/* * xusb: Generic USB test program * Copyright © 2009-2012 Pete Batard * Contributions to Mass Storage by Alan Stern. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include "libusb.h" #if defined(_WIN32) #define msleep(msecs) Sleep(msecs) #else #include #define msleep(msecs) usleep(1000*msecs) #endif #if !defined(bool) #define bool int #endif #if !defined(true) #define true (1 == 1) #endif #if !defined(false) #define false (!true) #endif // Future versions of libusbx will use usb_interface instead of interface // in libusb_config_descriptor => catter for that #define usb_interface interface // Global variables static bool binary_dump = false; static bool extra_info = false; static const char* binary_name = NULL; static int perr(char const *format, ...) { va_list args; int r; va_start (args, format); r = vfprintf(stderr, format, args); va_end(args); return r; } #define ERR_EXIT(errcode) do { perr(" %s\n", libusb_strerror((enum libusb_error)errcode)); return -1; } while (0) #define CALL_CHECK(fcall) do { r=fcall; if (r < 0) ERR_EXIT(r); } while (0); #define B(x) (((x)!=0)?1:0) #define be_to_int32(buf) (((buf)[0]<<24)|((buf)[1]<<16)|((buf)[2]<<8)|(buf)[3]) #define RETRY_MAX 5 #define REQUEST_SENSE_LENGTH 0x12 #define INQUIRY_LENGTH 0x24 #define READ_CAPACITY_LENGTH 0x08 // HID Class-Specific Requests values. See section 7.2 of the HID specifications #define HID_GET_REPORT 0x01 #define HID_GET_IDLE 0x02 #define HID_GET_PROTOCOL 0x03 #define HID_SET_REPORT 0x09 #define HID_SET_IDLE 0x0A #define HID_SET_PROTOCOL 0x0B #define HID_REPORT_TYPE_INPUT 0x01 #define HID_REPORT_TYPE_OUTPUT 0x02 #define HID_REPORT_TYPE_FEATURE 0x03 // Mass Storage Requests values. See section 3 of the Bulk-Only Mass Storage Class specifications #define BOMS_RESET 0xFF #define BOMS_GET_MAX_LUN 0xFE // Section 5.1: Command Block Wrapper (CBW) struct command_block_wrapper { uint8_t dCBWSignature[4]; uint32_t dCBWTag; uint32_t dCBWDataTransferLength; uint8_t bmCBWFlags; uint8_t bCBWLUN; uint8_t bCBWCBLength; uint8_t CBWCB[16]; }; // Section 5.2: Command Status Wrapper (CSW) struct command_status_wrapper { uint8_t dCSWSignature[4]; uint32_t dCSWTag; uint32_t dCSWDataResidue; uint8_t bCSWStatus; }; static uint8_t cdb_length[256] = { // 0 1 2 3 4 5 6 7 8 9 A B C D E F 06,06,06,06,06,06,06,06,06,06,06,06,06,06,06,06, // 0 06,06,06,06,06,06,06,06,06,06,06,06,06,06,06,06, // 1 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 2 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 3 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 4 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, // 5 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // 6 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // 7 16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, // 8 16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, // 9 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, // A 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, // B 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // C 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // D 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // E 00,00,00,00,00,00,00,00,00,00,00,00,00,00,00,00, // F }; static enum test_type { USE_GENERIC, USE_PS3, USE_XBOX, USE_SCSI, USE_HID, } test_mode; static uint16_t VID, PID; static void display_buffer_hex(unsigned char *buffer, unsigned size) { unsigned i, j, k; for (i=0; i 126)) { printf("."); } else { printf("%c", buffer[i+j]); } } } } printf("\n" ); } static char* uuid_to_string(const uint8_t* uuid) { static char uuid_string[40]; if (uuid == NULL) return NULL; sprintf(uuid_string, "{%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x}", uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5], uuid[6], uuid[7], uuid[8], uuid[9], uuid[10], uuid[11], uuid[12], uuid[13], uuid[14], uuid[15]); return uuid_string; } // The PS3 Controller is really a HID device that got its HID Report Descriptors // removed by Sony static int display_ps3_status(libusb_device_handle *handle) { int r; uint8_t input_report[49]; uint8_t master_bt_address[8]; uint8_t device_bt_address[18]; // Get the controller's bluetooth address of its master device CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE, HID_GET_REPORT, 0x03f5, 0, master_bt_address, sizeof(master_bt_address), 100)); printf("\nMaster's bluetooth address: %02X:%02X:%02X:%02X:%02X:%02X\n", master_bt_address[2], master_bt_address[3], master_bt_address[4], master_bt_address[5], master_bt_address[6], master_bt_address[7]); // Get the controller's bluetooth address CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE, HID_GET_REPORT, 0x03f2, 0, device_bt_address, sizeof(device_bt_address), 100)); printf("\nMaster's bluetooth address: %02X:%02X:%02X:%02X:%02X:%02X\n", device_bt_address[4], device_bt_address[5], device_bt_address[6], device_bt_address[7], device_bt_address[8], device_bt_address[9]); // Get the status of the controller's buttons via its HID report printf("\nReading PS3 Input Report...\n"); CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE, HID_GET_REPORT, (HID_REPORT_TYPE_INPUT<<8)|0x01, 0, input_report, sizeof(input_report), 1000)); switch(input_report[2]){ /** Direction pad plus start, select, and joystick buttons */ case 0x01: printf("\tSELECT pressed\n"); break; case 0x02: printf("\tLEFT 3 pressed\n"); break; case 0x04: printf("\tRIGHT 3 pressed\n"); break; case 0x08: printf("\tSTART presed\n"); break; case 0x10: printf("\tUP pressed\n"); break; case 0x20: printf("\tRIGHT pressed\n"); break; case 0x40: printf("\tDOWN pressed\n"); break; case 0x80: printf("\tLEFT pressed\n"); break; } switch(input_report[3]){ /** Shapes plus top right and left buttons */ case 0x01: printf("\tLEFT 2 pressed\n"); break; case 0x02: printf("\tRIGHT 2 pressed\n"); break; case 0x04: printf("\tLEFT 1 pressed\n"); break; case 0x08: printf("\tRIGHT 1 presed\n"); break; case 0x10: printf("\tTRIANGLE pressed\n"); break; case 0x20: printf("\tCIRCLE pressed\n"); break; case 0x40: printf("\tCROSS pressed\n"); break; case 0x80: printf("\tSQUARE pressed\n"); break; } printf("\tPS button: %d\n", input_report[4]); printf("\tLeft Analog (X,Y): (%d,%d)\n", input_report[6], input_report[7]); printf("\tRight Analog (X,Y): (%d,%d)\n", input_report[8], input_report[9]); printf("\tL2 Value: %d\tR2 Value: %d\n", input_report[18], input_report[19]); printf("\tL1 Value: %d\tR1 Value: %d\n", input_report[20], input_report[21]); printf("\tRoll (x axis): %d Yaw (y axis): %d Pitch (z axis) %d\n", //(((input_report[42] + 128) % 256) - 128), (int8_t)(input_report[42]), (int8_t)(input_report[44]), (int8_t)(input_report[46])); printf("\tAcceleration: %d\n\n", (int8_t)(input_report[48])); return 0; } // The XBOX Controller is really a HID device that got its HID Report Descriptors // removed by Microsoft. // Input/Output reports described at http://euc.jp/periphs/xbox-controller.ja.html static int display_xbox_status(libusb_device_handle *handle) { int r; uint8_t input_report[20]; printf("\nReading XBox Input Report...