/* rainerscript.c - routines to support RainerScript config language
*
* Module begun 2011-07-01 by Rainer Gerhards
*
* Copyright 2011-2014 Rainer Gerhards and Adiscon GmbH.
*
* This file is part of the rsyslog runtime library.
*
* The rsyslog runtime library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* The rsyslog runtime library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the rsyslog runtime library. If not, see .
*
* A copy of the GPL can be found in the file "COPYING" in this distribution.
* A copy of the LGPL can be found in the file "COPYING.LESSER" in this distribution.
*/
#include "config.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "rsyslog.h"
#include "rainerscript.h"
#include "conf.h"
#include "parserif.h"
#include "parse.h"
#include "rsconf.h"
#include "grammar.h"
#include "queue.h"
#include "srUtils.h"
#include "regexp.h"
#include "obj.h"
#include "modules.h"
#include "ruleset.h"
#include "msg.h"
#include "wti.h"
#include "unicode-helper.h"
DEFobjCurrIf(obj)
DEFobjCurrIf(regexp)
struct cnfexpr* cnfexprOptimize(struct cnfexpr *expr);
static void cnfstmtOptimizePRIFilt(struct cnfstmt *stmt);
static void cnfarrayPrint(struct cnfarray *ar, int indent);
struct cnffunc * cnffuncNew_prifilt(int fac);
/* debug support: convert token to a human-readable string. Note that
* this function only supports a single thread due to a static buffer.
* This is deemed a solid solution, as it is intended to be used during
* startup, only.
* NOTE: This function MUST be updated if new tokens are defined in the
* grammar.
*/
const char *
tokenToString(const int token)
{
char *tokstr;
static char tokbuf[512];
switch(token) {
case NAME: tokstr = "NAME"; break;
case FUNC: tokstr = "FUNC"; break;
case BEGINOBJ: tokstr ="BEGINOBJ"; break;
case ENDOBJ: tokstr ="ENDOBJ"; break;
case BEGIN_ACTION: tokstr ="BEGIN_ACTION"; break;
case BEGIN_PROPERTY: tokstr ="BEGIN_PROPERTY"; break;
case BEGIN_CONSTANT: tokstr ="BEGIN_CONSTANT"; break;
case BEGIN_TPL: tokstr ="BEGIN_TPL"; break;
case BEGIN_RULESET: tokstr ="BEGIN_RULESET"; break;
case STOP: tokstr ="STOP"; break;
case SET: tokstr ="SET"; break;
case UNSET: tokstr ="UNSET"; break;
case CONTINUE: tokstr ="CONTINUE"; break;
case CALL: tokstr ="CALL"; break;
case LEGACY_ACTION: tokstr ="LEGACY_ACTION"; break;
case LEGACY_RULESET: tokstr ="LEGACY_RULESET"; break;
case PRIFILT: tokstr ="PRIFILT"; break;
case PROPFILT: tokstr ="PROPFILT"; break;
case IF: tokstr ="IF"; break;
case THEN: tokstr ="THEN"; break;
case ELSE: tokstr ="ELSE"; break;
case OR: tokstr ="OR"; break;
case AND: tokstr ="AND"; break;
case NOT: tokstr ="NOT"; break;
case VAR: tokstr ="VAR"; break;
case STRING: tokstr ="STRING"; break;
case NUMBER: tokstr ="NUMBER"; break;
case CMP_EQ: tokstr ="CMP_EQ"; break;
case CMP_NE: tokstr ="CMP_NE"; break;
case CMP_LE: tokstr ="CMP_LE"; break;
case CMP_GE: tokstr ="CMP_GE"; break;
case CMP_LT: tokstr ="CMP_LT"; break;
case CMP_GT: tokstr ="CMP_GT"; break;
case CMP_CONTAINS: tokstr ="CMP_CONTAINS"; break;
case CMP_CONTAINSI: tokstr ="CMP_CONTAINSI"; break;
case CMP_STARTSWITH: tokstr ="CMP_STARTSWITH"; break;
case CMP_STARTSWITHI: tokstr ="CMP_STARTSWITHI"; break;
case UMINUS: tokstr ="UMINUS"; break;
default: snprintf(tokbuf, sizeof(tokbuf), "%c[%d]", token, token);
tokstr = tokbuf; break;
}
return tokstr;
}
const char*
getFIOPName(const unsigned iFIOP)
{
char *pRet;
switch(iFIOP) {
case FIOP_CONTAINS:
pRet = "contains";
break;
case FIOP_ISEQUAL:
pRet = "isequal";
break;
case FIOP_STARTSWITH:
pRet = "startswith";
break;
case FIOP_REGEX:
pRet = "regex";
break;
case FIOP_EREREGEX:
pRet = "ereregex";
break;
case FIOP_ISEMPTY:
pRet = "isempty";
break;
default:
pRet = "NOP";
break;
}
return pRet;
}
/* This function takes the filter part of a property
* based filter and decodes it. It processes the line up to the beginning
* of the action part.
*/
static rsRetVal
DecodePropFilter(uchar *pline, struct cnfstmt *stmt)
{
rsParsObj *pPars = NULL;
cstr_t *pCSCompOp = NULL;
cstr_t *pCSPropName = NULL;
int iOffset; /* for compare operations */
DEFiRet;
ASSERT(pline != NULL);
DBGPRINTF("Decoding property-based filter '%s'\n", pline);
/* create parser object starting with line string without leading colon */
if((iRet = rsParsConstructFromSz(&pPars, pline+1)) != RS_RET_OK) {
parser_errmsg("error %d constructing parser object", iRet);
ABORT_FINALIZE(iRet);
}
/* read property */
iRet = parsDelimCStr(pPars, &pCSPropName, ',', 1, 1, 1);
if(iRet != RS_RET_OK) {
parser_errmsg("error %d parsing filter property", iRet);
rsParsDestruct(pPars);
ABORT_FINALIZE(iRet);
}
CHKiRet(msgPropDescrFill(&stmt->d.s_propfilt.prop, cstrGetSzStrNoNULL(pCSPropName),
cstrLen(pCSPropName)));
/* read operation */
iRet = parsDelimCStr(pPars, &pCSCompOp, ',', 1, 1, 1);
if(iRet != RS_RET_OK) {
parser_errmsg("error %d compare operation property - ignoring selector", iRet);
rsParsDestruct(pPars);
ABORT_FINALIZE(iRet);
}
/* we now first check if the condition is to be negated. To do so, we first
* must make sure we have at least one char in the param and then check the
* first one.
* rgerhards, 2005-09-26
*/
if(rsCStrLen(pCSCompOp) > 0) {
if(*rsCStrGetBufBeg(pCSCompOp) == '!') {
stmt->d.s_propfilt.isNegated = 1;
iOffset = 1; /* ignore '!' */
} else {
stmt->d.s_propfilt.isNegated = 0;
iOffset = 0;
}
} else {
stmt->d.s_propfilt.isNegated = 0;
iOffset = 0;
}
if(!rsCStrOffsetSzStrCmp(pCSCompOp, iOffset, (uchar*) "contains", 8)) {
stmt->d.s_propfilt.operation = FIOP_CONTAINS;
} else if(!rsCStrOffsetSzStrCmp(pCSCompOp, iOffset, (uchar*) "isequal", 7)) {
stmt->d.s_propfilt.operation = FIOP_ISEQUAL;
} else if(!rsCStrOffsetSzStrCmp(pCSCompOp, iOffset, (uchar*) "isempty", 7)) {
stmt->d.s_propfilt.operation = FIOP_ISEMPTY;
} else if(!rsCStrOffsetSzStrCmp(pCSCompOp, iOffset, (uchar*) "startswith", 10)) {
stmt->d.s_propfilt.operation = FIOP_STARTSWITH;
} else if(!rsCStrOffsetSzStrCmp(pCSCompOp, iOffset, (unsigned char*) "regex", 5)) {
stmt->d.s_propfilt.operation = FIOP_REGEX;
} else if(!rsCStrOffsetSzStrCmp(pCSCompOp, iOffset, (unsigned char*) "ereregex", 8)) {
stmt->d.s_propfilt.operation = FIOP_EREREGEX;
} else {
parser_errmsg("error: invalid compare operation '%s'",
(char*) rsCStrGetSzStrNoNULL(pCSCompOp));
ABORT_FINALIZE(RS_RET_ERR);
}
if(stmt->d.s_propfilt.operation != FIOP_ISEMPTY) {
/* read compare value */
iRet = parsQuotedCStr(pPars, &stmt->d.s_propfilt.pCSCompValue);
if(iRet != RS_RET_OK) {
parser_errmsg("error %d compare value property", iRet);
rsParsDestruct(pPars);
ABORT_FINALIZE(iRet);
}
}
finalize_it:
if(pPars != NULL)
rsParsDestruct(pPars);
if(pCSCompOp != NULL)
rsCStrDestruct(&pCSCompOp);
if(pCSPropName != NULL)
cstrDestruct(&pCSPropName);
RETiRet;
}
static void
prifiltInvert(struct funcData_prifilt *__restrict__ const prifilt)
{
int i;
for(i = 0 ; i < LOG_NFACILITIES+1 ; ++i) {
prifilt->pmask[i] = ~prifilt->pmask[i];
}
}
/* set prifilt so that it matches for some severities, sev is its numerical
* value. Mode is one of the compop tokens CMP_EQ, CMP_LT, CMP_LE, CMP_GT,
* CMP_GE, CMP_NE.
*/
static void
prifiltSetSeverity(struct funcData_prifilt *prifilt, int sev, int mode)
{
static int lessthanmasks[] = { 0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff };
int i;
for(i = 0 ; i < LOG_NFACILITIES+1 ; ++i) {
if(mode == CMP_EQ || mode == CMP_NE)
prifilt->pmask[i] = 1 << sev;
else if(mode == CMP_LT)
prifilt->pmask[i] = lessthanmasks[sev];
else if(mode == CMP_LE)
prifilt->pmask[i] = lessthanmasks[sev+1];
else if(mode == CMP_GT)
prifilt->pmask[i] = ~lessthanmasks[sev+1];
else if(mode == CMP_GE)
prifilt->pmask[i] = ~lessthanmasks[sev];
else
DBGPRINTF("prifiltSetSeverity: program error, invalid mode %s\n",
tokenToString(mode));
}
if(mode == CMP_NE)
prifiltInvert(prifilt);
}
/* set prifilt so that it matches for some facilities, fac is its numerical
* value. Mode is one of the compop tokens CMP_EQ, CMP_LT, CMP_LE, CMP_GT,
* CMP_GE, CMP_NE. For the given facilities, all severities are enabled.
* NOTE: fac MUST be in the range 0..24 (not multiplied by 8)!
*/
static void
prifiltSetFacility(struct funcData_prifilt *__restrict__ const prifilt, const int fac, const int mode)
{
int i;
memset(prifilt->pmask, 0, sizeof(prifilt->pmask));
switch(mode) {
case CMP_EQ:
prifilt->pmask[fac] = TABLE_ALLPRI;
break;
case CMP_NE:
prifilt->pmask[fac] = TABLE_ALLPRI;
prifiltInvert(prifilt);
break;
case CMP_LT:
for(i = 0 ; i < fac ; ++i)
prifilt->pmask[i] = TABLE_ALLPRI;
break;
case CMP_LE:
for(i = 0 ; i < fac+1 ; ++i)
prifilt->pmask[i] = TABLE_ALLPRI;
break;
case CMP_GE:
for(i = fac ; i < LOG_NFACILITIES+1 ; ++i)
prifilt->pmask[i] = TABLE_ALLPRI;
break;
case CMP_GT:
for(i = fac+1 ; i < LOG_NFACILITIES+1 ; ++i)
prifilt->pmask[i] = TABLE_ALLPRI;
break;
default:break;
}
}
/* combine a prifilt with AND/OR (the respective token values are
* used to keep things simple).
