1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
|
/* $Revision: 42342 $ */
/** @file
* IPRT - Ring-0 Memory Objects, Linux.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#include "the-linux-kernel.h"
#include <iprt/memobj.h>
#include <iprt/alloc.h>
#include <iprt/assert.h>
#include <iprt/log.h>
#include <iprt/string.h>
#include <iprt/process.h>
#include "internal/memobj.h"
/* early 2.6 kernels */
#ifndef PAGE_SHARED_EXEC
# define PAGE_SHARED_EXEC PAGE_SHARED
#endif
#ifndef PAGE_READONLY_EXEC
# define PAGE_READONLY_EXEC PAGE_READONLY
#endif
/*******************************************************************************
* Structures and Typedefs *
*******************************************************************************/
/**
* The Darwin version of the memory object structure.
*/
typedef struct RTR0MEMOBJLNX
{
/** The core structure. */
RTR0MEMOBJINTERNAL Core;
/** Set if the allocation is contiguous.
* This means it has to be given back as one chunk. */
bool fContiguous;
/** Set if we've vmap'ed thed memory into ring-0. */
bool fMappedToRing0;
/** The pages in the apPages array. */
size_t cPages;
/** Array of struct page pointers. (variable size) */
struct page *apPages[1];
} RTR0MEMOBJLNX, *PRTR0MEMOBJLNX;
/**
* Helper that converts from a RTR0PROCESS handle to a linux task.
*
* @returns The corresponding Linux task.
* @param R0Process IPRT ring-0 process handle.
*/
struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
{
/** @todo fix rtR0ProcessToLinuxTask!! */
return R0Process == RTR0ProcHandleSelf() ? current : NULL;
}
/**
* Compute order. Some functions allocate 2^order pages.
*
* @returns order.
* @param cPages Number of pages.
*/
static int rtR0MemObjLinuxOrder(size_t cPages)
{
int iOrder;
size_t cTmp;
for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
;
if (cPages & ~((size_t)1 << iOrder))
++iOrder;
return iOrder;
}
/**
* Converts from RTMEM_PROT_* to Linux PAGE_*.
*
* @returns Linux page protection constant.
* @param fProt The IPRT protection mask.
* @param fKernel Whether it applies to kernel or user space.
*/
static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
{
switch (fProt)
{
default:
AssertMsgFailed(("%#x %d\n", fProt, fKernel));
case RTMEM_PROT_NONE:
return PAGE_NONE;
case RTMEM_PROT_READ:
return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
case RTMEM_PROT_WRITE:
case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
return fKernel ? PAGE_KERNEL : PAGE_SHARED;
case RTMEM_PROT_EXEC:
case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
if (fKernel)
{
pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
pgprot_val(fPg) &= ~_PAGE_RW;
return fPg;
}
return PAGE_READONLY_EXEC;
#else
return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
#endif
case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
}
}
/**
* Internal worker that allocates physical pages and creates the memory object for them.
*
* @returns IPRT status code.
* @param ppMemLnx Where to store the memory object pointer.
* @param enmType The object type.
* @param cb The number of bytes to allocate.
* @param fFlagsLnx The page allocation flags (GPFs).
* @param fContiguous Whether the allocation must be contiguous.
*/
static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb, unsigned fFlagsLnx, bool fContiguous)
{
size_t iPage;
size_t cPages = cb >> PAGE_SHIFT;
struct page *paPages;
/*
* Allocate a memory object structure that's large enough to contain
* the page pointer array.
*/
PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb);
if (!pMemLnx)
return VERR_NO_MEMORY;
pMemLnx->cPages = cPages;
/*
* Allocate the pages.
* For small allocations we'll try contiguous first and then fall back on page by page.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
if ( fContiguous
|| cb <= PAGE_SIZE * 2)
{
#ifdef VBOX_USE_INSERT_PAGE
paPages = alloc_pages(fFlagsLnx | __GFP_COMP, rtR0MemObjLinuxOrder(cb >> PAGE_SHIFT));
#else
paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cb >> PAGE_SHIFT));
#endif
if (paPages)
{
fContiguous = true;
for (iPage = 0; iPage < cPages; iPage++)
pMemLnx->apPages[iPage] = &paPages[iPage];
}
else if (fContiguous)
{
rtR0MemObjDelete(&pMemLnx->Core);
return VERR_NO_MEMORY;
}
}
if (!fContiguous)
{
for (iPage = 0; iPage < cPages; iPage++)
{
pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx);
if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
{
while (iPage-- > 0)
__free_page(pMemLnx->apPages[iPage]);
rtR0MemObjDelete(&pMemLnx->Core);
return VERR_NO_MEMORY;
}
}
}
#else /* < 2.4.22 */
/** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cb >> PAGE_SHIFT));
if (!paPages)
{
rtR0MemObjDelete(&pMemLnx->Core);
return VERR_NO_MEMORY;
}
for (iPage = 0; iPage < cPages; iPage++)
{
pMemLnx->apPages[iPage] = &paPages[iPage];
MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
if (PageHighMem(pMemLnx->apPages[iPage]))
BUG();
}
fContiguous = true;
#endif /* < 2.4.22 */
pMemLnx->fContiguous = fContiguous;
/*
* Reserve the pages.