\n"); CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE, HID_GET_REPORT, (HID_REPORT_TYPE_INPUT<<8)|0x00, 0, input_report, 20, 1000)); printf(" D-pad: %02X\n", input_report[2]&0x0F); printf(" Start:%d, Back:%d, Left Stick Press:%d, Right Stick Press:%d\n", B(input_report[2]&0x10), B(input_report[2]&0x20), B(input_report[2]&0x40), B(input_report[2]&0x80)); // A, B, X, Y, Black, White are pressure sensitive printf(" A:%d, B:%d, X:%d, Y:%d, White:%d, Black:%d\n", input_report[4], input_report[5], input_report[6], input_report[7], input_report[9], input_report[8]); printf(" Left Trigger: %d, Right Trigger: %d\n", input_report[10], input_report[11]); printf(" Left Analog (X,Y): (%d,%d)\n", (int16_t)((input_report[13]<<8)|input_report[12]), (int16_t)((input_report[15]<<8)|input_report[14])); printf(" Right Analog (X,Y): (%d,%d)\n", (int16_t)((input_report[17]<<8)|input_report[16]), (int16_t)((input_report[19]<<8)|input_report[18])); return 0; } static int set_xbox_actuators(libusb_device_handle *handle, uint8_t left, uint8_t right) { int r; uint8_t output_report[6]; printf("\nWriting XBox Controller Output Report...\n"); memset(output_report, 0, sizeof(output_report)); output_report[1] = sizeof(output_report); output_report[3] = left; output_report[5] = right; CALL_CHECK(libusb_control_transfer(handle, LIBUSB_ENDPOINT_OUT|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE, HID_SET_REPORT, (HID_REPORT_TYPE_OUTPUT<<8)|0x00, 0, output_report, 06, 1000)); return 0; } static int send_mass_storage_command(libusb_device_handle *handle, uint8_t endpoint, uint8_t lun, uint8_t *cdb, uint8_t direction, int data_length, uint32_t *ret_tag) { static uint32_t tag = 1; uint8_t cdb_len; int i, r, size; struct command_block_wrapper cbw; if (cdb == NULL) { return -1; } if (endpoint & LIBUSB_ENDPOINT_IN) { perr("send_mass_storage_command: cannot send command on IN endpoint\n"); return -1; } cdb_len = cdb_length[cdb[0]]; if ((cdb_len == 0) || (cdb_len > sizeof(cbw.CBWCB))) { perr("send_mass_storage_command: don't know how to handle this command (%02X, length %d)\n", cdb[0], cdb_len); return -1; } memset(&cbw, 0, sizeof(cbw)); cbw.dCBWSignature[0] = 'U'; cbw.dCBWSignature[1] = 'S'; cbw.dCBWSignature[2] = 'B'; cbw.dCBWSignature[3] = 'C'; *ret_tag = tag; cbw.dCBWTag = tag++; cbw.dCBWDataTransferLength = data_length; cbw.bmCBWFlags = direction; cbw.bCBWLUN = lun; // Subclass is 1 or 6 => cdb_len cbw.bCBWCBLength = cdb_len; memcpy(cbw.CBWCB, cdb, cdb_len); i = 0; do { // The transfer length must always be exactly 31 bytes. r = libusb_bulk_transfer(handle, endpoint, (unsigned char*)&cbw, 31, &size, 1000); if (r == LIBUSB_ERROR_PIPE) { libusb_clear_halt(handle, endpoint); } i++; } while ((r == LIBUSB_ERROR_PIPE) && (i HID_REPORT_TYPE_FEATURE)) { return 0; } else { return (record_size[type - HID_REPORT_TYPE_INPUT]+7)/8; } } static int test_hid(libusb_device_handle *handle, uint8_t endpoint_in) { int r, size, descriptor_size; uint8_t hid_report_descriptor[256]; uint8_t *report_buffer; FILE *fd; printf("\nReading HID Report Descriptors:\n"); descriptor_size = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_STANDARD|LIBUSB_RECIPIENT_INTERFACE, LIBUSB_REQUEST_GET_DESCRIPTOR, LIBUSB_DT_REPORT<<8, 0, hid_report_descriptor, sizeof(hid_report_descriptor), 1000); if (descriptor_size < 0) { printf(" Failed\n"); return -1; } display_buffer_hex(hid_report_descriptor, descriptor_size); if ((binary_dump) && ((fd = fopen(binary_name, "w")) != NULL)) { if (fwrite(hid_report_descriptor, 1, descriptor_size, fd) != descriptor_size) { printf(" Error writing descriptor to file\n"); } fclose(fd); } size = get_hid_record_size(hid_report_descriptor, descriptor_size, HID_REPORT_TYPE_FEATURE); if (size <= 0) { printf("\nSkipping Feature Report readout (None detected)\n"); } else { report_buffer = (uint8_t*) calloc(size, 1); if (report_buffer == NULL) { return -1; } printf("\nReading Feature Report (length %d)...\n", size); r = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE, HID_GET_REPORT, (HID_REPORT_TYPE_FEATURE<<8)|0, 0, report_buffer, (uint16_t)size, 5000); if (r >= 0) { display_buffer_hex(report_buffer, size); } else { switch(r) { case LIBUSB_ERROR_NOT_FOUND: printf(" No Feature Report available for this device\n"); break; case LIBUSB_ERROR_PIPE: printf(" Detected stall - resetting pipe...\n"); libusb_clear_halt(handle, 0); break; default: printf(" Error: %s\n", libusb_strerror((enum libusb_error)r)); break; } } free(report_buffer); } size = get_hid_record_size(hid_report_descriptor, descriptor_size, HID_REPORT_TYPE_INPUT); if (size <= 0) { printf("\nSkipping Input Report readout (None detected)\n"); } else { report_buffer = (uint8_t*) calloc(size, 1); if (report_buffer == NULL) { return -1; } printf("\nReading Input Report (length %d)...\n", size); r = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE, HID_GET_REPORT, (HID_REPORT_TYPE_INPUT<<8)|0x00, 0, report_buffer, (uint16_t)size, 5000); if (r >= 0) { display_buffer_hex(report_buffer, size); } else { switch(r) { case LIBUSB_ERROR_TIMEOUT: printf(" Timeout! Please make sure you act on the device within the 5 seconds allocated...\n"); break; case LIBUSB_ERROR_PIPE: printf(" Detected stall - resetting pipe...\n"); libusb_clear_halt(handle, 0); break; default: printf(" Error: %s\n", libusb_strerror((enum libusb_error)r)); break; } } // Attempt a bulk read from endpoint 0 (this should just return a raw input report) printf("\nTesting interrupt read using endpoint %02X...\n", endpoint_in); r = libusb_interrupt_transfer(handle, endpoint_in, report_buffer, size, &size, 5000); if (r >= 0) { display_buffer_hex(report_buffer, size); } else { printf(" %s\n", libusb_strerror((enum libusb_error)r)); } free(report_buffer); } return 0; } // Read the MS WinUSB Feature Descriptors, that are used on Windows 8 for automated driver installation static void read_ms_winsub_feature_descriptors(libusb_device_handle *handle, uint8_t bRequest, int iface_number) { #define MAX_OS_FD_LENGTH 256 int i, r; uint8_t os_desc[MAX_OS_FD_LENGTH]; uint32_t length; void* le_type_punning_IS_fine; struct { const char* desc; uint8_t recipient; uint16_t index; uint16_t header_size; } os_fd[2] = { {"Extended Compat ID", LIBUSB_RECIPIENT_DEVICE, 0x0004, 0x10}, {"Extended Properties", LIBUSB_RECIPIENT_INTERFACE, 0x0005, 0x0A} }; if (iface_number < 0) return; for (i=0; i<2; i++) { printf("\nReading %s OS Feature Descriptor (wIndex = 0x%04d):\n", os_fd[i].desc, os_fd[i].index); // Read the header part r = libusb_control_transfer(handle, (uint8_t)(LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_VENDOR|os_fd[i].recipient), bRequest, (uint16_t)(((iface_number)<< 8)|0x00), os_fd[i].index, os_desc, os_fd[i].header_size, 1000); if (r < os_fd[i].header_size) { perr(" Failed: %s", (r<0)?libusb_strerror((enum libusb_error)r):"header size is too