*/
static void
prifiltCombine(struct funcData_prifilt *__restrict__ const prifilt,
struct funcData_prifilt *__restrict__ const prifilt2,
const int mode)
{
int i;
for(i = 0 ; i < LOG_NFACILITIES+1 ; ++i) {
if(mode == AND)
prifilt->pmask[i] = prifilt->pmask[i] & prifilt2->pmask[i];
else
prifilt->pmask[i] = prifilt->pmask[i] | prifilt2->pmask[i];
}
}
void
readConfFile(FILE * const fp, es_str_t **str)
{
char ln[10240];
char buf[512];
int lenBuf;
int bWriteLineno = 0;
int len, i;
int start; /* start index of to be submitted text */
int bContLine = 0;
int lineno = 0;
*str = es_newStr(4096);
while(fgets(ln, sizeof(ln), fp) != NULL) {
++lineno;
if(bWriteLineno) {
bWriteLineno = 0;
lenBuf = sprintf(buf, "PreprocFileLineNumber(%d)\n", lineno);
es_addBuf(str, buf, lenBuf);
}
len = strlen(ln);
/* if we are continuation line, we need to drop leading WS */
if(bContLine) {
for(start = 0 ; start < len && isspace(ln[start]) ; ++start)
/* JUST SCAN */;
} else {
start = 0;
}
for(i = len - 1 ; i >= start && isspace(ln[i]) ; --i)
/* JUST SCAN */;
if(i >= 0) {
if(ln[i] == '\\') {
--i;
bContLine = 1;
} else {
if(bContLine) /* write line number if we had cont line */
bWriteLineno = 1;
bContLine = 0;
}
/* add relevant data to buffer */
es_addBuf(str, ln+start, i+1 - start);
}
if(!bContLine)
es_addChar(str, '\n');
}
/* indicate end of buffer to flex */
es_addChar(str, '\0');
es_addChar(str, '\0');
}
/* comparison function for qsort() and bsearch() string array compare */
static int
qs_arrcmp(const void *s1, const void *s2)
{
return es_strcmp(*((es_str_t**)s1), *((es_str_t**)s2));
}
struct objlst*
objlstNew(struct cnfobj *o)
{
struct objlst *lst;
if((lst = malloc(sizeof(struct objlst))) != NULL) {
lst->next = NULL;
lst->obj = o;
}
cnfobjPrint(o);
return lst;
}
/* add object to end of object list, always returns pointer to root object */
struct objlst*
objlstAdd(struct objlst *root, struct cnfobj *o)
{
struct objlst *l;
struct objlst *newl;
newl = objlstNew(o);
if(root == 0) {
root = newl;
} else { /* find last, linear search ok, as only during config phase */
for(l = root ; l->next != NULL ; l = l->next)
;
l->next = newl;
}
return root;
}
/* add stmt to current script, always return root stmt pointer */
struct cnfstmt*
scriptAddStmt(struct cnfstmt *root, struct cnfstmt *s)
{
struct cnfstmt *l;
if(root == NULL) {
root = s;
} else { /* find last, linear search ok, as only during config phase */
for(l = root ; l->next != NULL ; l = l->next)
;
l->next = s;
}
return root;
}
void
objlstDestruct(struct objlst *lst)
{
struct objlst *toDel;
while(lst != NULL) {
toDel = lst;
lst = lst->next;
cnfobjDestruct(toDel->obj);
free(toDel);
}
}
void
objlstPrint(struct objlst *lst)
{
dbgprintf("objlst %p:\n", lst);
while(lst != NULL) {
cnfobjPrint(lst->obj);
lst = lst->next;
}
}
struct nvlst*
nvlstNewStr(es_str_t *value)
{
struct nvlst *lst;
if((lst = malloc(sizeof(struct nvlst))) != NULL) {
lst->next = NULL;
lst->val.datatype = 'S';
lst->val.d.estr = value;
lst->bUsed = 0;
}
return lst;
}
struct nvlst*
nvlstNewArray(struct cnfarray *ar)
{
struct nvlst *lst;
if((lst = malloc(sizeof(struct nvlst))) != NULL) {
lst->next = NULL;
lst->val.datatype = 'A';
lst->val.d.ar = ar;
lst->bUsed = 0;
}
return lst;
}
struct nvlst*
nvlstSetName(struct nvlst *lst, es_str_t *name)
{
lst->name = name;
return lst;
}
void
nvlstDestruct(struct nvlst *lst)
{
struct nvlst *toDel;
while(lst != NULL) {
toDel = lst;
lst = lst->next;
es_deleteStr(toDel->name);
varDelete(&toDel->val);
free(toDel);
}
}
void
nvlstPrint(struct nvlst *lst)
{
char *name, *value;
dbgprintf("nvlst %p:\n", lst);
while(lst != NULL) {
name = es_str2cstr(lst->name, NULL);
switch(lst->val.datatype) {
case 'A':
dbgprintf("\tname: '%s':\n", name);
cnfarrayPrint(lst->val.d.ar, 5);
break;
case 'S':
value = es_str2cstr(lst->val.d.estr, NULL);
dbgprintf("\tname: '%s', value '%s'\n", name, value);
free(value);
break;
default:dbgprintf("nvlstPrint: unknown type '%s'\n",
tokenToString(lst->val.datatype));
break;
}
free(name);
lst = lst->next;
}
}
/* find a name starting at node lst. Returns node with this
* name or NULL, if none found.
*/
struct nvlst*
nvlstFindName(struct nvlst *lst, es_str_t *name)
{
while(lst != NULL && es_strcmp(lst->name, name))
lst = lst->next;
return lst;
}
/* find a name starting at node lst. Same as nvlstFindName, but
* for classical C strings. This is useful because the config system
* uses C string constants.
*/
static inline struct nvlst*
nvlstFindNameCStr(struct nvlst *lst, char *name)
{
es_size_t lenName = strlen(name);
while(lst != NULL && es_strcasebufcmp(lst->name, (uchar*)name, lenName))
lst = lst->next;
return lst;
}
/* check if there are duplicate names inside a nvlst and emit
* an error message, if so.
*/
static inline void
nvlstChkDupes(struct nvlst *lst)
{
char *cstr;
while(lst != NULL) {
if(nvlstFindName(lst->next, lst->name) != NULL) {
cstr = es_str2cstr(lst->name, NULL);
parser_errmsg("duplicate parameter '%s' -- "
"interpretation is ambigious, one value "
"will be randomly selected. Fix this problem.",
cstr);
free(cstr);
}
lst = lst->next;
}
}
/* check for unused params and emit error message is found. This must
* be called after all config params have been pulled from the object
* (otherwise the flags are not correctly set).
*/
void
nvlstChkUnused(struct nvlst *lst)
{
char *cstr;
while(lst != NULL) {
if(!lst->bUsed) {
cstr = es_str2cstr(lst->name, NULL);
parser_errmsg("parameter '%s' not known -- "
"typo in config file?",
cstr);
free(cstr);
}
lst = lst->next;
}
}
static inline int
doGetSize(struct nvlst *valnode, struct cnfparamdescr *param,
struct cnfparamvals *val)
{
unsigned char *c;
es_size_t i;
long long n;
int r;
c = es_getBufAddr(valnode->val.d.estr);
n = 0;
i = 0;
while(i < es_strlen(valnode->val.d.estr) && isdigit(*c)) {
n = 10 * n + *c - '0';
++i;
++c;
}
if(i < es_strlen(valnode->val.d.estr)) {
++i;
switch(*c) {
/* traditional binary-based definitions */
case 'k': n *= 1024; break;
case 'm': n *= 1024 * 1024; break;
case 'g': n *= 1024 * 1024 * 1024; break;
case 't': n *= (int64) 1024 * 1024 * 1024 * 1024; break; /* tera */
case 'p': n *= (int64) 1024 * 1024 * 1024 * 1024 * 1024; break; /* peta */
case 'e': n *= (int64) 1024 * 1024 * 1024 * 1024 * 1024 * 1024; break; /* exa */
/* and now the "new" 1000-based definitions */
case 'K': n *= 1000; break;
case 'M': n *= 1000000; break;
case 'G': n *= 1000000000; break;
/* we need to use the multiplication below because otherwise
* the compiler gets an error during constant parsing */
case 'T': n *= (int64) 1000 * 1000000000; break; /* tera */
case 'P': n *= (int64) 1000000 * 1000000000; break; /* peta */
case 'E': n *= (int64) 1000000000 * 1000000000; break; /* exa */
default: --i; break; /* indicates error */
}
}
if(i == es_strlen(valnode->val.d.estr)) {
val->val.datatype = 'N';
val->val.d.n = n;
r = 1;
} else {
parser_errmsg("parameter '%s' does not contain a valid size",
param->name);
r = 0;
}
return r;
}
static inline int
doGetBinary(struct nvlst *valnode, struct cnfparamdescr *param,
struct cnfparamvals *val)
{
int r = 1;
val->val.datatype = 'N';
if(!es_strbufcmp(valnode->val.d.estr, (unsigned char*) "on", 2)) {
val->val.d.n = 1;
} else if(!es_strbufcmp(valnode->val.d.estr, (unsigned char*) "off", 3)) {
val->val.d.n = 0;
} else {
parser_errmsg("parameter '%s' must be \"on\" or \"off\" but "
"is neither. Results unpredictable.", param->name);
val->val.d.n = 0;
r = 0;
}
return r;
}
static inline int
doGetQueueType(struct nvlst *valnode, struct cnfparamdescr *param,
struct cnfparamvals *val)
{
char *cstr;
int r = 1;
if(!es_strcasebufcmp(valnode->val.d.estr, (uchar*)"fixedarray", 10)) {
val->val.d.n = QUEUETYPE_FIXED_ARRAY;
} else if(!es_strcasebufcmp(valnode->val.d.estr, (uchar*)"linkedlist", 10)) {
val->val.d.n = QUEUETYPE_LINKEDLIST;
} else if(!es_strcasebufcmp(valnode->val.d.estr, (uchar*)"disk", 4)) {
val->val.d.n = QUEUETYPE_DISK;
} else if(!es_strcasebufcmp(valnode->val.d.estr, (uchar*)"direct", 6)) {
val->val.d.n = QUEUETYPE_DIRECT;
} else {
cstr = es_str2cstr(valnode->val.d.estr, NULL);
parser_errmsg("param '%s': unknown queue type: '%s'",
param->name, cstr);
free(cstr);
r = 0;
}
val->val.datatype = 'N';
return r;
}
/* A file create-mode must be a four-digit octal number
* starting with '0'.
*/
static inline int
doGetFileCreateMode(struct nvlst *valnode, struct cnfparamdescr *param,
struct cnfparamvals *val)
{
int fmtOK = 0;
char *cstr;
uchar *c;
if(es_strlen(valnode->val.d.estr) == 4) {
c = es_getBufAddr(valnode->val.d.estr);
if( (c[0] == '0')
&& (c[1] >= '0' && c[1] <= '7')
&& (c[2] >= '0' && c[2] <= '7')
&& (c[3] >= '0' && c[3] <= '7') ) {
fmtOK = 1;
}
}
if(fmtOK) {
val->val.datatype = 'N';
val->val.d.n = (c[1]-'0') * 64 + (c[2]-'0') * 8 + (c[3]-'0');
} else {
cstr = es_str2cstr(valnode->val.d.estr, NULL);
parser_errmsg("file modes need to be specified as "
"4-digit octal numbers starting with '0' -"
"parameter '%s=\"%s\"' is not a file mode",
param->name, cstr);
free(cstr);
}
return fmtOK;
}
static inline int
doGetGID(struct nvlst *valnode, struct cnfparamdescr *param,
struct cnfparamvals *val)
{
char *cstr;
int r;
struct group *resultBuf;
struct group wrkBuf;
char stringBuf[2048]; /* 2048 has been proven to be large enough */
cstr = es_str2cstr(valnode->val.d.estr, NULL);
getgrnam_r(cstr, &wrkBuf, stringBuf, sizeof(stringBuf), &resultBuf);
if(resultBuf == NULL) {
parser_errmsg("parameter '%s': ID for group %s could not "
"be found", param->name, cstr);
r = 0;
} else {
val->val.datatype = 'N';
val->val.d.n = resultBuf->gr_gid;
dbgprintf("param '%s': uid %d obtained for group '%s'\n",
param->name, (int) resultBuf->gr_gid, cstr);
r = 1;
}
free(cstr);
return r;
}
static inline int
doGetUID(struct nvlst *valnode, struct cnfparamdescr *param,
struct cnfparamvals *val)
{
char *cstr;
int r;
struct passwd *resultBuf;
struct passwd wrkBuf;
char stringBuf[2048]; /* 2048 has been proven to be large enough */
cstr = es_str2cstr(valnode->val.d.estr, NULL);
getpwnam_r(cstr, &wrkBuf, stringBuf, sizeof(stringBuf), &resultBuf);
if(resultBuf == NULL) {
parser_errmsg("parameter '%s': ID for user %s could not "
"be found", param->name, cstr);
r = 0;
} else {
val->val.datatype = 'N';
val->val.d.n = resultBuf->pw_uid;
dbgprintf("param '%s': uid %d obtained for user '%s'\n",
param->name, (int) resultBuf->pw_uid, cstr);
r = 1;
}
free(cstr);
return r;
}
/* note: we support all integer formats that es_str2num support,
* so hex and octal representations are also valid.