*/
for (iPage = 0; iPage < cPages; iPage++)
SetPageReserved(pMemLnx->apPages[iPage]);
*ppMemLnx = pMemLnx;
return VINF_SUCCESS;
}
/**
* Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
*
* This method does NOT free the object.
*
* @param pMemLnx The object which physical pages should be freed.
*/
static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
{
size_t iPage = pMemLnx->cPages;
if (iPage > 0)
{
/*
* Restore the page flags.
*/
while (iPage-- > 0)
{
ClearPageReserved(pMemLnx->apPages[iPage]);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
#else
MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
#endif
}
/*
* Free the pages.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
if (!pMemLnx->fContiguous)
{
iPage = pMemLnx->cPages;
while (iPage-- > 0)
__free_page(pMemLnx->apPages[iPage]);
}
else
#endif
__free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
pMemLnx->cPages = 0;
}
}
/**
* Maps the allocation into ring-0.
*
* This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
*
* Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
* space, so we'll use that mapping if possible. If execute access is required, we'll
* play safe and do our own mapping.
*
* @returns IPRT status code.
* @param pMemLnx The linux memory object to map.
* @param fExecutable Whether execute access is required.
*/
static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
{
int rc = VINF_SUCCESS;
/*
* Choose mapping strategy.
*/
bool fMustMap = fExecutable
|| !pMemLnx->fContiguous;
if (!fMustMap)
{
size_t iPage = pMemLnx->cPages;
while (iPage-- > 0)
if (PageHighMem(pMemLnx->apPages[iPage]))
{
fMustMap = true;
break;
}
}
Assert(!pMemLnx->Core.pv);
Assert(!pMemLnx->fMappedToRing0);
if (fMustMap)
{
/*
* Use vmap - 2.4.22 and later.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
pgprot_t fPg;
pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
# ifdef _PAGE_NX
if (!fExecutable)
pgprot_val(fPg) |= _PAGE_NX;
# endif
# ifdef VM_MAP
pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
# else
pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
# endif
if (pMemLnx->Core.pv)
pMemLnx->fMappedToRing0 = true;
else
rc = VERR_MAP_FAILED;
#else /* < 2.4.22 */
rc = VERR_NOT_SUPPORTED;
#endif
}
else
{
/*
* Use the kernel RAM mapping.
*/
pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
Assert(pMemLnx->Core.pv);
}
return rc;
}
/**
* Undos what rtR0MemObjLinuxVMap() did.
*
* @param pMemLnx The linux memory object.
*/
static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
if (pMemLnx->fMappedToRing0)
{
Assert(pMemLnx->Core.pv);
vunmap(pMemLnx->Core.pv);
pMemLnx->fMappedToRing0 = false;
}
#else /* < 2.4.22 */
Assert(!pMemLnx->fMappedToRing0);
#endif
pMemLnx->Core.pv = NULL;
}
int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
{
PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
/*
* Release any memory that we've allocated or locked.