small"); return; } le_type_punning_IS_fine = (void*)os_desc; length = *((uint32_t*)le_type_punning_IS_fine); if (length > MAX_OS_FD_LENGTH) { length = MAX_OS_FD_LENGTH; } // Read the full feature descriptor r = libusb_control_transfer(handle, (uint8_t)(LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_VENDOR|os_fd[i].recipient), bRequest, (uint16_t)(((iface_number)<< 8)|0x00), os_fd[i].index, os_desc, (uint16_t)length, 1000); if (r < 0) { perr(" Failed: %s", libusb_strerror((enum libusb_error)r)); return; } else { display_buffer_hex(os_desc, r); } } } static void print_device_cap(struct libusb_bos_dev_capability_descriptor *dev_cap) { switch(dev_cap->bDevCapabilityType) { case LIBUSB_BT_USB_2_0_EXTENSION: { struct libusb_usb_2_0_extension_descriptor *usb_2_0_ext = NULL; libusb_get_usb_2_0_extension_descriptor(NULL, dev_cap, &usb_2_0_ext); if (usb_2_0_ext) { printf(" USB 2.0 extension:\n"); printf(" attributes : %02X\n", usb_2_0_ext->bmAttributes); libusb_free_usb_2_0_extension_descriptor(usb_2_0_ext); } break; } case LIBUSB_BT_SS_USB_DEVICE_CAPABILITY: { struct libusb_ss_usb_device_capability_descriptor *ss_usb_device_cap = NULL; libusb_get_ss_usb_device_capability_descriptor(NULL, dev_cap, &ss_usb_device_cap); if (ss_usb_device_cap) { printf(" USB 3.0 capabilities:\n"); printf(" attributes : %02X\n", ss_usb_device_cap->bmAttributes); printf(" supported speeds : %04X\n", ss_usb_device_cap->wSpeedSupported); printf(" supported functionality: %02X\n", ss_usb_device_cap->bFunctionalitySupport); libusb_free_ss_usb_device_capability_descriptor(ss_usb_device_cap); } break; } case LIBUSB_BT_CONTAINER_ID: { struct libusb_container_id_descriptor *container_id = NULL; libusb_get_container_id_descriptor(NULL, dev_cap, &container_id); if (container_id) { printf(" Container ID:\n %s\n", uuid_to_string(container_id->ContainerID)); libusb_free_container_id_descriptor(container_id); } break; } default: printf(" Unknown BOS device capability %02x:\n", dev_cap->bDevCapabilityType); } } static int test_device(uint16_t vid, uint16_t pid) { libusb_device_handle *handle; libusb_device *dev; uint8_t bus, port_path[8]; struct libusb_bos_descriptor *bos_desc; struct libusb_config_descriptor *conf_desc; const struct libusb_endpoint_descriptor *endpoint; int i, j, k, r; int iface, nb_ifaces, first_iface = -1; struct libusb_device_descriptor dev_desc; const char* speed_name[5] = { "Unknown", "1.5 Mbit/s (USB LowSpeed)", "12 Mbit/s (USB FullSpeed)", "480 Mbit/s (USB HighSpeed)", "5000 Mbit/s (USB SuperSpeed)"}; char string[128]; uint8_t string_index[3]; // indexes of the string descriptors uint8_t endpoint_in = 0, endpoint_out = 0; // default IN and OUT endpoints printf("Opening device %04X:%04X...\n", vid, pid); handle = libusb_open_device_with_vid_pid(NULL, vid, pid); if (handle == NULL) { perr(" Failed.\n"); return -1; } dev = libusb_get_device(handle); bus = libusb_get_bus_number(dev); if (extra_info) { r = libusb_get_port_numbers(dev, port_path, sizeof(port_path)); if (r > 0) { printf("\nDevice properties:\n"); printf(" bus number: %d\n", bus); printf(" port path: %d", port_path[0]); for (i=1; i%d", port_path[i]); } printf(" (from root hub)\n"); } r = libusb_get_device_speed(dev); if ((r<0) || (r>4)) r=0; printf(" speed: %s\n", speed_name[r]); } printf("\nReading device descriptor:\n"); CALL_CHECK(libusb_get_device_descriptor(dev, &dev_desc)); printf(" length: %d\n", dev_desc.bLength); printf(" device class: %d\n", dev_desc.bDeviceClass); printf(" S/N: %d\n", dev_desc.iSerialNumber); printf(" VID:PID: %04X:%04X\n", dev_desc.idVendor, dev_desc.idProduct); printf(" bcdDevice: %04X\n", dev_desc.bcdDevice); printf(" iMan:iProd:iSer: %d:%d:%d\n", dev_desc.iManufacturer, dev_desc.iProduct, dev_desc.iSerialNumber); printf(" nb confs: %d\n", dev_desc.bNumConfigurations); // Copy the string descriptors for easier parsing string_index[0] = dev_desc.iManufacturer; string_index[1] = dev_desc.iProduct; string_index[2] = dev_desc.iSerialNumber; printf("\nReading BOS descriptor: "); if (libusb_get_bos_descriptor(handle, &bos_desc) == LIBUSB_SUCCESS) { printf("%d caps\n", bos_desc->bNumDeviceCaps); for (i = 0; i < bos_desc->bNumDeviceCaps; i++) print_device_cap(bos_desc->dev_capability[i]); libusb_free_bos_descriptor(bos_desc); } else { printf("no descriptor\n"); } printf("\nReading first configuration descriptor:\n"); CALL_CHECK(libusb_get_config_descriptor(dev, 0, &conf_desc)); nb_ifaces = conf_desc->bNumInterfaces; printf(" nb interfaces: %d\n", nb_ifaces); if (nb_ifaces > 0) first_iface = conf_desc->usb_interface[0].altsetting[0].bInterfaceNumber; for (i=0; iusb_interface[i].altsetting[0].bInterfaceNumber); for (j=0; jusb_interface[i].num_altsetting; j++) { printf("interface[%d].altsetting[%d]: num endpoints = %d\n", i, j, conf_desc->usb_interface[i].altsetting[j].bNumEndpoints); printf(" Class.SubClass.Protocol: %02X.%02X.%02X\n", conf_desc->usb_interface[i].altsetting[j].bInterfaceClass, conf_desc->usb_interface[i].altsetting[j].bInterfaceSubClass, conf_desc->usb_interface[i].altsetting[j].bInterfaceProtocol); if ( (conf_desc->usb_interface[i].altsetting[j].bInterfaceClass == LIBUSB_CLASS_MASS_STORAGE) && ( (conf_desc->usb_interface[i].altsetting[j].bInterfaceSubClass == 0x01) || (conf_desc->usb_interface[i].altsetting[j].bInterfaceSubClass == 0x06) ) && (conf_desc->usb_interface[i].altsetting[j].bInterfaceProtocol == 0x50) ) { // Mass storage devices that can use basic SCSI commands test_mode = USE_SCSI; } for (k=0; kusb_interface[i].altsetting[j].bNumEndpoints; k++) { struct libusb_ss_endpoint_companion_descriptor *ep_comp = NULL; endpoint = &conf_desc->usb_interface[i].altsetting[j].endpoint[k]; printf(" endpoint[%d].address: %02X\n", k, endpoint->bEndpointAddress); // Use the first interrupt or bulk IN/OUT endpoints as default for testing if ((endpoint->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) & (LIBUSB_TRANSFER_TYPE_BULK | LIBUSB_TRANSFER_TYPE_INTERRUPT)) { if (endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN) { if (!endpoint_in) endpoint_in = endpoint->bEndpointAddress; } else { if (!endpoint_out) endpoint_out = endpoint->bEndpointAddress; } } printf(" max packet size: %04X\n", endpoint->wMaxPacketSize); printf(" polling interval: %02X\n", endpoint->bInterval); libusb_get_ss_endpoint_companion_descriptor(NULL, endpoint, &ep_comp); if (ep_comp) { printf(" max burst: %02X (USB 3.0)\n", ep_comp->bMaxBurst); printf(" bytes per interval: %04X (USB 3.0)\n", ep_comp->wBytesPerInterval); libusb_free_ss_endpoint_companion_descriptor(ep_comp); } } } } libusb_free_config_descriptor(conf_desc); libusb_set_auto_detach_kernel_driver(handle, 1); for (iface = 0; iface < nb_ifaces; iface++) { printf("\nClaiming interface %d...\n", iface); r = libusb_claim_interface(handle, iface); if (r != LIBUSB_SUCCESS) { perr(" Failed.