*/
static inline int
doGetInt(struct nvlst *valnode, struct cnfparamdescr *param,
struct cnfparamvals *val)
{
long long n;
int bSuccess;
n = es_str2num(valnode->val.d.estr, &bSuccess);
if(!bSuccess) {
parser_errmsg("parameter '%s' is not a proper number",
param->name);
}
val->val.datatype = 'N';
val->val.d.n = n;
return bSuccess;
}
static inline int
doGetNonNegInt(struct nvlst *valnode, struct cnfparamdescr *param,
struct cnfparamvals *val)
{
int bSuccess;
if((bSuccess = doGetInt(valnode, param, val))) {
if(val->val.d.n < 0) {
parser_errmsg("parameter '%s' cannot be less than zero (was %lld)",
param->name, val->val.d.n);
bSuccess = 0;
}
}
return bSuccess;
}
static inline int
doGetPositiveInt(struct nvlst *valnode, struct cnfparamdescr *param,
struct cnfparamvals *val)
{
int bSuccess;
if((bSuccess = doGetInt(valnode, param, val))) {
if(val->val.d.n < 1) {
parser_errmsg("parameter '%s' cannot be less than one (was %lld)",
param->name, val->val.d.n);
bSuccess = 0;
}
}
return bSuccess;
}
static inline int
doGetWord(struct nvlst *valnode, struct cnfparamdescr *param,
struct cnfparamvals *val)
{
es_size_t i;
int r = 1;
unsigned char *c;
val->val.datatype = 'S';
val->val.d.estr = es_newStr(32);
c = es_getBufAddr(valnode->val.d.estr);
for(i = 0 ; i < es_strlen(valnode->val.d.estr) && !isspace(c[i]) ; ++i) {
es_addChar(&val->val.d.estr, c[i]);
}
if(i != es_strlen(valnode->val.d.estr)) {
parser_errmsg("parameter '%s' contains whitespace, which is not "
"permitted",
param->name);
r = 0;
}
return r;
}
static inline int
doGetArray(struct nvlst *valnode, struct cnfparamdescr *param,
struct cnfparamvals *val)
{
int r = 1;
switch(valnode->val.datatype) {
case 'S':
/* a constant string is assumed to be a single-element array */
val->val.datatype = 'A';
val->val.d.ar = cnfarrayNew(es_strdup(valnode->val.d.estr));
break;
case 'A':
val->val.datatype = 'A';
val->val.d.ar = cnfarrayDup(valnode->val.d.ar);
break;
default:parser_errmsg("parameter '%s' must be an array, but is a "
"different datatype", param->name);
r = 0;
break;
}
return r;
}
static inline int
doGetChar(struct nvlst *valnode, struct cnfparamdescr *param,
struct cnfparamvals *val)
{
int r = 1;
if(es_strlen(valnode->val.d.estr) != 1) {
parser_errmsg("parameter '%s' must contain exactly one character "
"but contains %d - cannot be processed",
param->name, es_strlen(valnode->val.d.estr));
r = 0;
}
val->val.datatype = 'S';
val->val.d.estr = es_strdup(valnode->val.d.estr);
return r;
}
/* get a single parameter according to its definition. Helper to
* nvlstGetParams. returns 1 if success, 0 otherwise
*/
static inline int
nvlstGetParam(struct nvlst *valnode, struct cnfparamdescr *param,
struct cnfparamvals *val)
{
uchar *cstr;
int r;
DBGPRINTF("nvlstGetParam: name '%s', type %d, valnode->bUsed %d\n",
param->name, (int) param->type, valnode->bUsed);
if(valnode->val.datatype != 'S' && param->type != eCmdHdlrArray) {
parser_errmsg("parameter '%s' is not a string, which is not "
"permitted",
param->name);
r = 0;
goto done;
}
valnode->bUsed = 1;
val->bUsed = 1;
switch(param->type) {
case eCmdHdlrQueueType:
r = doGetQueueType(valnode, param, val);
break;
case eCmdHdlrUID:
r = doGetUID(valnode, param, val);
break;
case eCmdHdlrGID:
r = doGetGID(valnode, param, val);
break;
case eCmdHdlrBinary:
r = doGetBinary(valnode, param, val);
break;
case eCmdHdlrFileCreateMode:
r = doGetFileCreateMode(valnode, param, val);
break;
case eCmdHdlrInt:
r = doGetInt(valnode, param, val);
break;
case eCmdHdlrNonNegInt:
r = doGetNonNegInt(valnode, param, val);
break;
case eCmdHdlrPositiveInt:
r = doGetPositiveInt(valnode, param, val);
break;
case eCmdHdlrSize:
r = doGetSize(valnode, param, val);
break;
case eCmdHdlrGetChar:
r = doGetChar(valnode, param, val);
break;
case eCmdHdlrFacility:
cstr = (uchar*) es_str2cstr(valnode->val.d.estr, NULL);
val->val.datatype = 'N';
val->val.d.n = decodeSyslogName(cstr, syslogFacNames);
free(cstr);
r = 1;
break;
case eCmdHdlrSeverity:
cstr = (uchar*) es_str2cstr(valnode->val.d.estr, NULL);
val->val.datatype = 'N';
val->val.d.n = decodeSyslogName(cstr, syslogPriNames);
free(cstr);
r = 1;
break;
case eCmdHdlrGetWord:
r = doGetWord(valnode, param, val);
break;
case eCmdHdlrString:
val->val.datatype = 'S';
val->val.d.estr = es_strdup(valnode->val.d.estr);
r = 1;
break;
case eCmdHdlrArray:
r = doGetArray(valnode, param, val);
break;
case eCmdHdlrGoneAway:
parser_errmsg("parameter '%s' is no longer supported",
param->name);
r = 1; /* this *is* valid! */
break;
default:
dbgprintf("error: invalid param type\n");
r = 0;
break;
}
done: return r;
}
/* obtain conf params from an nvlst and emit error messages if
* necessary. If an already-existing param value is passed, that is
* used. If NULL is passed instead, a new one is allocated. In that case,
* it is the caller's duty to free it when no longer needed.
* NULL is returned on error, otherwise a pointer to the vals array.
*/
struct cnfparamvals*
nvlstGetParams(struct nvlst *lst, struct cnfparamblk *params,
struct cnfparamvals *vals)
{
int i;
int bValsWasNULL;
int bInError = 0;
struct nvlst *valnode;
struct cnfparamdescr *param;
if(params->version != CNFPARAMBLK_VERSION) {
dbgprintf("nvlstGetParams: invalid param block version "
"%d, expected %d\n",
params->version, CNFPARAMBLK_VERSION);
return NULL;
}
if(vals == NULL) {
bValsWasNULL = 1;
if((vals = calloc(params->nParams,
sizeof(struct cnfparamvals))) == NULL)
return NULL;
} else {
bValsWasNULL = 0;
}
for(i = 0 ; i < params->nParams ; ++i) {
param = params->descr + i;
if((valnode = nvlstFindNameCStr(lst, param->name)) == NULL) {
if(param->flags & CNFPARAM_REQUIRED) {
parser_errmsg("parameter '%s' required but not specified - "
"fix config", param->name);
bInError = 1;
}
continue;
}
if(vals[i].bUsed) {
parser_errmsg("parameter '%s' specified more than once - "
"one instance is ignored. Fix config", param->name);
continue;
}
if(!nvlstGetParam(valnode, param, vals + i)) {
bInError = 1;
}
}
if(bInError) {
if(bValsWasNULL)
cnfparamvalsDestruct(vals, params);
vals = NULL;
}
return vals;
}
/* check if at least one cnfparamval is actually set
* returns 1 if so, 0 otherwise
*/
int
cnfparamvalsIsSet(struct cnfparamblk *params, struct cnfparamvals *vals)
{
int i;
if(vals == NULL)
return 0;
if(params->version != CNFPARAMBLK_VERSION) {
dbgprintf("nvlstGetParams: invalid param block version "
"%d, expected %d\n",
params->version, CNFPARAMBLK_VERSION);
return 0;
}
for(i = 0 ; i < params->nParams ; ++i) {
if(vals[i].bUsed)
return 1;
}
return 0;
}
void
cnfparamsPrint(struct cnfparamblk *params, struct cnfparamvals *vals)
{
int i;
char *cstr;
for(i = 0 ; i < params->nParams ; ++i) {
dbgprintf("%s: ", params->descr[i].name);
if(vals[i].bUsed) {
// TODO: other types!
switch(vals[i].val.datatype) {
case 'S':
cstr = es_str2cstr(vals[i].val.d.estr, NULL);
dbgprintf(" '%s'", cstr);
free(cstr);
break;
case 'A':
cnfarrayPrint(vals[i].val.d.ar, 0);
break;
case 'N':
dbgprintf("%lld", vals[i].val.d.n);
break;
default:
dbgprintf("(unsupported datatype %c)",
vals[i].val.datatype);
}
} else {
dbgprintf("(unset)");
}
dbgprintf("\n");
}
}
struct cnfobj*
cnfobjNew(enum cnfobjType objType, struct nvlst *lst)
{
struct cnfobj *o;
if((o = malloc(sizeof(struct nvlst))) != NULL) {
nvlstChkDupes(lst);
o->objType = objType;
o->nvlst = lst;
o->subobjs = NULL;
o->script = NULL;
}
return o;
}
void
cnfobjDestruct(struct cnfobj *o)
{
if(o != NULL) {
nvlstDestruct(o->nvlst);
objlstDestruct(o->subobjs);
free(o);
}
}
void
cnfobjPrint(struct cnfobj *o)
{
dbgprintf("obj: '%s'\n", cnfobjType2str(o->objType));
nvlstPrint(o->nvlst);
}
struct cnfexpr*
cnfexprNew(unsigned nodetype, struct cnfexpr *l, struct cnfexpr *r)
{
struct cnfexpr *expr;
/* optimize some constructs during parsing */
if(nodetype == 'M' && r->nodetype == 'N') {
((struct cnfnumval*)r)->val *= -1;
expr = r;
goto done;
}
if((expr = malloc(sizeof(struct cnfexpr))) != NULL) {
expr->nodetype = nodetype;
expr->l = l;
expr->r = r;
}
done:
return expr;
}
/* ensure that retval is a number; if string is no number,
* try to convert it to one. The semantics from es_str2num()
* are used (bSuccess tells if the conversion went well or not).
*/
static long long
var2Number(struct var *r, int *bSuccess)
{
long long n;
if(r->datatype == 'S') {
n = es_str2num(r->d.estr, bSuccess);
} else {
if(r->datatype == 'J') {
#ifdef HAVE_JSON_OBJECT_NEW_INT64
n = (r->d.json == NULL) ? 0 : json_object_get_int64(r->d.json);
#else /* HAVE_JSON_OBJECT_NEW_INT64 */
n = (r->d.json == NULL) ? 0 : json_object_get_int(r->d.json);
#endif /* HAVE_JSON_OBJECT_NEW_INT64 */
} else {
n = r->d.n;
}
if(bSuccess != NULL)
*bSuccess = 1;
}
return n;
}
/* ensure that retval is a string
*/
static es_str_t *
var2String(struct var *__restrict__ const r, int *__restrict__ const bMustFree)
{
es_str_t *estr;
char *cstr;
rs_size_t lenstr;
if(r->datatype == 'N') {
*bMustFree = 1;
estr = es_newStrFromNumber(r->d.n);
} else if(r->datatype == 'J') {
*bMustFree = 1;
if(r->d.json == NULL) {
cstr = "",
lenstr = 0;
} else {
cstr = (char*)json_object_get_string(r->d.json);
lenstr = strlen(cstr);
}
estr = es_newStrFromCStr(cstr, lenstr);
} else {
*bMustFree = 0;
estr = r->d.estr;
}
return estr;
}
static uchar*
var2CString(struct var *__restrict__ const r, int *__restrict__ const bMustFree)
{
uchar *cstr;
es_str_t *estr;
estr = var2String(r, bMustFree);
cstr = (uchar*) es_str2cstr(estr, NULL);
if(*bMustFree)
es_deleteStr(estr);
*bMustFree = 1;
return cstr;
}
/* frees struct var members, but not the struct itself. This is because
* it usually is allocated on the stack. Callers why dynamically allocate
* struct var need to free the struct themselfes!
*/
static void
varFreeMembers(struct var *r)
{
/* Note: we do NOT need to free JSON objects, as we use
* json_object_object_get() to obtain the values, which does not
* increment the reference count. So json_object_put() [free] is
* neither required nor permitted (would free the original object!).
* So for the time being the string data type is the only one that
* we currently need to free.
*/
if(r->datatype == 'S') es_deleteStr(r->d.estr);
}
static rsRetVal
doExtractFieldByChar(uchar *str, uchar delim, const int matchnbr, uchar **resstr)
{
int iCurrFld;
int iLen;
uchar *pBuf;
uchar *pFld;
uchar *pFldEnd;
DEFiRet;
/* first, skip to the field in question */
iCurrFld = 1;
pFld = str;
while(*pFld && iCurrFld < matchnbr) {
/* skip fields until the requested field or end of string is found */
while(*pFld && (uchar) *pFld != delim)
++pFld; /* skip to field terminator */
if(*pFld == delim) {
++pFld; /* eat it */
++iCurrFld;
}
}
dbgprintf("field() field requested %d, field found %d\n", matchnbr, iCurrFld);
if(iCurrFld == matchnbr) {
/* field found, now extract it */
/* first of all, we need to find the end */
pFldEnd = pFld;
while(*pFldEnd && *pFldEnd != delim)
++pFldEnd;
--pFldEnd; /* we are already at the delimiter - so we need to
* step back a little not to copy it as part of the field. */
/* we got our end pointer, now do the copy */
iLen = pFldEnd - pFld + 1; /* the +1 is for an actual char, NOT \0! */
CHKmalloc(pBuf = MALLOC((iLen + 1) * sizeof(char)));
/* now copy */
memcpy(pBuf, pFld, iLen);
pBuf[iLen] = '\0'; /* terminate it */
*resstr = pBuf;
} else {
ABORT_FINALIZE(RS_RET_FIELD_NOT_FOUND);
}
finalize_it:
RETiRet;
}
static rsRetVal
doExtractFieldByStr(uchar *str, char *delim, const rs_size_t lenDelim, const int matchnbr, uchar **resstr)
{
int iCurrFld;
int iLen;
uchar *pBuf;
uchar *pFld;
uchar *pFldEnd;
DEFiRet;
/* first, skip to the field in question */
iCurrFld = 1;
pFld = str;
while(pFld != NULL && iCurrFld < matchnbr) {
if((pFld = (uchar*) strstr((char*)pFld, delim)) != NULL) {
pFld += lenDelim;
++iCurrFld;
}
}
dbgprintf("field() field requested %d, field found %d\n", matchnbr, iCurrFld);
if(iCurrFld == matchnbr) {
/* field found, now extract it */
/* first of all, we need to find the end */
pFldEnd = (uchar*) strstr((char*)pFld, delim);
if(pFldEnd == NULL) {
iLen = strlen((char*) pFld);
} else { /* found delmiter! Note that pFldEnd *is* already on
* the first delmi char, we don't need that. */
iLen = pFldEnd - pFld;
}
/* we got our end pointer, now do the copy */
CHKmalloc(pBuf = MALLOC((iLen + 1) * sizeof(char)));
/* now copy */
memcpy(pBuf, pFld, iLen);
pBuf[iLen] = '\0'; /* terminate it */
*resstr = pBuf;
} else {
ABORT_FINALIZE(RS_RET_FIELD_NOT_FOUND);
}
finalize_it:
RETiRet;
}
static inline void
doFunc_re_extract(struct cnffunc *func, struct var *ret, void* usrptr)
{
size_t submatchnbr;
short matchnbr;
regmatch_t pmatch[50];
int bMustFree;
es_str_t *estr = NULL; /* init just to keep compiler happy */
char *str;
struct var r[CNFFUNC_MAX_ARGS];
int iLenBuf;
unsigned iOffs;
short iTry = 0;
uchar bFound = 0;
iOffs = 0;
sbool bHadNoMatch = 0;
cnfexprEval(func->expr[0], &r[0], usrptr);
/* search string is already part of the compiled regex, so we don't
* need it here!