*/
switch (pMemLnx->Core.enmType)
{
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_PAGE:
case RTR0MEMOBJTYPE_CONT:
case RTR0MEMOBJTYPE_PHYS:
case RTR0MEMOBJTYPE_PHYS_NC:
rtR0MemObjLinuxVUnmap(pMemLnx);
rtR0MemObjLinuxFreePages(pMemLnx);
break;
case RTR0MEMOBJTYPE_LOCK:
if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
{
size_t iPage;
struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
Assert(pTask);
if (pTask && pTask->mm)
down_read(&pTask->mm->mmap_sem);
iPage = pMemLnx->cPages;
while (iPage-- > 0)
{
if (!PageReserved(pMemLnx->apPages[iPage]))
SetPageDirty(pMemLnx->apPages[iPage]);
page_cache_release(pMemLnx->apPages[iPage]);
}
if (pTask && pTask->mm)
up_read(&pTask->mm->mmap_sem);
}
else
AssertFailed(); /* not implemented for R0 */
break;
case RTR0MEMOBJTYPE_RES_VIRT:
Assert(pMemLnx->Core.pv);
if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
{
struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
Assert(pTask);
if (pTask && pTask->mm)
{
down_write(&pTask->mm->mmap_sem);
MY_DO_MUNMAP(pTask->mm, (unsigned long)pMemLnx->Core.pv, pMemLnx->Core.cb);
up_write(&pTask->mm->mmap_sem);
}
}
else
{
vunmap(pMemLnx->Core.pv);
Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
__free_page(pMemLnx->apPages[0]);
pMemLnx->apPages[0] = NULL;
pMemLnx->cPages = 0;
}
pMemLnx->Core.pv = NULL;
break;
case RTR0MEMOBJTYPE_MAPPING:
Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
{
struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
Assert(pTask);
if (pTask && pTask->mm)
{
down_write(&pTask->mm->mmap_sem);
MY_DO_MUNMAP(pTask->mm, (unsigned long)pMemLnx->Core.pv, pMemLnx->Core.cb);
up_write(&pTask->mm->mmap_sem);
}
}
else
vunmap(pMemLnx->Core.pv);
pMemLnx->Core.pv = NULL;
break;
default:
AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
return VERR_INTERNAL_ERROR;
}
return VINF_SUCCESS;
}
int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
PRTR0MEMOBJLNX pMemLnx;
int rc;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, GFP_HIGHUSER, false /* non-contiguous */);
#else
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, GFP_USER, false /* non-contiguous */);
#endif
if (RT_SUCCESS(rc))
{
rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
if (RT_SUCCESS(rc))
{
*ppMem = &pMemLnx->Core;
return rc;
}
rtR0MemObjLinuxFreePages(pMemLnx);
rtR0MemObjDelete(&pMemLnx->Core);
}
return rc;
}
int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
PRTR0MEMOBJLNX pMemLnx;
int rc;
#ifdef RT_ARCH_AMD64
# ifdef GFP_DMA32
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, GFP_DMA32, false /* non-contiguous */);
if (RT_FAILURE(rc))
# endif
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, GFP_DMA, false /* non-contiguous */);
#else
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, GFP_USER, false /* non-contiguous */);
#endif
if (RT_SUCCESS(rc))
{
rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
if (RT_SUCCESS(rc))
{
*ppMem = &pMemLnx->Core;
return rc;
}
rtR0MemObjLinuxFreePages(pMemLnx);
rtR0MemObjDelete(&pMemLnx->Core);
}
return rc;
}
int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
PRTR0MEMOBJLNX pMemLnx;
int rc;
#ifdef RT_ARCH_AMD64
# ifdef GFP_DMA32
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, GFP_DMA32, true /* contiguous */);
if (RT_FAILURE(rc))
# endif
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, GFP_DMA, true /* contiguous */);
#else
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, GFP_USER, true /* contiguous */);
#endif
if (RT_SUCCESS(rc))
{
rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
if (RT_SUCCESS(rc))
{
#if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
size_t iPage = pMemLnx->cPages;
while (iPage-- > 0)
Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
#endif
pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
*ppMem = &pMemLnx->Core;
return rc;
}
rtR0MemObjLinuxFreePages(pMemLnx);
rtR0MemObjDelete(&pMemLnx->Core);
}
return rc;
}
/**
* Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
*
* @returns IPRT status.
* @param ppMemLnx Where to
* @param enmType The object type.
* @param cb The size of the allocation.
* @param PhysHighest See rtR0MemObjNativeAllocPhys.
* @param fGfp The Linux GFP flags to use for the allocation.
*/
static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType, size_t cb, RTHCPHYS PhysHighest, unsigned fGfp)
{
PRTR0MEMOBJLNX pMemLnx;
int rc;
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, fGfp,
enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */);
if (RT_FAILURE(rc))
return rc;
/*
* Check the addresses if necessary. (Can be optimized a bit for PHYS.)
*/
if (PhysHighest != NIL_RTHCPHYS)
{
size_t iPage = pMemLnx->cPages;
while (iPage-- > 0)
if (page_to_phys(pMemLnx->apPages[iPage]) >= PhysHighest)
{
rtR0MemObjLinuxFreePages(pMemLnx);
rtR0MemObjDelete(&pMemLnx->Core);
return VERR_NO_MEMORY;
}
}
/*
* Complete the object.