\n"); } } printf("\nReading string descriptors:\n"); for (i=0; i<3; i++) { if (string_index[i] == 0) { continue; } if (libusb_get_string_descriptor_ascii(handle, string_index[i], (unsigned char*)string, 128) >= 0) { printf(" String (0x%02X): \"%s\"\n", string_index[i], string); } } // Read the OS String Descriptor if (libusb_get_string_descriptor_ascii(handle, 0xEE, (unsigned char*)string, 128) >= 0) { printf(" String (0x%02X): \"%s\"\n", 0xEE, string); // If this is a Microsoft OS String Descriptor, // attempt to read the WinUSB extended Feature Descriptors if (strncmp(string, "MSFT100", 7) == 0) read_ms_winsub_feature_descriptors(handle, string[7], first_iface); } switch(test_mode) { case USE_PS3: CALL_CHECK(display_ps3_status(handle)); break; case USE_XBOX: CALL_CHECK(display_xbox_status(handle)); CALL_CHECK(set_xbox_actuators(handle, 128, 222)); msleep(2000); CALL_CHECK(set_xbox_actuators(handle, 0, 0)); break; case USE_HID: test_hid(handle, endpoint_in); break; case USE_SCSI: CALL_CHECK(test_mass_storage(handle, endpoint_in, endpoint_out)); case USE_GENERIC: break; } printf("\n"); for (iface = 0; iface= 2) { for (j = 1; j= 2) ) { switch(argv[j][1]) { case 'd': debug_mode = true; break; case 'i': extra_info = true; break; case 'b': if ((j+1 >= argc) || (argv[j+1][0] == '-') || (argv[j+1][0] == '/')) { printf(" Option -b requires a file name\n"); return 1; } binary_name = argv[++j]; binary_dump = true; break; case 'l': if ((j+1 >= argc) || (argv[j+1][0] == '-') || (argv[j+1][0] == '/')) { printf(" Option -l requires an ISO 639-1 language parameter\n"); return 1; } error_lang = argv[++j]; break; case 'j': // OLIMEX ARM-USB-TINY JTAG, 2 channel composite device - 2 interfaces if (!VID && !PID) { VID = 0x15BA; PID = 0x0004; } break; case 'k': // Generic 2 GB USB Key (SCSI Transparent/Bulk Only) - 1 interface if (!VID && !PID) { VID = 0x0204; PID = 0x6025; } break; // The following tests will force VID:PID if already provided case 'p': // Sony PS3 Controller - 1 interface VID = 0x054C; PID = 0x0268; test_mode = USE_PS3; break; case 's': // Microsoft Sidewinder Precision Pro Joystick - 1 HID interface VID = 0x045E; PID = 0x0008; test_mode = USE_HID; break; case 'x': // Microsoft XBox Controller Type S - 1 interface VID = 0x045E; PID = 0x0289; test_mode = USE_XBOX; break; default: show_help = true; break; } } else { for (i=0; i 7)) { printf("usage: %s [-h] [-d] [-i] [-k] [-b file] [-l lang] [-j] [-x] [-s] [-p] [vid:pid]\n", argv[0]); printf(" -h : display usage\n"); printf(" -d : enable debug output\n"); printf(" -i : print topology and speed info\n"); printf(" -j : test composite FTDI based JTAG device\n"); printf(" -k : test Mass Storage device\n"); printf(" -b file : dump Mass Storage data to file 'file'\n"); printf(" -p : test Sony PS3 SixAxis controller\n"); printf(" -s : test Microsoft Sidewinder Precision Pro (HID)\n"); printf(" -x : test Microsoft XBox Controller Type S\n"); printf(" -l lang : language to report errors in (ISO 639-1)\n"); printf("If only the vid:pid is provided, xusb attempts to run the most appropriate test\n"); return 0; } version = libusb_get_version(); printf("Using libusbx v%d.%d.%d.%d\n\n", version->major, version->minor, version->micro, version->nano); r = libusb_init(NULL); if (r < 0) return r; libusb_set_debug(NULL, debug_mode?LIBUSB_LOG_LEVEL_DEBUG:LIBUSB_LOG_LEVEL_INFO); if (error_lang != NULL) { r = libusb_setlocale(error_lang); if (r < 0) printf("Invalid or unsupported locale '%s': %s\n", error_lang, libusb_strerror((enum libusb_error)r)); } test_device(VID, PID); libusb_exit(NULL); return 0; }