*/
cnfexprEval(func->expr[2], &r[2], usrptr);
cnfexprEval(func->expr[3], &r[3], usrptr);
str = (char*) var2CString(&r[0], &bMustFree);
matchnbr = (short) var2Number(&r[2], NULL);
submatchnbr = (size_t) var2Number(&r[3], NULL);
if(submatchnbr >= sizeof(pmatch)/sizeof(regmatch_t)) {
DBGPRINTF("re_extract() submatch %zd is too large\n", submatchnbr);
bHadNoMatch = 1;
goto finalize_it;
}
/* first see if we find a match, iterating through the series of
* potential matches over the string.
*/
while(!bFound) {
int iREstat;
iREstat = regexp.regexec(func->funcdata, (char*)(str + iOffs),
submatchnbr+1, pmatch, 0);
dbgprintf("re_extract: regexec return is %d\n", iREstat);
if(iREstat == 0) {
if(pmatch[0].rm_so == -1) {
dbgprintf("oops ... start offset of successful regexec is -1\n");
break;
}
if(iTry == matchnbr) {
bFound = 1;
} else {
dbgprintf("re_extract: regex found at offset %d, new offset %d, tries %d\n",
iOffs, (int) (iOffs + pmatch[0].rm_eo), iTry);
iOffs += pmatch[0].rm_eo;
++iTry;
}
} else {
break;
}
}
dbgprintf("re_extract: regex: end search, found %d\n", bFound);
if(!bFound) {
bHadNoMatch = 1;
goto finalize_it;
} else {
/* Match- but did it match the one we wanted? */
/* we got no match! */
if(pmatch[submatchnbr].rm_so == -1) {
bHadNoMatch = 1;
goto finalize_it;
}
/* OK, we have a usable match - we now need to malloc pB */
iLenBuf = pmatch[submatchnbr].rm_eo - pmatch[submatchnbr].rm_so;
estr = es_newStrFromBuf(str + iOffs + pmatch[submatchnbr].rm_so,
iLenBuf);
}
finalize_it:
if(bMustFree) free(str);
varFreeMembers(&r[0]);
varFreeMembers(&r[2]);
varFreeMembers(&r[3]);
if(bHadNoMatch) {
cnfexprEval(func->expr[4], &r[4], usrptr);
estr = var2String(&r[4], &bMustFree);
/* Note that we do NOT free the string that was returned/created
* for r[4]. We pass it to the caller, which in turn frees it.
* This saves us doing one unnecessary memory alloc & write.
*/
}
ret->datatype = 'S';
ret->d.estr = estr;
return;
}
/* note that we do not need to evaluate any parameters, as the template pointer
* is set during initialization().
* TODO: think if we can keep our buffer; but that may not be trival thinking about
* multiple threads.
*/
static void
doFunc_exec_template(struct cnffunc *__restrict__ const func,
struct var *__restrict__ const ret,
msg_t *const pMsg)
{
rsRetVal localRet;
actWrkrIParams_t iparam;
wtiInitIParam(&iparam);
localRet = tplToString(func->funcdata, pMsg, &iparam, NULL);
if(localRet == RS_RET_OK) {
ret->d.estr = es_newStrFromCStr((char*)iparam.param, iparam.lenStr);
} else {
ret->d.estr = es_newStrFromCStr("", 0);
}
ret->datatype = 'S';
free(iparam.param);
return;
}
/* Perform a function call. This has been moved out of cnfExprEval in order
* to keep the code small and easier to maintain.
*/
static inline void
doFuncCall(struct cnffunc *__restrict__ const func, struct var *__restrict__ const ret,
void *__restrict__ const usrptr)
{
char *fname;
char *envvar;
int bMustFree;
es_str_t *estr;
char *str;
uchar *resStr;
int retval;
struct var r[CNFFUNC_MAX_ARGS];
int delim;
int matchnbr;
struct funcData_prifilt *pPrifilt;
rsRetVal localRet;
dbgprintf("rainerscript: executing function id %d\n", func->fID);
switch(func->fID) {
case CNFFUNC_STRLEN:
if(func->expr[0]->nodetype == 'S') {
/* if we already have a string, we do not need to
* do one more recursive call.
*/
ret->d.n = es_strlen(((struct cnfstringval*) func->expr[0])->estr);
} else {
cnfexprEval(func->expr[0], &r[0], usrptr);
estr = var2String(&r[0], &bMustFree);
ret->d.n = es_strlen(estr);
if(bMustFree) es_deleteStr(estr);
if(r[0].datatype == 'S') es_deleteStr(r[0].d.estr);
}
ret->datatype = 'N';
break;
case CNFFUNC_GETENV:
/* note: the optimizer shall have replaced calls to getenv()
* with a constant argument to a single string (once obtained via
* getenv()). So we do NOT need to check if there is just a
* string following.
*/
cnfexprEval(func->expr[0], &r[0], usrptr);
estr = var2String(&r[0], &bMustFree);
str = (char*) es_str2cstr(estr, NULL);
envvar = getenv(str);
if(envvar == NULL) {
ret->d.estr = es_newStr(0);
} else {
ret->d.estr = es_newStrFromCStr(envvar, strlen(envvar));
}
ret->datatype = 'S';
if(bMustFree) es_deleteStr(estr);
varFreeMembers(&r[0]);
free(str);
break;
case CNFFUNC_TOLOWER:
cnfexprEval(func->expr[0], &r[0], usrptr);
estr = var2String(&r[0], &bMustFree);
if(!bMustFree) /* let caller handle that M) */
estr = es_strdup(estr);
es_tolower(estr);
ret->datatype = 'S';
ret->d.estr = estr;
varFreeMembers(&r[0]);
break;
case CNFFUNC_CSTR:
cnfexprEval(func->expr[0], &r[0], usrptr);
estr = var2String(&r[0], &bMustFree);
if(!bMustFree) /* let caller handle that M) */
estr = es_strdup(estr);
ret->datatype = 'S';
ret->d.estr = estr;
varFreeMembers(&r[0]);
break;
case CNFFUNC_CNUM:
if(func->expr[0]->nodetype == 'N') {
ret->d.n = ((struct cnfnumval*)func->expr[0])->val;
} else if(func->expr[0]->nodetype == 'S') {
ret->d.n = es_str2num(((struct cnfstringval*) func->expr[0])->estr,
NULL);
} else {
cnfexprEval(func->expr[0], &r[0], usrptr);
ret->d.n = var2Number(&r[0], NULL);
varFreeMembers(&r[0]);
}
ret->datatype = 'N';
break;
case CNFFUNC_RE_MATCH:
cnfexprEval(func->expr[0], &r[0], usrptr);
str = (char*) var2CString(&r[0], &bMustFree);
retval = regexp.regexec(func->funcdata, str, 0, NULL, 0);
if(retval == 0)
ret->d.n = 1;
else {
ret->d.n = 0;
if(retval != REG_NOMATCH) {
DBGPRINTF("re_match: regexec returned error %d\n", retval);
}
}
ret->datatype = 'N';
if(bMustFree) free(str);
varFreeMembers(&r[0]);
break;
case CNFFUNC_RE_EXTRACT:
doFunc_re_extract(func, ret, usrptr);
break;
case CNFFUNC_EXEC_TEMPLATE:
doFunc_exec_template(func, ret, (msg_t*) usrptr);
break;
case CNFFUNC_FIELD:
cnfexprEval(func->expr[0], &r[0], usrptr);
cnfexprEval(func->expr[1], &r[1], usrptr);
cnfexprEval(func->expr[2], &r[2], usrptr);
str = (char*) var2CString(&r[0], &bMustFree);
matchnbr = var2Number(&r[2], NULL);
if(r[1].datatype == 'S') {
char *delimstr;
delimstr = (char*) es_str2cstr(r[1].d.estr, NULL);
localRet = doExtractFieldByStr((uchar*)str, delimstr, es_strlen(r[1].d.estr),
matchnbr, &resStr);
free(delimstr);
} else {
delim = var2Number(&r[1], NULL);
localRet = doExtractFieldByChar((uchar*)str, (char) delim, matchnbr, &resStr);
}
if(localRet == RS_RET_OK) {
ret->d.estr = es_newStrFromCStr((char*)resStr, strlen((char*)resStr));
free(resStr);
} else if(localRet == RS_RET_FIELD_NOT_FOUND) {
ret->d.estr = es_newStrFromCStr("***FIELD NOT FOUND***",
sizeof("***FIELD NOT FOUND***")-1);
} else {
ret->d.estr = es_newStrFromCStr("***ERROR in field() FUNCTION***",
sizeof("***ERROR in field() FUNCTION***")-1);
}
ret->datatype = 'S';
if(bMustFree) free(str);
varFreeMembers(&r[0]);
varFreeMembers(&r[1]);
varFreeMembers(&r[2]);
break;
case CNFFUNC_PRIFILT:
pPrifilt = (struct funcData_prifilt*) func->funcdata;
if( (pPrifilt->pmask[((msg_t*)usrptr)->iFacility] == TABLE_NOPRI) ||
((pPrifilt->pmask[((msg_t*)usrptr)->iFacility]
& (1<<((msg_t*)usrptr)->iSeverity)) == 0) )
ret->d.n = 0;
else
ret->d.n = 1;
ret->datatype = 'N';
break;
case CNFFUNC_LOOKUP:
dbgprintf("DDDD: executing lookup\n");
ret->datatype = 'S';
if(func->funcdata == NULL) {
ret->d.estr = es_newStrFromCStr("TABLE-NOT-FOUND", sizeof("TABLE-NOT-FOUND")-1);
break;
}
cnfexprEval(func->expr[1], &r[1], usrptr);
str = (char*) var2CString(&r[1], &bMustFree);
ret->d.estr = lookupKey_estr(func->funcdata, (uchar*)str);
if(bMustFree) free(str);
if(r[1].datatype == 'S') es_deleteStr(r[1].d.estr);
break;
default:
if(Debug) {
fname = es_str2cstr(func->fname, NULL);
dbgprintf("rainerscript: invalid function id %u (name '%s')\n",
(unsigned) func->fID, fname);
free(fname);
}
ret->datatype = 'N';
ret->d.n = 0;
}
}
static inline void
evalVar(struct cnfvar *__restrict__ const var, void *__restrict__ const usrptr,
struct var *__restrict__ const ret)
{
rs_size_t propLen;
uchar *pszProp = NULL;
unsigned short bMustBeFreed = 0;
rsRetVal localRet;
struct json_object *json;
if(var->prop.id == PROP_CEE ||
var->prop.id == PROP_LOCAL_VAR ||
var->prop.id == PROP_GLOBAL_VAR ) {
localRet = msgGetJSONPropJSON((msg_t*)usrptr, &var->prop, &json);
ret->datatype = 'J';
ret->d.json = (localRet == RS_RET_OK) ? json : NULL;
DBGPRINTF("rainerscript: var %d:%s: '%s'\n", var->prop.id, var->prop.name,
(ret->d.json == NULL) ? "" : json_object_get_string(ret->d.json));
} else {
ret->datatype = 'S';
pszProp = (uchar*) MsgGetProp((msg_t*)usrptr, NULL, &var->prop, &propLen, &bMustBeFreed, NULL);
ret->d.estr = es_newStrFromCStr((char*)pszProp, propLen);
DBGPRINTF("rainerscript: var %d: '%s'\n", var->prop.id, pszProp);
if(bMustBeFreed)
free(pszProp);
}
}
/* perform a string comparision operation against a while array. Semantic is
* that one one comparison is true, the whole construct is true.
* TODO: we can obviously optimize this process. One idea is to
* compile a regex, which should work faster than serial comparison.
* Note: compiling a regex does NOT work at all. I experimented with that
* and it was generally 5 to 10 times SLOWER than what we do here...