*/
if (enmType == RTR0MEMOBJTYPE_PHYS)
{
pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
pMemLnx->Core.u.Phys.fAllocated = true;
}
*ppMem = &pMemLnx->Core;
return rc;
}
/**
* Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
*
* @returns IPRT status.
* @param ppMem Where to store the memory object pointer on success.
* @param enmType The object type.
* @param cb The size of the allocation.
* @param PhysHighest See rtR0MemObjNativeAllocPhys.
*/
static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType, size_t cb, RTHCPHYS PhysHighest)
{
int rc;
/*
* There are two clear cases and that's the <=16MB and anything-goes ones.
* When the physical address limit is somewhere inbetween those two we'll
* just have to try, starting with HIGHUSER and working our way thru the
* different types, hoping we'll get lucky.
*
* We should probably move this physical address restriction logic up to
* the page alloc function as it would be more efficient there. But since
* we don't expect this to be a performance issue just yet it can wait.
*/
if (PhysHighest == NIL_RTHCPHYS)
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_HIGHUSER);
else if (PhysHighest <= _1M * 16)
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_DMA);
else
{
rc = VERR_NO_MEMORY;
if (RT_FAILURE(rc))
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_HIGHUSER);
if (RT_FAILURE(rc))
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_USER);
#ifdef GFP_DMA32
if (RT_FAILURE(rc))
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_DMA32);
#endif
if (RT_FAILURE(rc))
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, PhysHighest, GFP_DMA);
}
return rc;
}
int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
{
return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, PhysHighest);
}
int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
{
return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PhysHighest);
}
int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb)
{
/*
* All we need to do here is to validate that we can use
* ioremap on the specified address (32/64-bit dma_addr_t).
*/
PRTR0MEMOBJLNX pMemLnx;
dma_addr_t PhysAddr = Phys;
AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb);
if (!pMemLnx)
return VERR_NO_MEMORY;
pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
pMemLnx->Core.u.Phys.fAllocated = false;
Assert(!pMemLnx->cPages);
*ppMem = &pMemLnx->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, RTR0PROCESS R0Process)
{
const int cPages = cb >> PAGE_SHIFT;
struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
struct vm_area_struct **papVMAs;
PRTR0MEMOBJLNX pMemLnx;
int rc = VERR_NO_MEMORY;
/*
* Check for valid task and size overflows.
*/
if (!pTask)
return VERR_NOT_SUPPORTED;
if (((size_t)cPages << PAGE_SHIFT) != cb)
return VERR_OUT_OF_RANGE;
/*
* Allocate the memory object and a temporary buffer for the VMAs.
*/
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
if (!pMemLnx)
return VERR_NO_MEMORY;
papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
if (papVMAs)
{
down_read(&pTask->mm->mmap_sem);
/*
* Get user pages.
*/
rc = get_user_pages(pTask, /* Task for fault acounting. */
pTask->mm, /* Whose pages. */
R3Ptr, /* Where from. */
cPages, /* How many pages. */
1, /* Write to memory. */
0, /* force. */
&pMemLnx->apPages[0], /* Page array. */
papVMAs); /* vmas */
if (rc == cPages)
{
/*
* Flush dcache (required?), protect against fork and _really_ pin the page
* table entries. get_user_pages() will protect against swapping out the
* pages but it will NOT protect against removing page table entries. This
* can be achieved with
* - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
* an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
* Usual Linux distributions support only a limited size of locked pages
* (e.g. 32KB).
* - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
* or by
* - setting the VM_LOCKED flag. This is the same as doing mlock() without
* a range check.
*/
/** @todo The Linux fork() protection will require more work if this API
* is to be used for anything but locking VM pages. */
while (rc-- > 0)
{
flush_dcache_page(pMemLnx->apPages[rc]);
papVMAs[rc]->vm_flags |= (VM_DONTCOPY | VM_LOCKED);
}
up_read(&pTask->mm->mmap_sem);
RTMemFree(papVMAs);
pMemLnx->Core.u.Lock.R0Process = R0Process;
pMemLnx->cPages = cPages;
Assert(!pMemLnx->fMappedToRing0);
*ppMem = &pMemLnx->Core;
return VINF_SUCCESS;
}
/*
* Failed - we need to unlock any pages that we succeeded to lock.
