cc += 3; /* Handle repeated back references */ switch (*cc) { case OP_CRSTAR: case OP_CRMINSTAR: case OP_CRQUERY: case OP_CRMINQUERY: min = 0; cc++; break; case OP_CRRANGE: case OP_CRMINRANGE: min = GET2(cc, 1); cc += 5; break; default: min = 1; break; } branchlength += min * d; break; case OP_RECURSE: cs = ce = (uschar *)startcode + GET(cc, 1); if (cs == NULL) return -2; do ce += GET(ce, 1); while (*ce == OP_ALT); if (cc > cs && cc < ce) had_recurse = TRUE; else branchlength += find_minlength(cs, startcode, options); cc += 1 + LINK_SIZE; break; /* Anything else does not or need not match a character. We can get the item's length from the table, but for those that can match zero occurrences of a character, we must take special action for UTF-8 characters. */ case OP_UPTO: case OP_NOTUPTO: case OP_MINUPTO: case OP_NOTMINUPTO: case OP_POSUPTO: case OP_STAR: case OP_MINSTAR: case OP_NOTMINSTAR: case OP_POSSTAR: case OP_NOTPOSSTAR: case OP_QUERY: case OP_MINQUERY: case OP_NOTMINQUERY: case OP_POSQUERY: case OP_NOTPOSQUERY: cc += _pcre_OP_lengths[op]; #ifdef SUPPORT_UTF8 if (utf8 && cc[-1] >= 0xc0) cc += _pcre_utf8_table4[cc[-1] & 0x3f]; #endif break; /* Skip these, but we need to add in the name length. */ case OP_MARK: case OP_PRUNE_ARG: case OP_SKIP_ARG: cc += _pcre_OP_lengths[op] + cc[1]; break; case OP_THEN_ARG: cc += _pcre_OP_lengths[op] + cc[1+LINK_SIZE]; break; /* For the record, these are the opcodes that are matched by "default": OP_ACCEPT, OP_CLOSE, OP_COMMIT, OP_FAIL, OP_PRUNE, OP_SET_SOM, OP_SKIP, OP_THEN. */ default: cc += _pcre_OP_lengths[op]; break; } } /* Control never gets here */ } /************************************************* * Set a bit and maybe its alternate case * *************************************************/ /* Given a character, set its first byte's bit in the table, and also the corresponding bit for the other version of a letter if we are caseless. In UTF-8 mode, for characters greater than 127, we can only do the caseless thing when Unicode property support is available. Arguments: start_bits points to the bit map p points to the character caseless the caseless flag cd the block with char table pointers utf8 TRUE for UTF-8 mode Returns: pointer after the character */ static const uschar * set_table_bit(uschar *start_bits, const uschar *p, BOOL caseless, compile_data *cd, BOOL utf8) { unsigned int c = *p; SET_BIT(c); #ifdef SUPPORT_UTF8 if (utf8 && c > 127) { GETCHARINC(c, p); #ifdef SUPPORT_UCP if (caseless) { uschar buff[8]; c = UCD_OTHERCASE(c); (void)_pcre_ord2utf8(c, buff); SET_BIT(buff[0]); } #endif return p; } #endif /* Not UTF-8 mode, or character is less than 127. */ if (caseless && (cd->ctypes[c] & ctype_letter) != 0) SET_BIT(cd->fcc[c]); return p + 1; } /************************************************* * Set bits for a positive character type * *************************************************/ /* This function sets starting bits for a character type. In UTF-8 mode, we can only do a direct setting for bytes less than 128, as otherwise there can be confusion with bytes in the middle of UTF-8 characters. In a "traditional" environment, the tables will only recognize ASCII characters anyway, but in at least one Windows environment, some higher bytes bits were set in the tables. So we deal with that case by considering the UTF-8 encoding. Arguments: start_bits the starting bitmap cbit type the type of character wanted table_limit 32 for non-UTF-8; 16 for UTF-8 cd the block with char table pointers Returns: nothing */ static void set_type_bits(uschar *start_bits, int cbit_type, int table_limit, compile_data *cd) { register int c; for (c = 0; c < table_limit; c++) start_bits[c] |= cd->cbits[c+cbit_type]; if (table_limit == 32) return; for (c = 128; c < 256; c++) { if ((cd->cbits[c/8] & (1 << (c&7))) != 0) { uschar