*/
static int
evalStrArrayCmp(es_str_t *const estr_l, struct cnfarray *__restrict__ const ar,
const int cmpop)
{
int i;
int r = 0;
es_str_t **res;
if(cmpop == CMP_EQ) {
res = bsearch(&estr_l, ar->arr, ar->nmemb, sizeof(es_str_t*), qs_arrcmp);
r = res != NULL;
} else if(cmpop == CMP_NE) {
res = bsearch(&estr_l, ar->arr, ar->nmemb, sizeof(es_str_t*), qs_arrcmp);
r = res == NULL;
} else {
for(i = 0 ; (r == 0) && (i < ar->nmemb) ; ++i) {
switch(cmpop) {
case CMP_STARTSWITH:
r = es_strncmp(estr_l, ar->arr[i], es_strlen(ar->arr[i])) == 0;
break;
case CMP_STARTSWITHI:
r = es_strncasecmp(estr_l, ar->arr[i], es_strlen(ar->arr[i])) == 0;
break;
case CMP_CONTAINS:
r = es_strContains(estr_l, ar->arr[i]) != -1;
break;
case CMP_CONTAINSI:
r = es_strCaseContains(estr_l, ar->arr[i]) != -1;
break;
}
}
}
return r;
}
#define FREE_BOTH_RET \
varFreeMembers(&r); \
varFreeMembers(&l)
#define COMP_NUM_BINOP(x) \
cnfexprEval(expr->l, &l, usrptr); \
cnfexprEval(expr->r, &r, usrptr); \
ret->datatype = 'N'; \
ret->d.n = var2Number(&l, &convok_l) x var2Number(&r, &convok_r); \
FREE_BOTH_RET
/* NOTE: array as right-hand argument MUST be handled by user */
#define PREP_TWO_STRINGS \
cnfexprEval(expr->l, &l, usrptr); \
estr_l = var2String(&l, &bMustFree2); \
if(expr->r->nodetype == 'S') { \
estr_r = ((struct cnfstringval*)expr->r)->estr;\
bMustFree = 0; \
} else if(expr->r->nodetype != 'A') { \
cnfexprEval(expr->r, &r, usrptr); \
estr_r = var2String(&r, &bMustFree); \
} else { \
/* Note: this is not really necessary, but if we do not */ \
/* do it, we get a very irritating compiler warning... */ \
estr_r = NULL; \
}
#define FREE_TWO_STRINGS \
if(bMustFree) es_deleteStr(estr_r); \
if(expr->r->nodetype != 'S' && expr->r->nodetype != 'A') varFreeMembers(&r); \
if(bMustFree2) es_deleteStr(estr_l); \
varFreeMembers(&l)
/* evaluate an expression.
* Note that we try to avoid malloc whenever possible (because of
* the large overhead it has, especially on highly threaded programs).
* As such, the each caller level must provide buffer space for the
* result on its stack during recursion. This permits the callee to store
* the return value without malloc. As the value is a somewhat larger
* struct, we could otherwise not return it without malloc.
* Note that we implement boolean shortcut operations. For our needs, there
* simply is no case where full evaluation would make any sense at all.
*/
void
cnfexprEval(const struct cnfexpr *__restrict__ const expr, struct var *__restrict__ const ret,
void *__restrict__ const usrptr)
{
struct var r, l; /* memory for subexpression results */
es_str_t *__restrict__ estr_r, *__restrict__ estr_l;
int convok_r, convok_l;
int bMustFree, bMustFree2;
long long n_r, n_l;
DBGPRINTF("eval expr %p, type '%s'\n", expr, tokenToString(expr->nodetype));
switch(expr->nodetype) {
/* note: comparison operations are extremely similar. The code can be copyied, only
* places flagged with "CMP" need to be changed.
*/
case CMP_EQ:
/* this is optimized in regard to right param as a PoC for all compOps
* So this is a NOT yet the copy template!
*/
cnfexprEval(expr->l, &l, usrptr);
ret->datatype = 'N';
if(l.datatype == 'S') {
if(expr->r->nodetype == 'S') {
ret->d.n = !es_strcmp(l.d.estr, ((struct cnfstringval*)expr->r)->estr); /*CMP*/
} else if(expr->r->nodetype == 'A') {
ret->d.n = evalStrArrayCmp(l.d.estr, (struct cnfarray*) expr->r, CMP_EQ);
} else {
cnfexprEval(expr->r, &r, usrptr);
if(r.datatype == 'S') {
ret->d.n = !es_strcmp(l.d.estr, r.d.estr); /*CMP*/
} else {
n_l = var2Number(&l, &convok_l);
if(convok_l) {
ret->d.n = (n_l == r.d.n); /*CMP*/
} else {
estr_r = var2String(&r, &bMustFree);
ret->d.n = !es_strcmp(l.d.estr, estr_r); /*CMP*/
if(bMustFree) es_deleteStr(estr_r);
}
}
varFreeMembers(&r);
}
} else if(l.datatype == 'J') {
estr_l = var2String(&l, &bMustFree);
if(expr->r->nodetype == 'S') {
ret->d.n = !es_strcmp(estr_l, ((struct cnfstringval*)expr->r)->estr); /*CMP*/
} else if(expr->r->nodetype == 'A') {
ret->d.n = evalStrArrayCmp(estr_l, (struct cnfarray*) expr->r, CMP_EQ);
} else {
cnfexprEval(expr->r, &r, usrptr);
if(r.datatype == 'S') {
ret->d.n = !es_strcmp(estr_l, r.d.estr); /*CMP*/
} else {
n_l = var2Number(&l, &convok_l);
if(convok_l) {
ret->d.n = (n_l == r.d.n); /*CMP*/
} else {
estr_r = var2String(&r, &bMustFree2);
ret->d.n = !es_strcmp(estr_l, estr_r); /*CMP*/
if(bMustFree2) es_deleteStr(estr_r);
}
}
varFreeMembers(&r);
}
if(bMustFree) es_deleteStr(estr_l);
} else {
cnfexprEval(expr->r, &r, usrptr);
if(r.datatype == 'S') {
n_r = var2Number(&r, &convok_r);
if(convok_r) {
ret->d.n = (l.d.n == n_r); /*CMP*/
} else {
estr_l = var2String(&l, &bMustFree);
ret->d.n = !es_strcmp(r.d.estr, estr_l); /*CMP*/
if(bMustFree) es_deleteStr(estr_l);
}
} else {
ret->d.n = (l.d.n == r.d.n); /*CMP*/
}
varFreeMembers(&r);
}
varFreeMembers(&l);
break;
case CMP_NE:
cnfexprEval(expr->l, &l, usrptr);
cnfexprEval(expr->r, &r, usrptr);
ret->datatype = 'N';
if(l.datatype == 'S') {
if(expr->r->nodetype == 'S') {
ret->d.n = es_strcmp(l.d.estr, ((struct cnfstringval*)expr->r)->estr); /*CMP*/
} else if(expr->r->nodetype == 'A') {
ret->d.n = evalStrArrayCmp(l.d.estr, (struct cnfarray*) expr->r, CMP_NE);
} else {
if(r.datatype == 'S') {
ret->d.n = es_strcmp(l.d.estr, r.d.estr); /*CMP*/
} else {
n_l = var2Number(&l, &convok_l);
if(convok_l) {
ret->d.n = (n_l != r.d.n); /*CMP*/
} else {
estr_r = var2String(&r, &bMustFree);
ret->d.n = es_strcmp(l.d.estr, estr_r); /*CMP*/
if(bMustFree) es_deleteStr(estr_r);
}
}
}
} else if(l.datatype == 'J') {
estr_l = var2String(&l, &bMustFree);
if(r.datatype == 'S') {
ret->d.n = es_strcmp(estr_l, r.d.estr); /*CMP*/
} else {
n_l = var2Number(&l, &convok_l);
if(convok_l) {
ret->d.n = (n_l != r.d.n); /*CMP*/
} else {
estr_r = var2String(&r, &bMustFree2);
ret->d.n = es_strcmp(estr_l, estr_r); /*CMP*/
if(bMustFree2) es_deleteStr(estr_r);
}
}
if(bMustFree) es_deleteStr(estr_l);
} else {
if(r.datatype == 'S') {
n_r = var2Number(&r, &convok_r);
if(convok_r) {
ret->d.n = (l.d.n != n_r); /*CMP*/
} else {
estr_l = var2String(&l, &bMustFree);
ret->d.n = es_strcmp(r.d.estr, estr_l); /*CMP*/
if(bMustFree) es_deleteStr(estr_l);
}
} else {
ret->d.n = (l.d.n != r.d.n); /*CMP*/
}
}
FREE_BOTH_RET;
break;
case CMP_LE:
cnfexprEval(expr->l, &l, usrptr);
cnfexprEval(expr->r, &r, usrptr);
ret->datatype = 'N';
if(l.datatype == 'S') {
if(r.datatype == 'S') {
ret->d.n = es_strcmp(l.d.estr, r.d.estr) <= 0; /*CMP*/
} else {
n_l = var2Number(&l, &convok_l);
if(convok_l) {
ret->d.n = (n_l <= r.d.n); /*CMP*/
} else {
estr_r = var2String(&r, &bMustFree);
ret->d.n = es_strcmp(l.d.estr, estr_r) <= 0; /*CMP*/
if(bMustFree) es_deleteStr(estr_r);
}
}
} else if(l.datatype == 'J') {
estr_l = var2String(&l, &bMustFree);
if(r.datatype == 'S') {
ret->d.n = es_strcmp(estr_l, r.d.estr) <= 0; /*CMP*/
} else {
n_l = var2Number(&l, &convok_l);
if(convok_l) {
ret->d.n = (n_l <= r.d.n); /*CMP*/
} else {
estr_r = var2String(&r, &bMustFree2);
ret->d.n = es_strcmp(estr_l, estr_r) <= 0; /*CMP*/
if(bMustFree2) es_deleteStr(estr_r);
}
}
if(bMustFree) es_deleteStr(estr_l);
} else {
if(r.datatype == 'S') {
n_r = var2Number(&r, &convok_r);
if(convok_r) {
ret->d.n = (l.d.n <= n_r); /*CMP*/
} else {
estr_l = var2String(&l, &bMustFree);
ret->d.n = es_strcmp(r.d.estr, estr_l) <= 0; /*CMP*/
if(bMustFree) es_deleteStr(estr_l);
}
} else {
ret->d.n = (l.d.n <= r.d.n); /*CMP*/
}
}
FREE_BOTH_RET;
break;
case CMP_GE:
cnfexprEval(expr->l, &l, usrptr);
cnfexprEval(expr->r, &r, usrptr);
ret->datatype = 'N';
if(l.datatype == 'S') {
if(r.datatype == 'S') {
ret->d.n = es_strcmp(l.d.estr, r.d.estr) >= 0; /*CMP*/
} else {
n_l = var2Number(&l, &convok_l);
if(convok_l) {
ret->d.n = (n_l >= r.d.n); /*CMP*/
} else {
estr_r = var2String(&r, &bMustFree);
ret->d.n = es_strcmp(l.d.estr, estr_r) >= 0; /*CMP*/
if(bMustFree) es_deleteStr(estr_r);
}
}
} else if(l.datatype == 'J') {
estr_l = var2String(&l, &bMustFree);
if(r.datatype == 'S') {
ret->d.n = es_strcmp(estr_l, r.d.estr) >= 0; /*CMP*/
} else {
n_l = var2Number(&l, &convok_l);
if(convok_l) {
ret->d.n = (n_l >= r.d.n); /*CMP*/
} else {
estr_r = var2String(&r, &bMustFree2);
ret->d.n = es_strcmp(estr_l, estr_r) >= 0; /*CMP*/
if(bMustFree2) es_deleteStr(estr_r);
}
}
if(bMustFree) es_deleteStr(estr_l);
} else {
if(r.datatype == 'S') {
n_r = var2Number(&r, &convok_r);
if(convok_r) {
ret->d.n = (l.d.n >= n_r); /*CMP*/
} else {
estr_l = var2String(&l, &bMustFree);
ret->d.n = es_strcmp(r.d.estr, estr_l) >= 0; /*CMP*/
if(bMustFree) es_deleteStr(estr_l);
}
} else {
ret->d.n = (l.d.n >= r.d.n); /*CMP*/
}
}
FREE_BOTH_RET;
break;
case CMP_LT:
cnfexprEval(expr->l, &l, usrptr);
cnfexprEval(expr->r, &r, usrptr);
ret->datatype = 'N';
if(l.datatype == 'S') {
if(r.datatype == 'S') {
ret->d.n = es_strcmp(l.d.estr, r.d.estr) < 0; /*CMP*/
} else {
n_l = var2Number(&l, &convok_l);
if(convok_l) {
ret->d.n = (n_l < r.d.n); /*CMP*/
} else {
estr_r = var2String(&r, &bMustFree);
ret->d.n = es_strcmp(l.d.estr, estr_r) < 0; /*CMP*/
if(bMustFree) es_deleteStr(estr_r);
}
}
} else if(l.datatype == 'J') {
estr_l = var2String(&l, &bMustFree);
if(r.datatype == 'S') {
ret->d.n = es_strcmp(estr_l, r.d.estr) < 0; /*CMP*/
} else {
n_l = var2Number(&l, &convok_l);
if(convok_l) {
ret->d.n = (n_l < r.d.n); /*CMP*/
} else {
estr_r = var2String(&r, &bMustFree2);
ret->d.n = es_strcmp(estr_l, estr_r) < 0; /*CMP*/
if(bMustFree2) es_deleteStr(estr_r);
}
}
if(bMustFree) es_deleteStr(estr_l);
} else {
if(r.datatype == 'S') {
n_r = var2Number(&r, &convok_r);
if(convok_r) {
ret->d.n = (l.d.n < n_r); /*CMP*/
} else {
estr_l = var2String(&l, &bMustFree);
ret->d.n = es_strcmp(r.d.estr, estr_l) < 0; /*CMP*/
if(bMustFree) es_deleteStr(estr_l);
}
} else {
ret->d.n = (l.d.n < r.d.n); /*CMP*/
}
}
FREE_BOTH_RET;
break;
case CMP_GT:
cnfexprEval(expr->l, &l, usrptr);
cnfexprEval(expr->r, &r, usrptr);
ret->datatype = 'N';