*/
while (rc-- > 0)
{
if (!PageReserved(pMemLnx->apPages[rc]))
SetPageDirty(pMemLnx->apPages[rc]);
page_cache_release(pMemLnx->apPages[rc]);
}
up_read(&pTask->mm->mmap_sem);
RTMemFree(papVMAs);
rc = VERR_LOCK_FAILED;
}
rtR0MemObjDelete(&pMemLnx->Core);
return rc;
}
int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb)
{
/* What is there to lock? Should/Can we fake this? */
return VERR_NOT_SUPPORTED;
}
int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
const size_t cPages = cb >> PAGE_SHIFT;
struct page *pDummyPage;
struct page **papPages;
/* check for unsupported stuff. */
AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
AssertMsgReturn(uAlignment <= PAGE_SIZE, ("%#x\n", uAlignment), VERR_NOT_SUPPORTED);
/*
* Allocate a dummy page and create a page pointer array for vmap such that
* the dummy page is mapped all over the reserved area.
*/
pDummyPage = alloc_page(GFP_HIGHUSER);
if (!pDummyPage)
return VERR_NO_MEMORY;
papPages = RTMemAlloc(sizeof(*papPages) * cPages);
if (papPages)
{
void *pv;
size_t iPage = cPages;
while (iPage-- > 0)
papPages[iPage] = pDummyPage;
# ifdef VM_MAP
pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
# else
pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
# endif
RTMemFree(papPages);
if (pv)
{
PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
if (pMemLnx)
{
pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
pMemLnx->cPages = 1;
pMemLnx->apPages[0] = pDummyPage;
*ppMem = &pMemLnx->Core;
return VINF_SUCCESS;
}
vunmap(pv);
}
}
__free_page(pDummyPage);
return VERR_NO_MEMORY;
#else /* < 2.4.22 */
/*
* Could probably use ioremap here, but the caller is in a better position than us
* to select some safe physical memory.
*/
return VERR_NOT_SUPPORTED;
#endif
}
/**
* Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
* an empty user space mapping.
*
* The caller takes care of acquiring the mmap_sem of the task.
*
* @returns Pointer to the mapping.
* (void *)-1 on failure.
* @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
* @param cb The size of the mapping.
* @param uAlignment The alignment of the mapping.
* @param pTask The Linux task to create this mapping in.
* @param fProt The RTMEM_PROT_* mask.
*/
static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
{
unsigned fLnxProt;
unsigned long ulAddr;
/*
* Convert from IPRT protection to mman.h PROT_ and call do_mmap.
*/
fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
if (fProt == RTMEM_PROT_NONE)
fLnxProt = PROT_NONE;
else
{
fLnxProt = 0;
if (fProt & RTMEM_PROT_READ)
fLnxProt |= PROT_READ;
if (fProt & RTMEM_PROT_WRITE)
fLnxProt |= PROT_WRITE;
if (fProt & RTMEM_PROT_EXEC)
fLnxProt |= PROT_EXEC;
}
if (R3PtrFixed != (RTR3PTR)-1)
ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
else
{
ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
if ( !(ulAddr & ~PAGE_MASK)
&& (ulAddr & (uAlignment - 1)))
{
/** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
* up alignment gaps. This is of course complicated by fragmentation (which we might have cause
* ourselves) and further by there begin two mmap strategies (top / bottom). */
/* For now, just ignore uAlignment requirements... */
}
}
if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
return (void *)-1;
return (void *)ulAddr;
}
int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
{
PRTR0MEMOBJLNX pMemLnx;
void *pv;
struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
if (!pTask)
return VERR_NOT_SUPPORTED;
/*
* Let rtR0MemObjLinuxDoMmap do the difficult bits.
*/
down_write(&pTask->mm->mmap_sem);
pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
up_write(&pTask->mm->mmap_sem);
if (pv == (void *)-1)
return VERR_NO_MEMORY;
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
if (!pMemLnx)
{
down_write(&pTask->mm->mmap_sem);
MY_DO_MUNMAP(pTask->mm, (unsigned long)pv, cb);
up_write(&pTask->mm->mmap_sem);
return VERR_NO_MEMORY;
}
pMemLnx->Core.u.ResVirt.R0Process = R0Process;
*ppMem = &pMemLnx->Core;
return VINF_SUCCESS;
}
int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
unsigned fProt, size_t offSub, size_t cbSub)
{
int rc = VERR_NO_MEMORY;
PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
PRTR0MEMOBJLNX pMemLnx;
/* Fail if requested to do something we can't. */
AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
AssertMsgReturn(uAlignment <= PAGE_SIZE, ("%#x\n", uAlignment), VERR_NOT_SUPPORTED);
/*
* Create the IPRT memory object.