buff[8]; (void)_pcre_ord2utf8(c, buff); SET_BIT(buff[0]); } } } /************************************************* * Set bits for a negative character type * *************************************************/ /* This function sets starting bits for a negative character type such as \D. In UTF-8 mode, we can only do a direct setting for bytes less than 128, as otherwise there can be confusion with bytes in the middle of UTF-8 characters. Unlike in the positive case, where we can set appropriate starting bits for specific high-valued UTF-8 characters, in this case we have to set the bits for all high-valued characters. The lowest is 0xc2, but we overkill by starting at 0xc0 (192) for simplicity. Arguments: start_bits the starting bitmap cbit type the type of character wanted table_limit 32 for non-UTF-8; 16 for UTF-8 cd the block with char table pointers Returns: nothing */ static void set_nottype_bits(uschar *start_bits, int cbit_type, int table_limit, compile_data *cd) { register int c; for (c = 0; c < table_limit; c++) start_bits[c] |= ~cd->cbits[c+cbit_type]; if (table_limit != 32) for (c = 24; c < 32; c++) start_bits[c] = 0xff; } /************************************************* * Create bitmap of starting bytes * *************************************************/ /* This function scans a compiled unanchored expression recursively and attempts to build a bitmap of the set of possible starting bytes. As time goes by, we may be able to get more clever at doing this. The SSB_CONTINUE return is useful for parenthesized groups in patterns such as (a*)b where the group provides some optional starting bytes but scanning must continue at the outer level to find at least one mandatory byte. At the outermost level, this function fails unless the result is SSB_DONE. Arguments: code points to an expression start_bits points to a 32-byte table, initialized to 0 caseless the current state of the caseless flag utf8 TRUE if in UTF-8 mode cd the block with char table pointers Returns: SSB_FAIL => Failed to find any starting bytes SSB_DONE => Found mandatory starting bytes SSB_CONTINUE => Found optional starting bytes */ static int set_start_bits(const uschar *code, uschar *start_bits, BOOL caseless, BOOL utf8, compile_data *cd) { register int c; int yield = SSB_DONE; int table_limit = utf8? 16:32; #if 0 /* ========================================================================= */ /* The following comment and code was inserted in January 1999. In May 2006, when it was observed to cause compiler warnings about unused values, I took it out again. If anybody is still using OS/2, they will have to put it back manually. */ /* This next statement and the later reference to dummy are here in order to trick the optimizer of the IBM C compiler for OS/2 into generating correct code. Apparently IBM isn't going to fix the problem, and we would rather not disable optimization (in this module it actually makes a big difference, and the pcre module can use all the optimization it can get). */ volatile int dummy; /* ========================================================================= */ #endif do { const uschar *tcode = code + (((int)*code == OP_CBRA)? 3:1) + LINK_SIZE; BOOL try_next = TRUE; while (try_next) /* Loop for items in this branch */ { int rc; switch(*tcode) { /* Fail if we reach something we don't understand */ default: return SSB_FAIL; /* If we hit a bracket or a positive lookahead assertion, recurse to set bits from within the subpattern. If it can't find anything, we have to give up. If it finds some mandatory character(s), we are done for this branch. Otherwise, carry on scanning after the subpattern. */ case OP_BRA: case OP_SBRA: case OP_CBRA: case OP_SCBRA: case OP_ONCE: case OP_ASSERT: rc = set_start_bits(tcode, start_bits, caseless, utf8, cd); if (rc == SSB_FAIL) return SSB_FAIL; if (rc == SSB_DONE) try_next = FALSE; else { do tcode += GET(tcode, 1); while (*tcode == OP_ALT); tcode += 1 + LINK_SIZE; } break; /* If we hit ALT or KET, it means we haven't found anything mandatory in this branch, though we might have found something optional. For ALT, we continue with the next alternative, but we have to arrange that the final result from subpattern is SSB_CONTINUE rather than SSB_DONE. For KET, return SSB_CONTINUE: if this is the top level, that indicates failure, but after a nested subpattern, it causes scanning to continue. */ case OP_ALT: yield = SSB_CONTINUE; try_next = FALSE; break; case OP_KET: case OP_KETRMAX: case OP_KETRMIN: return SSB_CONTINUE; /* Skip over callout */ case OP_CALLOUT: tcode += 2 + 2*LINK_SIZE; break; /* Skip over lookbehind and negative lookahead assertions */ case OP_ASSERT_NOT: case OP_ASSERTBACK: case OP_ASSERTBACK_NOT: do tcode += GET(tcode, 1); while (*tcode == OP_ALT); tcode += 1 + LINK_SIZE; break; /* Skip over an option setting, changing the caseless flag */ case OP_OPT: caseless = (tcode[1] & PCRE_CASELESS) != 0; tcode += 2; break; /* BRAZERO does the bracket, but carries on. */ case OP_BRAZERO: case OP_BRAMINZERO: if (set_start_bits(++tcode, start_bits, caseless, utf8, cd) == SSB_FAIL) return SSB_FAIL; /* ========================================================================= See the comment at the head of this function concerning the next line, which was an old fudge for the benefit of OS/2. dummy = 1; ========================================================================= */ do tcode += GET(tcode,1); while (*tcode == OP_ALT); tcode += 1 + LINK_SIZE; break; /* SKIPZERO skips the bracket. */ case OP_SKIPZERO: tcode++; do tcode += GET(tcode,1); while (*tcode == OP_ALT); tcode += 1 + LINK_SIZE; break; /* Single-char * or ? sets the bit and tries the next item */ case OP_STAR: case OP_MINSTAR: case OP_POSSTAR: case OP_QUERY: case OP_MINQUERY: case OP_POSQUERY: tcode = set_table_bit(start_bits, tcode + 1, caseless, cd, utf8); break; /* Single-char upto sets the bit and tries the next */ case OP_UPTO: case OP_MINUPTO: case OP_POSUPTO: tcode = set_table_bit(start_bits, tcode + 3, caseless, cd, utf8); break; /* At least one single char sets the bit and stops */ case OP_EXACT: /* Fall through */ tcode += 2; case OP_CHAR: case OP_CHARNC: case OP_PLUS: case OP_MINPLUS: case OP_POSPLUS: (void)set_table_bit(start_bits, tcode + 1, caseless, cd, utf8); try_next = FALSE; break; /* Special spacing and line-terminating items. These recognize specific lists of characters. The difference between VSPACE and ANYNL is that the latter can match the two-character CRLF sequence, but that is not relevant for finding the first character, so their code here is identical. */ case OP_HSPACE: SET_BIT(0x09); SET_BIT(0x20); if (utf8) { SET_BIT(0xC2); /* For U+00A0 */ SET_BIT(0xE1); /* For U+1680, U+180E */ SET_BIT(0xE2); /* For U+2000 - U+200A, U+202F, U+205F */ SET_BIT(0xE3); /* For U+3000 */ } else SET_BIT(0xA0); try_next = FALSE; break; case OP_ANYNL: case OP_VSPACE: SET_BIT(0x0A); SET_BIT(0x0B); SET_BIT(0x0C); SET_BIT(0x0D); if (utf8) { SET_BIT(0xC2); /* For U+0085 */ SET_BIT(0xE2); /* For U+2028, U+2029 */ } else SET_BIT(0x85); try_next = FALSE; break; /* Single character types set the bits and stop. Note that if PCRE_UCP is set, we do not see these op codes because \d etc are converted to properties. Therefore, these apply in the case when only characters less than 256 are recognized to match the types. */ case OP_NOT_DIGIT: set_nottype_bits(start_bits, cbit_digit, table_limit, cd); try_next = FALSE; break; case OP_DIGIT: set_type_bits(start_bits, cbit_digit, table_limit, cd); try_next = FALSE; break; /* The cbit_space table has vertical tab as whitespace; we have to ensure it is set as not whitespace. */ case OP_NOT_WHITESPACE: set_nottype_bits(start_bits, cbit_space, table_limit, cd); start_bits[1] |= 