if(l.datatype == 'S') {
if(r.datatype == 'S') {
ret->d.n = es_strcmp(l.d.estr, r.d.estr) > 0; /*CMP*/
} else {
n_l = var2Number(&l, &convok_l);
if(convok_l) {
ret->d.n = (n_l > r.d.n); /*CMP*/
} else {
estr_r = var2String(&r, &bMustFree);
ret->d.n = es_strcmp(l.d.estr, estr_r) > 0; /*CMP*/
if(bMustFree) es_deleteStr(estr_r);
}
}
} else if(l.datatype == 'J') {
estr_l = var2String(&l, &bMustFree);
if(r.datatype == 'S') {
ret->d.n = es_strcmp(estr_l, r.d.estr) > 0; /*CMP*/
} else {
n_l = var2Number(&l, &convok_l);
if(convok_l) {
ret->d.n = (n_l > r.d.n); /*CMP*/
} else {
estr_r = var2String(&r, &bMustFree2);
ret->d.n = es_strcmp(estr_l, estr_r) > 0; /*CMP*/
if(bMustFree2) es_deleteStr(estr_r);
}
}
if(bMustFree) es_deleteStr(estr_l);
} else {
if(r.datatype == 'S') {
n_r = var2Number(&r, &convok_r);
if(convok_r) {
ret->d.n = (l.d.n > n_r); /*CMP*/
} else {
estr_l = var2String(&l, &bMustFree);
ret->d.n = es_strcmp(r.d.estr, estr_l) > 0; /*CMP*/
if(bMustFree) es_deleteStr(estr_l);
}
} else {
ret->d.n = (l.d.n > r.d.n); /*CMP*/
}
}
FREE_BOTH_RET;
break;
case CMP_STARTSWITH:
PREP_TWO_STRINGS;
ret->datatype = 'N';
if(expr->r->nodetype == 'A') {
ret->d.n = evalStrArrayCmp(estr_l, (struct cnfarray*) expr->r, CMP_STARTSWITH);
bMustFree = 0;
} else {
ret->d.n = es_strncmp(estr_l, estr_r, estr_r->lenStr) == 0;
}
FREE_TWO_STRINGS;
break;
case CMP_STARTSWITHI:
PREP_TWO_STRINGS;
ret->datatype = 'N';
if(expr->r->nodetype == 'A') {
ret->d.n = evalStrArrayCmp(estr_l, (struct cnfarray*) expr->r, CMP_STARTSWITHI);
bMustFree = 0;
} else {
ret->d.n = es_strncasecmp(estr_l, estr_r, estr_r->lenStr) == 0;
}
FREE_TWO_STRINGS;
break;
case CMP_CONTAINS:
PREP_TWO_STRINGS;
ret->datatype = 'N';
if(expr->r->nodetype == 'A') {
ret->d.n = evalStrArrayCmp(estr_l, (struct cnfarray*) expr->r, CMP_CONTAINS);
bMustFree = 0;
} else {
ret->d.n = es_strContains(estr_l, estr_r) != -1;
}
FREE_TWO_STRINGS;
break;
case CMP_CONTAINSI:
PREP_TWO_STRINGS;
ret->datatype = 'N';
if(expr->r->nodetype == 'A') {
ret->d.n = evalStrArrayCmp(estr_l, (struct cnfarray*) expr->r, CMP_CONTAINSI);
bMustFree = 0;
} else {
ret->d.n = es_strCaseContains(estr_l, estr_r) != -1;
}
FREE_TWO_STRINGS;
break;
case OR:
cnfexprEval(expr->l, &l, usrptr);
ret->datatype = 'N';
if(var2Number(&l, &convok_l)) {
ret->d.n = 1ll;
} else {
cnfexprEval(expr->r, &r, usrptr);
if(var2Number(&r, &convok_r))
ret->d.n = 1ll;
else
ret->d.n = 0ll;
varFreeMembers(&r);
}
varFreeMembers(&l);
break;
case AND:
cnfexprEval(expr->l, &l, usrptr);
ret->datatype = 'N';
if(var2Number(&l, &convok_l)) {
cnfexprEval(expr->r, &r, usrptr);
if(var2Number(&r, &convok_r))
ret->d.n = 1ll;
else
ret->d.n = 0ll;
varFreeMembers(&r);
} else {
ret->d.n = 0ll;
}
varFreeMembers(&l);
break;
case NOT:
cnfexprEval(expr->r, &r, usrptr);
ret->datatype = 'N';
ret->d.n = !var2Number(&r, &convok_r);
varFreeMembers(&r);
break;
case 'N':
ret->datatype = 'N';
ret->d.n = ((struct cnfnumval*)expr)->val;
break;
case 'S':
ret->datatype = 'S';
ret->d.estr = es_strdup(((struct cnfstringval*)expr)->estr);
break;
case 'A':
/* if an array is used with "normal" operations, it just evaluates
* to its first element.
*/
ret->datatype = 'S';
ret->d.estr = es_strdup(((struct cnfarray*)expr)->arr[0]);
break;
case 'V':
evalVar((struct cnfvar*)expr, usrptr, ret);
break;
case '&':
/* TODO: think about optimization, should be possible ;) */
PREP_TWO_STRINGS;
if(expr->r->nodetype == 'A') {
estr_r = ((struct cnfarray*)expr->r)->arr[0];
bMustFree = 0;
}
ret->datatype = 'S';
ret->d.estr = es_strdup(estr_l);
es_addStr(&ret->d.estr, estr_r);
FREE_TWO_STRINGS;
break;
case '+':
COMP_NUM_BINOP(+);
break;
case '-':
COMP_NUM_BINOP(-);
break;
case '*':
COMP_NUM_BINOP(*);
break;
case '/':
COMP_NUM_BINOP(/);
break;
case '%':
COMP_NUM_BINOP(%);
break;
case 'M':
cnfexprEval(expr->r, &r, usrptr);
ret->datatype = 'N';
ret->d.n = -var2Number(&r, &convok_r);
varFreeMembers(&r);
break;
case 'F':
doFuncCall((struct cnffunc*) expr, ret, usrptr);
break;
default:
ret->datatype = 'N';
ret->d.n = 0ll;
dbgprintf("eval error: unknown nodetype %u['%c']\n",
(unsigned) expr->nodetype, (char) expr->nodetype);
break;
}
DBGPRINTF("eval expr %p, return datatype '%c'\n", expr, ret->datatype);
}
//---------------------------------------------------------
void
cnfarrayContentDestruct(struct cnfarray *ar)
{
unsigned short i;
for(i = 0 ; i < ar->nmemb ; ++i) {
es_deleteStr(ar->arr[i]);
}
free(ar->arr);
}
static inline void
cnffuncDestruct(struct cnffunc *func)
{
unsigned short i;
for(i = 0 ; i < func->nParams ; ++i) {
cnfexprDestruct(func->expr[i]);
}
/* some functions require special destruction */
switch(func->fID) {
case CNFFUNC_RE_MATCH:
case CNFFUNC_RE_EXTRACT:
if(func->funcdata != NULL)
regexp.regfree(func->funcdata);
break;
default:break;
}
if(func->fID != CNFFUNC_EXEC_TEMPLATE)
free(func->funcdata);
free(func->fname);
}
/* Destruct an expression and all sub-expressions contained in it.
*/
void
cnfexprDestruct(struct cnfexpr *__restrict__ const expr)
{
if(expr == NULL) {
/* this is valid and can happen during optimizer run! */
DBGPRINTF("cnfexprDestruct got NULL ptr - valid, so doing nothing\n");
return;
}
DBGPRINTF("cnfexprDestruct expr %p, type '%s'\n", expr, tokenToString(expr->nodetype));
switch(expr->nodetype) {
case CMP_NE:
case CMP_EQ:
case CMP_LE:
case CMP_GE:
case CMP_LT:
case CMP_GT:
case CMP_STARTSWITH:
case CMP_STARTSWITHI:
case CMP_CONTAINS:
case CMP_CONTAINSI:
case OR:
case AND:
case '&':
case '+':
case '-':
case '*':
case '/':
case '%': /* binary */
cnfexprDestruct(expr->l);
cnfexprDestruct(expr->r);
break;
case NOT:
case 'M': /* unary */
cnfexprDestruct(expr->r);
break;
case 'N':
break;
case 'S':
es_deleteStr(((struct cnfstringval*)expr)->estr);
break;
case 'V':
free(((struct cnfvar*)expr)->name);
msgPropDescrDestruct(&(((struct cnfvar*)expr)->prop));
break;
case 'F':
cnffuncDestruct((struct cnffunc*)expr);
break;
case 'A':
cnfarrayContentDestruct((struct cnfarray*)expr);
break;
default:break;
}
free(expr);
}
//---- END
/* Evaluate an expression as a bool. This is added because expressions are
* mostly used inside filters, and so this function is quite common and
* important.
*/
int
cnfexprEvalBool(struct cnfexpr *__restrict__ const expr, void *__restrict__ const usrptr)
{
int convok;
struct var ret;
cnfexprEval(expr, &ret, usrptr);
return var2Number(&ret, &convok);
}
inline static void
doIndent(int indent)
{
int i;
for(i = 0 ; i < indent ; ++i)
dbgprintf(" ");
}
static void
pmaskPrint(uchar *pmask, int indent)
{
int i;
doIndent(indent);
dbgprintf("pmask: ");
for (i = 0; i <= LOG_NFACILITIES; i++)
if (pmask[i] == TABLE_NOPRI)
dbgprintf(" X ");
else
dbgprintf("%2X ", pmask[i]);
dbgprintf("\n");
}
static void
cnfarrayPrint(struct cnfarray *ar, int indent)
{
int i;
doIndent(indent); dbgprintf("ARRAY:\n");
for(i = 0 ; i < ar->nmemb ; ++i) {
doIndent(indent+1);
cstrPrint("string '", ar->arr[i]);
dbgprintf("'\n");
}
}
void
cnfexprPrint(struct cnfexpr *expr, int indent)
{
struct cnffunc *func;
int i;
switch(expr->nodetype) {
case CMP_EQ:
cnfexprPrint(expr->l, indent+1);
doIndent(indent);
dbgprintf("==\n");
cnfexprPrint(expr->r, indent+1);
break;
case CMP_NE:
cnfexprPrint(expr->l, indent+1);
doIndent(indent);
dbgprintf("!=\n");
cnfexprPrint(expr->r, indent+1);
break;
case CMP_LE:
cnfexprPrint(expr->l, indent+1);
doIndent(indent);
dbgprintf("<=\n");
cnfexprPrint(expr->r, indent+1);
break;
case CMP_GE:
cnfexprPrint(expr->l, indent+1);
doIndent(indent);
dbgprintf(">=\n");
cnfexprPrint(expr->r, indent+1);
break;
case CMP_LT:
cnfexprPrint(expr->l, indent+1);
doIndent(indent);
dbgprintf("<\n");
cnfexprPrint(expr->r, indent+1);
break;
case CMP_GT:
cnfexprPrint(expr->l, indent+1);
doIndent(indent);
dbgprintf(">\n");
cnfexprPrint(expr->r, indent+1);
break;
case CMP_CONTAINS:
cnfexprPrint(expr->l, indent+1);
doIndent(indent);
dbgprintf("CONTAINS\n");
cnfexprPrint(expr->r, indent+1);
break;
case CMP_CONTAINSI:
cnfexprPrint(expr->l, indent+1);
doIndent(indent);
dbgprintf("CONTAINS_I\n");
cnfexprPrint(expr->r, indent+1);
break;
case CMP_STARTSWITH:
cnfexprPrint(expr->l, indent+1);
doIndent(indent);
dbgprintf("STARTSWITH\n");
cnfexprPrint(expr->r, indent+1);
break;
case CMP_STARTSWITHI:
cnfexprPrint(expr->l, indent+1);
doIndent(indent);
dbgprintf("STARTSWITH_I\n");
cnfexprPrint(expr->r, indent+1);
break;
case OR:
cnfexprPrint(expr->l, indent+1);
doIndent(indent);
dbgprintf("OR\n");
cnfexprPrint(expr->r, indent+1);
break;
case AND:
cnfexprPrint(expr->l, indent+1);
doIndent(indent);
dbgprintf("AND\n");
cnfexprPrint(expr->r, indent+1);
break;
case NOT:
doIndent(indent);
dbgprintf("NOT\n");
cnfexprPrint(expr->r, indent+1);
break;
case 'S':
doIndent(indent);
cstrPrint("string '", ((struct cnfstringval*)expr)->estr);
dbgprintf("'\n");
break;
case 'A':
cnfarrayPrint((struct cnfarray*)expr, indent);
break;
case 'N':
doIndent(indent);
dbgprintf("%lld\n", ((struct cnfnumval*)expr)->val);
break;
case 'V':
doIndent(indent);
dbgprintf("var '%s'\n", ((struct cnfvar*)expr)->name);
break;
case 'F':
doIndent(indent);
func = (struct cnffunc*) expr;
cstrPrint("function '", func->fname);
dbgprintf("' (id:%d, params:%hu)\n", func->fID, func->nParams);
if(func->fID == CNFFUNC_PRIFILT) {
struct funcData_prifilt *pD;
pD = (struct funcData_prifilt*) func->funcdata;
pmaskPrint(pD->pmask, indent+1);
}
for(i = 0 ; i < func->nParams ; ++i) {
cnfexprPrint(func->expr[i], indent+1);
}
break;
case '&':
case '+':
case '-':
case '*':
case '/':
case '%':
case 'M':
if(expr->l != NULL)
cnfexprPrint(expr->l, indent+1);
doIndent(indent);
dbgprintf("%c\n", (char) expr->nodetype);
cnfexprPrint(expr->r, indent+1);
break;
default:
dbgprintf("error: unknown nodetype %u['%c']\n",
(unsigned) expr->nodetype, (char) expr->nodetype);
break;
}
}
/* print only the given stmt
* if "subtree" equals 1, the full statement subtree is printed, else
* really only the statement.