*/
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
if (pMemLnx)
{
if (pMemLnxToMap->cPages)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
/*
* Use vmap - 2.4.22 and later.
*/
pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
# ifdef VM_MAP
pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_MAP, fPg);
# else
pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_ALLOC, fPg);
# endif
if (pMemLnx->Core.pv)
{
pMemLnx->fMappedToRing0 = true;
rc = VINF_SUCCESS;
}
else
rc = VERR_MAP_FAILED;
#else /* < 2.4.22 */
/*
* Only option here is to share mappings if possible and forget about fProt.
*/
if (rtR0MemObjIsRing3(pMemToMap))
rc = VERR_NOT_SUPPORTED;
else
{
rc = VINF_SUCCESS;
if (!pMemLnxToMap->Core.pv)
rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
if (RT_SUCCESS(rc))
{
Assert(pMemLnxToMap->Core.pv);
pMemLnx->Core.pv = pMemLnxToMap->Core.pv;
}
}
#endif
}
else
{
/*
* MMIO / physical memory.
*/
Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
pMemLnx->Core.pv = ioremap(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb);
if (pMemLnx->Core.pv)
{
/** @todo fix protection. */
rc = VINF_SUCCESS;
}
}
if (RT_SUCCESS(rc))
{
pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
*ppMem = &pMemLnx->Core;
return VINF_SUCCESS;
}
rtR0MemObjDelete(&pMemLnx->Core);
}
return rc;
}
int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
{
struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
int rc = VERR_NO_MEMORY;
PRTR0MEMOBJLNX pMemLnx;
/*
* Check for restrictions.
*/
if (!pTask)
return VERR_NOT_SUPPORTED;
/*
* Create the IPRT memory object.
*/
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
if (pMemLnx)
{
/*
* Allocate user space mapping.
*/
void *pv;
down_write(&pTask->mm->mmap_sem);
pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, pMemLnxToMap->Core.cb, uAlignment, pTask, fProt);
if (pv != (void *)-1)
{
/*
* Map page by page into the mmap area.
* This is generic, paranoid and not very efficient.
*/
pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
unsigned long ulAddrCur = (unsigned long)pv;
const size_t cPages = pMemLnxToMap->Core.cb >> PAGE_SHIFT;
size_t iPage;
rc = 0;
if (pMemLnxToMap->cPages)
{
for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
#endif
#if defined(VBOX_USE_INSERT_PAGE) && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22)
rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
vma->vm_flags |= VM_RESERVED; /* This flag helps making 100% sure some bad stuff wont happen (swap, core, ++). */
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
rc = remap_page_range(vma, ulAddrCur, page_to_phys(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
#else /* 2.4 */
rc = remap_page_range(ulAddrCur, page_to_phys(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
#endif
if (rc)
break;
}
}
else
{
RTHCPHYS Phys;
if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
Phys = pMemLnxToMap->Core.u.Cont.Phys;
else
{
AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
Phys = NIL_RTHCPHYS;
}
if (Phys != NIL_RTHCPHYS)
{
for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
#else /* 2.4 */
rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
#endif
if (rc)
break;
}
}
}
if (!rc)
{
up_write(&pTask->mm->mmap_sem);
pMemLnx->Core.pv = pv;
pMemLnx->Core.u.Mapping.R0Process = R0Process;
*ppMem = &pMemLnx->Core;
return VINF_SUCCESS;
}
/*
* Bail out.
*/
MY_DO_MUNMAP(pTask->mm, (unsigned long)pv, pMemLnxToMap->Core.cb);
if (rc != VERR_INTERNAL_ERROR)
rc = VERR_NO_MEMORY;
}
up_write(&pTask->mm->mmap_sem);
rtR0MemObjDelete(&pMemLnx->Core);
}
return rc;
}
RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
{
PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
if (pMemLnx->cPages)
return page_to_phys(pMemLnx->apPages[iPage]);
switch (pMemLnx->Core.enmType)
{
case RTR0MEMOBJTYPE_CONT:
return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
case RTR0MEMOBJTYPE_PHYS:
return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
/* the parent knows */
case RTR0MEMOBJTYPE_MAPPING:
return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
/* cPages > 0 */
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_LOCK:
case RTR0MEMOBJTYPE_PHYS_NC:
case RTR0MEMOBJTYPE_PAGE:
default:
AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
/* fall thru */
case RTR0MEMOBJTYPE_RES_VIRT:
return NIL_RTHCPHYS;
}
}
|