0x08; try_next = FALSE; break; /* The cbit_space table has vertical tab as whitespace; we have to not set it from the table. */ case OP_WHITESPACE: c = start_bits[1]; /* Save in case it was already set */ set_type_bits(start_bits, cbit_space, table_limit, cd); start_bits[1] = (start_bits[1] & ~0x08) | c; try_next = FALSE; break; case OP_NOT_WORDCHAR: set_nottype_bits(start_bits, cbit_word, table_limit, cd); try_next = FALSE; break; case OP_WORDCHAR: set_type_bits(start_bits, cbit_word, table_limit, cd); try_next = FALSE; break; /* One or more character type fudges the pointer and restarts, knowing it will hit a single character type and stop there. */ case OP_TYPEPLUS: case OP_TYPEMINPLUS: case OP_TYPEPOSPLUS: tcode++; break; case OP_TYPEEXACT: tcode += 3; break; /* Zero or more repeats of character types set the bits and then try again. */ case OP_TYPEUPTO: case OP_TYPEMINUPTO: case OP_TYPEPOSUPTO: tcode += 2; /* Fall through */ case OP_TYPESTAR: case OP_TYPEMINSTAR: case OP_TYPEPOSSTAR: case OP_TYPEQUERY: case OP_TYPEMINQUERY: case OP_TYPEPOSQUERY: switch(tcode[1]) { default: case OP_ANY: case OP_ALLANY: return SSB_FAIL; case OP_HSPACE: SET_BIT(0x09); SET_BIT(0x20); if (utf8) { SET_BIT(0xC2); /* For U+00A0 */ SET_BIT(0xE1); /* For U+1680, U+180E */ SET_BIT(0xE2); /* For U+2000 - U+200A, U+202F, U+205F */ SET_BIT(0xE3); /* For U+3000 */ } else SET_BIT(0xA0); break; case OP_ANYNL: case OP_VSPACE: SET_BIT(0x0A); SET_BIT(0x0B); SET_BIT(0x0C); SET_BIT(0x0D); if (utf8) { SET_BIT(0xC2); /* For U+0085 */ SET_BIT(0xE2); /* For U+2028, U+2029 */ } else SET_BIT(0x85); break; case OP_NOT_DIGIT: set_nottype_bits(start_bits, cbit_digit, table_limit, cd); break; case OP_DIGIT: set_type_bits(start_bits, cbit_digit, table_limit, cd); break; /* The cbit_space table has vertical tab as whitespace; we have to ensure it gets set as not whitespace. */ case OP_NOT_WHITESPACE: set_nottype_bits(start_bits, cbit_space, table_limit, cd); start_bits[1] |= 0x08; break; /* The cbit_space table has vertical tab as whitespace; we have to avoid setting it. */ case OP_WHITESPACE: c = start_bits[1]; /* Save in case it was already set */ set_type_bits(start_bits, cbit_space, table_limit, cd); start_bits[1] = (start_bits[1] & ~0x08) | c; break; case OP_NOT_WORDCHAR: set_nottype_bits(start_bits, cbit_word, table_limit, cd); break; case OP_WORDCHAR: set_type_bits(start_bits, cbit_word, table_limit, cd); break; } tcode += 2; break; /* Character class where all the information is in a bit map: set the bits and either carry on or not, according to the repeat count. If it was a negative class, and we are operating with UTF-8 characters, any byte with a value >= 0xc4 is a potentially valid starter because it starts a character with a value > 255. */ case OP_NCLASS: #ifdef SUPPORT_UTF8 if (utf8) { start_bits[24] |= 0xf0; /* Bits for 0xc4 - 0xc8 */ memset(start_bits+25, 0xff, 7); /* Bits for 0xc9 - 0xff */ } #endif /* Fall through */ case OP_CLASS: { tcode++; /* In UTF-8 mode, the bits in a bit map correspond to character values, not to byte values. However, the bit map we are constructing is for byte values. So we have to do a conversion for characters whose value is > 127. In fact, there are only two possible starting bytes for characters in the range 128 - 255. */ #ifdef SUPPORT_UTF8 if (utf8) { for (c = 0; c < 16; c++) start_bits[c] |= tcode[c]; for (c = 128; c < 256; c++) { if ((tcode[c/8] && (1 << (c&7))) != 0) { int d = (c >> 6) | 0xc0; /* Set bit for this starter */ start_bits[d/8] |= (1 << (d&7)); /* and then skip on to the */ c = (c & 0xc0) + 0x40 - 1; /* next relevant character. */ } } } /* In non-UTF-8 mode, the two bit maps are completely compatible. */ else #endif { for (c = 0; c < 32; c++) start_bits[c] |= tcode[c]; } /* Advance past the bit map, and act on what follows */ tcode += 