*/
void
cnfstmtPrintOnly(struct cnfstmt *stmt, int indent, sbool subtree)
{
char *cstr;
switch(stmt->nodetype) {
case S_NOP:
doIndent(indent); dbgprintf("NOP\n");
break;
case S_STOP:
doIndent(indent); dbgprintf("STOP\n");
break;
case S_CALL:
cstr = es_str2cstr(stmt->d.s_call.name, NULL);
doIndent(indent); dbgprintf("CALL [%s, queue:%d]\n", cstr,
stmt->d.s_call.ruleset == NULL ? 0 : 1);
free(cstr);
break;
case S_ACT:
doIndent(indent); dbgprintf("ACTION %d [%s:%s]\n", stmt->d.act->iActionNbr,
modGetName(stmt->d.act->pMod), stmt->printable);
break;
case S_IF:
doIndent(indent); dbgprintf("IF\n");
cnfexprPrint(stmt->d.s_if.expr, indent+1);
if(subtree) {
doIndent(indent); dbgprintf("THEN\n");
cnfstmtPrint(stmt->d.s_if.t_then, indent+1);
if(stmt->d.s_if.t_else != NULL) {
doIndent(indent); dbgprintf("ELSE\n");
cnfstmtPrint(stmt->d.s_if.t_else, indent+1);
}
doIndent(indent); dbgprintf("END IF\n");
}
break;
case S_SET:
doIndent(indent); dbgprintf("SET %s =\n",
stmt->d.s_set.varname);
cnfexprPrint(stmt->d.s_set.expr, indent+1);
doIndent(indent); dbgprintf("END SET\n");
break;
case S_UNSET:
doIndent(indent); dbgprintf("UNSET %s\n",
stmt->d.s_unset.varname);
break;
case S_PRIFILT:
doIndent(indent); dbgprintf("PRIFILT '%s'\n", stmt->printable);
pmaskPrint(stmt->d.s_prifilt.pmask, indent);
if(subtree) {
cnfstmtPrint(stmt->d.s_prifilt.t_then, indent+1);
if(stmt->d.s_prifilt.t_else != NULL) {
doIndent(indent); dbgprintf("ELSE\n");
cnfstmtPrint(stmt->d.s_prifilt.t_else, indent+1);
}
doIndent(indent); dbgprintf("END PRIFILT\n");
}
break;
case S_PROPFILT:
doIndent(indent); dbgprintf("PROPFILT\n");
doIndent(indent); dbgprintf("\tProperty.: '%s'\n",
propIDToName(stmt->d.s_propfilt.prop.id));
if(stmt->d.s_propfilt.prop.id == PROP_CEE ||
stmt->d.s_propfilt.prop.id == PROP_LOCAL_VAR ||
stmt->d.s_propfilt.prop.id == PROP_GLOBAL_VAR) {
doIndent(indent);
dbgprintf("\tCEE-Prop.: '%s'\n", stmt->d.s_propfilt.prop.name);
}
doIndent(indent); dbgprintf("\tOperation: ");
if(stmt->d.s_propfilt.isNegated)
dbgprintf("NOT ");
dbgprintf("'%s'\n", getFIOPName(stmt->d.s_propfilt.operation));
if(stmt->d.s_propfilt.pCSCompValue != NULL) {
doIndent(indent); dbgprintf("\tValue....: '%s'\n",
rsCStrGetSzStrNoNULL(stmt->d.s_propfilt.pCSCompValue));
}
if(subtree) {
doIndent(indent); dbgprintf("THEN\n");
cnfstmtPrint(stmt->d.s_propfilt.t_then, indent+1);
doIndent(indent); dbgprintf("END PROPFILT\n");
}
break;
default:
dbgprintf("error: unknown stmt type %u\n",
(unsigned) stmt->nodetype);
break;
}
}
void
cnfstmtPrint(struct cnfstmt *root, int indent)
{
struct cnfstmt *stmt;
//dbgprintf("stmt %p, indent %d, type '%c'\n", expr, indent, expr->nodetype);
for(stmt = root ; stmt != NULL ; stmt = stmt->next) {
cnfstmtPrintOnly(stmt, indent, 1);
}
}
struct cnfnumval*
cnfnumvalNew(const long long val)
{
struct cnfnumval *numval;
if((numval = malloc(sizeof(struct cnfnumval))) != NULL) {
numval->nodetype = 'N';
numval->val = val;
}
return numval;
}
struct cnfstringval*
cnfstringvalNew(es_str_t *const estr)
{
struct cnfstringval *strval;
if((strval = malloc(sizeof(struct cnfstringval))) != NULL) {
strval->nodetype = 'S';
strval->estr = estr;
}
return strval;
}
/* creates array AND adds first element to it */
struct cnfarray*
cnfarrayNew(es_str_t *val)
{
struct cnfarray *ar;
if((ar = malloc(sizeof(struct cnfarray))) != NULL) {
ar->nodetype = 'A';
ar->nmemb = 1;
if((ar->arr = malloc(sizeof(es_str_t*))) == NULL) {
free(ar);
ar = NULL;
goto done;
}
ar->arr[0] = val;
}
done: return ar;
}
struct cnfarray*
cnfarrayAdd(struct cnfarray *__restrict__ const ar, es_str_t *__restrict__ val)
{
es_str_t **newptr;
if((newptr = realloc(ar->arr, (ar->nmemb+1)*sizeof(es_str_t*))) == NULL) {
DBGPRINTF("cnfarrayAdd: realloc failed, item ignored, ar->arr=%p\n", ar->arr);
goto done;
} else {
ar->arr = newptr;
ar->arr[ar->nmemb] = val;
ar->nmemb++;
}
done: return ar;
}
/* duplicate an array (deep copy) */
struct cnfarray*
cnfarrayDup(struct cnfarray *old)
{
int i;
struct cnfarray *ar;
ar = cnfarrayNew(es_strdup(old->arr[0]));
for(i = 1 ; i < old->nmemb ; ++i) {
cnfarrayAdd(ar, es_strdup(old->arr[i]));
}
return ar;
}
struct cnfvar*
cnfvarNew(char *name)
{
struct cnfvar *var;
if((var = malloc(sizeof(struct cnfvar))) != NULL) {
var->nodetype = 'V';
var->name = name;
msgPropDescrFill(&var->prop, (uchar*)var->name, strlen(var->name));
}
return var;
}
struct cnfstmt *
cnfstmtNew(unsigned s_type)
{
struct cnfstmt* cnfstmt;
if((cnfstmt = malloc(sizeof(struct cnfstmt))) != NULL) {
cnfstmt->nodetype = s_type;
cnfstmt->printable = NULL;
cnfstmt->next = NULL;
}
return cnfstmt;
}
void cnfstmtDestructLst(struct cnfstmt *root);
/* delete a single stmt */
static void
cnfstmtDestruct(struct cnfstmt *stmt)
{
switch(stmt->nodetype) {
case S_NOP:
case S_STOP:
break;
case S_CALL:
es_deleteStr(stmt->d.s_call.name);
break;
case S_ACT:
actionDestruct(stmt->d.act);
break;
case S_IF:
cnfexprDestruct(stmt->d.s_if.expr);
if(stmt->d.s_if.t_then != NULL) {
cnfstmtDestructLst(stmt->d.s_if.t_then);
}
if(stmt->d.s_if.t_else != NULL) {
cnfstmtDestructLst(stmt->d.s_if.t_else);
}
break;
case S_SET:
free(stmt->d.s_set.varname);
cnfexprDestruct(stmt->d.s_set.expr);
break;
case S_UNSET:
free(stmt->d.s_set.varname);
break;
case S_PRIFILT:
cnfstmtDestructLst(stmt->d.s_prifilt.t_then);
cnfstmtDestructLst(stmt->d.s_prifilt.t_else);
break;
case S_PROPFILT:
msgPropDescrDestruct(&stmt->d.s_propfilt.prop);
if(stmt->d.s_propfilt.regex_cache != NULL)
rsCStrRegexDestruct(&stmt->d.s_propfilt.regex_cache);
if(stmt->d.s_propfilt.pCSCompValue != NULL)
cstrDestruct(&stmt->d.s_propfilt.pCSCompValue);
cnfstmtDestructLst(stmt->d.s_propfilt.t_then);
break;
default:
dbgprintf("error: unknown stmt type during destruct %u\n",
(unsigned) stmt->nodetype);
break;
}
free(stmt->printable);
free(stmt);
}
/* delete a stmt and all others following it */
void
cnfstmtDestructLst(struct cnfstmt *root)
{
struct cnfstmt *stmt, *todel;
for(stmt = root ; stmt != NULL ; ) {
todel = stmt;
stmt = stmt->next;
cnfstmtDestruct(todel);
}
}
struct cnfstmt *
cnfstmtNewSet(char *var, struct cnfexpr *expr)
{
struct cnfstmt* cnfstmt;
if((cnfstmt = cnfstmtNew(S_SET)) != NULL) {
cnfstmt->d.s_set.varname = (uchar*) var;
cnfstmt->d.s_set.expr = expr;
}
return cnfstmt;
}
struct cnfstmt *
cnfstmtNewCall(es_str_t *name)
{
struct cnfstmt* cnfstmt;
if((cnfstmt = cnfstmtNew(S_CALL)) != NULL) {
cnfstmt->d.s_call.name = name;
}
return cnfstmt;
}
struct cnfstmt *
cnfstmtNewUnset(char *var)
{
struct cnfstmt* cnfstmt;
if((cnfstmt = cnfstmtNew(S_UNSET)) != NULL) {
cnfstmt->d.s_unset.varname = (uchar*) var;
}
return cnfstmt;
}
struct cnfstmt *
cnfstmtNewContinue(void)
{
return cnfstmtNew(S_NOP);
}
struct cnfstmt *
cnfstmtNewPRIFILT(char *prifilt, struct cnfstmt *t_then)
{
struct cnfstmt* cnfstmt;
if((cnfstmt = cnfstmtNew(S_PRIFILT)) != NULL) {
cnfstmt->printable = (uchar*)prifilt;
cnfstmt->d.s_prifilt.t_then = t_then;
cnfstmt->d.s_prifilt.t_else = NULL;
DecodePRIFilter((uchar*)prifilt, cnfstmt->d.s_prifilt.pmask);
}
return cnfstmt;
}
struct cnfstmt *
cnfstmtNewPROPFILT(char *propfilt, struct cnfstmt *t_then)
{
struct cnfstmt* cnfstmt;
if((cnfstmt = cnfstmtNew(S_PROPFILT)) != NULL) {
cnfstmt->printable = (uchar*)propfilt;
cnfstmt->d.s_propfilt.t_then = t_then;
cnfstmt->d.s_propfilt.regex_cache = NULL;
cnfstmt->d.s_propfilt.pCSCompValue = NULL;
if(DecodePropFilter((uchar*)propfilt, cnfstmt) != RS_RET_OK) {
cnfstmt->nodetype = S_NOP; /* disable action! */
cnfstmtDestructLst(t_then); /* we do no longer need this */
}
}
return cnfstmt;
}
struct cnfstmt *
cnfstmtNewAct(struct nvlst *lst)
{
struct cnfstmt* cnfstmt;
char namebuf[256];
rsRetVal localRet;
if((cnfstmt = cnfstmtNew(S_ACT)) == NULL)
goto done;
localRet = actionNewInst(lst, &cnfstmt->d.act);
if(localRet == RS_RET_OK_WARN) {
parser_errmsg("warnings occured in file '%s' around line %d",
cnfcurrfn, yylineno);
} else if(localRet != RS_RET_OK) {
parser_errmsg("errors occured in file '%s' around line %d",
cnfcurrfn, yylineno);
cnfstmt->nodetype = S_NOP; /* disable action! */
goto done;
}
snprintf(namebuf, sizeof(namebuf)-1, "action(type=\"%s\" ...)",
modGetName(cnfstmt->d.act->pMod));
namebuf[255] = '\0'; /* be on safe side */
cnfstmt->printable = (uchar*)strdup(namebuf);
nvlstChkUnused(lst);
nvlstDestruct(lst);
done: return cnfstmt;
}
struct cnfstmt *
cnfstmtNewLegaAct(char *actline)
{
struct cnfstmt* cnfstmt;
rsRetVal localRet;
if((cnfstmt = cnfstmtNew(S_ACT)) == NULL)
goto done;
cnfstmt->printable = (uchar*)strdup((char*)actline);
localRet = cflineDoAction(loadConf, (uchar**)&actline, &cnfstmt->d.act);
if(localRet != RS_RET_OK && localRet != RS_RET_OK_WARN) {
parser_errmsg("%s occured in file '%s' around line %d",
(localRet == RS_RET_OK_WARN) ? "warnings" : "errors",
cnfcurrfn, yylineno);
if(localRet != RS_RET_OK_WARN) {
cnfstmt->nodetype = S_NOP; /* disable action! */
goto done;
}
}
done: return cnfstmt;
}
/* returns 1 if the two expressions are constants, 0 otherwise
* if both are constants, the expression subtrees are destructed
* (this is an aid for constant folding optimizing)
*/
static int
getConstNumber(struct cnfexpr *expr, long long *l, long long *r)
{
int ret = 0;
cnfexprOptimize(expr->l);
cnfexprOptimize(expr->r);
if(expr->l->nodetype == 'N') {
if(expr->r->nodetype == 'N') {
ret = 1;
*l = ((struct cnfnumval*)expr->l)->val;
*r = ((struct cnfnumval*)expr->r)->val;
cnfexprDestruct(expr->l);
cnfexprDestruct(expr->r);
} else if(expr->r->nodetype == 'S') {
ret = 1;
*l = ((struct cnfnumval*)expr->l)->val;
*r = es_str2num(((struct cnfstringval*)expr->r)->estr, NULL);
cnfexprDestruct(expr->l);
cnfexprDestruct(expr->r);
}
} else if(expr->l->nodetype == 'S') {
if(expr->r->nodetype == 'N') {
ret = 1;
*l = es_str2num(((struct cnfstringval*)expr->l)->estr, NULL);
*r = ((struct cnfnumval*)expr->r)->val;
cnfexprDestruct(expr->l);
cnfexprDestruct(expr->r);
} else if(expr->r->nodetype == 'S') {
ret = 1;
*l = es_str2num(((struct cnfstringval*)expr->l)->estr, NULL);
*r = es_str2num(((struct cnfstringval*)expr->r)->estr, NULL);
cnfexprDestruct(expr->l);
cnfexprDestruct(expr->r);
}
}
return ret;
}
/* constant folding for string concatenation */
static inline void
constFoldConcat(struct cnfexpr *expr)
{
es_str_t *estr;
cnfexprOptimize(expr->l);
cnfexprOptimize(expr->r);
if(expr->l->nodetype == 'S') {
if(expr->r->nodetype == 'S') {
estr = ((struct cnfstringval*)expr->l)->estr;
((struct cnfstringval*)expr->l)->estr = NULL;
es_addStr(&estr, ((struct cnfstringval*)expr->r)->estr);
cnfexprDestruct(expr->l);
cnfexprDestruct(expr->r);
expr->nodetype = 'S';
((struct cnfstringval*)expr)->estr = estr;
} else if(expr->r->nodetype == 'N') {
es_str_t *numstr;
estr = ((struct cnfstringval*)expr->l)->estr;
((struct cnfstringval*)expr->l)->estr = NULL;
numstr = es_newStrFromNumber(((struct cnfnumval*)expr->r)->val);
es_addStr(&estr, numstr);
es_deleteStr(numstr);
cnfexprDestruct(expr->l);
cnfexprDestruct(expr->r);
expr->nodetype = 'S';
((struct cnfstringval*)expr)->estr = estr;
}
} else if(expr->l->nodetype == 'N') {
if(expr->r->nodetype == 'S') {
estr = es_newStrFromNumber(((struct cnfnumval*)expr->l)->val);
es_addStr(&estr, ((struct cnfstringval*)expr->r)->estr);
cnfexprDestruct(expr->l);
cnfexprDestruct(expr->r);
expr->nodetype = 'S';
((struct cnfstringval*)expr)->estr = estr;
} else if(expr->r->nodetype == 'S') {
es_str_t *numstr;
estr = es_newStrFromNumber(((struct cnfnumval*)expr->l)->val);
numstr = es_newStrFromNumber(((struct cnfnumval*)expr->r)->val);
es_addStr(&estr, numstr);
es_deleteStr(numstr);
cnfexprDestruct(expr->l);
cnfexprDestruct(expr->r);
expr->nodetype = 'S';
((struct cnfstringval*)expr)->estr = estr;
}
}
}
/* optimize comparisons with syslog severity/facility. This is a special
* handler as the numerical values also support GT, LT, etc ops.