32; switch (*tcode) { case OP_CRSTAR: case OP_CRMINSTAR: case OP_CRQUERY: case OP_CRMINQUERY: tcode++; break; case OP_CRRANGE: case OP_CRMINRANGE: if (((tcode[1] << 8) + tcode[2]) == 0) tcode += 5; else try_next = FALSE; break; default: try_next = FALSE; break; } } break; /* End of bitmap class handling */ } /* End of switch */ } /* End of try_next loop */ code += GET(code, 1); /* Advance to next branch */ } while (*code == OP_ALT); return yield; } /************************************************* * Study a compiled expression * *************************************************/ /* This function is handed a compiled expression that it must study to produce information that will speed up the matching. It returns a pcre_extra block which then gets handed back to pcre_exec(). Arguments: re points to the compiled expression options contains option bits errorptr points to where to place error messages; set NULL unless error Returns: pointer to a pcre_extra block, with study_data filled in and the appropriate flags set; NULL on error or if no optimization possible */ PCRE_EXP_DEFN pcre_extra * PCRE_CALL_CONVENTION pcre_study(const pcre *external_re, int options, const char **errorptr) { int min; BOOL bits_set = FALSE; uschar start_bits[32]; pcre_extra *extra; pcre_study_data *study; const uschar *tables; uschar *code; compile_data compile_block; const real_pcre *re = (const real_pcre *)external_re; *errorptr = NULL; if (re == NULL || re->magic_number != MAGIC_NUMBER) { *errorptr = "argument is not a compiled regular expression"; return NULL; } if ((options & ~PUBLIC_STUDY_OPTIONS) != 0) { *errorptr = "unknown or incorrect option bit(s) set"; return NULL; } code = (uschar *)re + re->name_table_offset + (re->name_count * re->name_entry_size); /* For an anchored pattern, or an unanchored pattern that has a first char, or a multiline pattern that matches only at "line starts", there is no point in seeking a list of starting bytes. */ if ((re->options & PCRE_ANCHORED) == 0 && (re->flags & (PCRE_FIRSTSET|PCRE_STARTLINE)) == 0) { /* Set the character tables in the block that is passed around */ tables = re->tables; if (tables == NULL) (void)pcre_fullinfo(external_re, NULL, PCRE_INFO_DEFAULT_TABLES, (void *)(&tables)); compile_block.lcc = tables + lcc_offset; compile_block.fcc = tables + fcc_offset; compile_block.cbits = tables + cbits_offset; compile_block.ctypes = tables + ctypes_offset; /* See if we can find a fixed set of initial characters for the pattern. */ memset(start_bits, 0, 32 * sizeof(uschar)); bits_set = set_start_bits(code, start_bits, (re->options & PCRE_CASELESS) != 0, (re->options & PCRE_UTF8) != 0, &compile_block) == SSB_DONE; } /* Find the minimum length of subject string. */ min = find_minlength(code, code, re->options); /* Return NULL if no optimization is possible. */ if (!bits_set && min < 0) return NULL; /* Get a pcre_extra block and a pcre_study_data block. The study data is put in the latter, which is pointed to by the former, which may also get additional data set later by the calling program. At the moment, the size of pcre_study_data is fixed. We nevertheless save it in a field for returning via the pcre_fullinfo() function so that if it becomes variable in the future, we don't have to change that code. */ extra = (pcre_extra *)(pcre_malloc) (sizeof(pcre_extra) + sizeof(pcre_study_data)); if (extra == NULL) { *errorptr = "failed to get memory"; return NULL; } study = (pcre_study_data *)((char *)extra + sizeof(pcre_extra)); extra->flags = PCRE_EXTRA_STUDY_DATA; extra->study_data = study; study->size = sizeof(pcre_study_data); study->flags = 0; if (bits_set) { study->flags |= PCRE_STUDY_MAPPED; memcpy(study->start_bits, start_bits, sizeof(start_bits)); } if (min >= 0) { study->flags |= PCRE_STUDY_MINLEN; study->minlength = min; } return extra; } /* End of pcre_study.c */