*/
static inline struct cnfexpr*
cnfexprOptimize_CMP_severity_facility(struct cnfexpr *expr)
{
struct cnffunc *func;
if(expr->l->nodetype != 'V')
FINALIZE;
if(!strcmp("syslogseverity", ((struct cnfvar*)expr->l)->name)) {
if(expr->r->nodetype == 'N') {
int sev = (int) ((struct cnfnumval*)expr->r)->val;
if(sev >= 0 && sev <= 7) {
DBGPRINTF("optimizer: change comparison OP to FUNC prifilt()\n");
func = cnffuncNew_prifilt(0); /* fac is irrelevant, set below... */
prifiltSetSeverity(func->funcdata, sev, expr->nodetype);
cnfexprDestruct(expr);
expr = (struct cnfexpr*) func;
} else {
parser_errmsg("invalid syslogseverity %d, expression will always "
"evaluate to FALSE", sev);
}
}
} else if(!strcmp("syslogfacility", ((struct cnfvar*)expr->l)->name)) {
if(expr->r->nodetype == 'N') {
int fac = (int) ((struct cnfnumval*)expr->r)->val;
if(fac >= 0 && fac <= 24) {
DBGPRINTF("optimizer: change comparison OP to FUNC prifilt()\n");
func = cnffuncNew_prifilt(0); /* fac is irrelevant, set below... */
prifiltSetFacility(func->funcdata, fac, expr->nodetype);
cnfexprDestruct(expr);
expr = (struct cnfexpr*) func;
} else {
parser_errmsg("invalid syslogfacility %d, expression will always "
"evaluate to FALSE", fac);
}
}
}
finalize_it:
return expr;
}
/* optimize a comparison with a variable as left-hand operand
* NOTE: Currently support CMP_EQ, CMP_NE only and code NEEDS
* TO BE CHANGED fgr other comparisons!
*/
static inline struct cnfexpr*
cnfexprOptimize_CMP_var(struct cnfexpr *expr)
{
struct cnffunc *func;
if(!strcmp("syslogfacility-text", ((struct cnfvar*)expr->l)->name)) {
if(expr->r->nodetype == 'S') {
char *cstr = es_str2cstr(((struct cnfstringval*)expr->r)->estr, NULL);
int fac = decodeSyslogName((uchar*)cstr, syslogFacNames);
if(fac == -1) {
parser_errmsg("invalid facility '%s', expression will always "
"evaluate to FALSE", cstr);
} else {
/* we can actually optimize! */
DBGPRINTF("optimizer: change comparison OP to FUNC prifilt()\n");
func = cnffuncNew_prifilt(fac);
if(expr->nodetype == CMP_NE)
prifiltInvert(func->funcdata);
cnfexprDestruct(expr);
expr = (struct cnfexpr*) func;
}
free(cstr);
}
} else if(!strcmp("syslogseverity-text", ((struct cnfvar*)expr->l)->name)) {
if(expr->r->nodetype == 'S') {
char *cstr = es_str2cstr(((struct cnfstringval*)expr->r)->estr, NULL);
int sev = decodeSyslogName((uchar*)cstr, syslogPriNames);
if(sev == -1) {
parser_errmsg("invalid syslogseverity '%s', expression will always "
"evaluate to FALSE", cstr);
} else {
/* we can acutally optimize! */
DBGPRINTF("optimizer: change comparison OP to FUNC prifilt()\n");
func = cnffuncNew_prifilt(0);
prifiltSetSeverity(func->funcdata, sev, expr->nodetype);
cnfexprDestruct(expr);
expr = (struct cnfexpr*) func;
}
free(cstr);
}
} else {
expr = cnfexprOptimize_CMP_severity_facility(expr);
}
return expr;
}
static inline struct cnfexpr*
cnfexprOptimize_NOT(struct cnfexpr *expr)
{
struct cnffunc *func;
if(expr->r->nodetype == 'F') {
func = (struct cnffunc *)expr->r;
if(func->fID == CNFFUNC_PRIFILT) {
DBGPRINTF("optimize NOT prifilt() to inverted prifilt()\n");
expr->r = NULL;
cnfexprDestruct(expr);
prifiltInvert(func->funcdata);
expr = (struct cnfexpr*) func;
}
}
return expr;
}
static inline struct cnfexpr*
cnfexprOptimize_AND_OR(struct cnfexpr *expr)
{
struct cnffunc *funcl, *funcr;
if(expr->l->nodetype == 'F') {
if(expr->r->nodetype == 'F') {
funcl = (struct cnffunc *)expr->l;
funcr = (struct cnffunc *)expr->r;
if(funcl->fID == CNFFUNC_PRIFILT && funcr->fID == CNFFUNC_PRIFILT) {
DBGPRINTF("optimize combine AND/OR prifilt()\n");
expr->l = NULL;
prifiltCombine(funcl->funcdata, funcr->funcdata, expr->nodetype);
cnfexprDestruct(expr);
expr = (struct cnfexpr*) funcl;
}
}
}
return expr;
}
/* optimize array for EQ/NEQ comparisons. We sort the array in
* this case so that we can apply binary search later on.
*/
static inline void
cnfexprOptimize_CMPEQ_arr(struct cnfarray *arr)
{
DBGPRINTF("optimizer: sorting array of %d members for CMP_EQ/NEQ comparison\n", arr->nmemb);
qsort(arr->arr, arr->nmemb, sizeof(es_str_t*), qs_arrcmp);
}
/* (recursively) optimize an expression */
struct cnfexpr*
cnfexprOptimize(struct cnfexpr *expr)
{
long long ln, rn;
struct cnfexpr *exprswap;
dbgprintf("optimize expr %p, type '%s'\n", expr, tokenToString(expr->nodetype));
switch(expr->nodetype) {
case '&':
constFoldConcat(expr);
break;
case '+':
if(getConstNumber(expr, &ln, &rn)) {
expr->nodetype = 'N';
((struct cnfnumval*)expr)->val = ln + rn;
}
break;
case '-':
if(getConstNumber(expr, &ln, &rn)) {
expr->nodetype = 'N';
((struct cnfnumval*)expr)->val = ln - rn;
}
break;
case '*':
if(getConstNumber(expr, &ln, &rn)) {
expr->nodetype = 'N';
((struct cnfnumval*)expr)->val = ln * rn;
}
break;
case '/':
if(getConstNumber(expr, &ln, &rn)) {
expr->nodetype = 'N';
((struct cnfnumval*)expr)->val = ln / rn;
}
break;
case '%':
if(getConstNumber(expr, &ln, &rn)) {
expr->nodetype = 'N';
((struct cnfnumval*)expr)->val = ln % rn;
}
break;
case CMP_NE:
case CMP_EQ:
expr->l = cnfexprOptimize(expr->l);
expr->r = cnfexprOptimize(expr->r);
if(expr->l->nodetype == 'A') {
if(expr->r->nodetype == 'A') {
parser_errmsg("warning: '==' or '<>' "
"comparison of two constant string "
"arrays makes no sense");
} else { /* swap for simpler execution step */
exprswap = expr->l;
expr->l = expr->r;
expr->r = exprswap;
}
}
if(expr->r->nodetype == 'A') {
cnfexprOptimize_CMPEQ_arr((struct cnfarray *)expr->r);
}
/* This should be evaluated last because it may change expr
* to a function.
*/
if(expr->l->nodetype == 'V') {
expr = cnfexprOptimize_CMP_var(expr);
}
break;
case CMP_LE:
case CMP_GE:
case CMP_LT:
case CMP_GT:
expr->l = cnfexprOptimize(expr->l);
expr->r = cnfexprOptimize(expr->r);
expr = cnfexprOptimize_CMP_severity_facility(expr);
break;
case CMP_CONTAINS:
case CMP_CONTAINSI:
case CMP_STARTSWITH:
case CMP_STARTSWITHI:
expr->l = cnfexprOptimize(expr->l);
expr->r = cnfexprOptimize(expr->r);
break;
case AND:
case OR:
expr->l = cnfexprOptimize(expr->l);
expr->r = cnfexprOptimize(expr->r);
expr = cnfexprOptimize_AND_OR(expr);
break;
case NOT:
expr->r = cnfexprOptimize(expr->r);
expr = cnfexprOptimize_NOT(expr);
break;
default:/* nodetypes we cannot optimize */
break;
}
return expr;
}
/* removes NOPs from a statement list and returns the
* first non-NOP entry.
*/
static inline struct cnfstmt *
removeNOPs(struct cnfstmt *root)
{
struct cnfstmt *stmt, *toDel, *prevstmt = NULL;
struct cnfstmt *newRoot = NULL;
if(root == NULL) goto done;
stmt = root;
while(stmt != NULL) {
if(stmt->nodetype == S_NOP) {
if(prevstmt != NULL)
/* end chain, is rebuild if more non-NOPs follow */
prevstmt->next = NULL;
toDel = stmt;
stmt = stmt->next;
cnfstmtDestruct(toDel);
} else {
if(newRoot == NULL)
newRoot = stmt;
if(prevstmt != NULL)
prevstmt->next = stmt;
prevstmt = stmt;
stmt = stmt->next;
}
}
done: return newRoot;
}
static inline void
cnfstmtOptimizeIf(struct cnfstmt *stmt)
{
struct cnfstmt *t_then, *t_else;
struct cnfexpr *expr;
struct cnffunc *func;
struct funcData_prifilt *prifilt;
expr = stmt->d.s_if.expr = cnfexprOptimize(stmt->d.s_if.expr);
stmt->d.s_if.t_then = removeNOPs(stmt->d.s_if.t_then);
stmt->d.s_if.t_else = removeNOPs(stmt->d.s_if.t_else);
cnfstmtOptimize(stmt->d.s_if.t_then);
cnfstmtOptimize(stmt->d.s_if.t_else);
if(stmt->d.s_if.expr->nodetype == 'F') {
func = (struct cnffunc*)expr;
if(func->fID == CNFFUNC_PRIFILT) {
DBGPRINTF("optimizer: change IF to PRIFILT\n");
t_then = stmt->d.s_if.t_then;
t_else = stmt->d.s_if.t_else;
stmt->nodetype = S_PRIFILT;
prifilt = (struct funcData_prifilt*) func->funcdata;
memcpy(stmt->d.s_prifilt.pmask, prifilt->pmask,
sizeof(prifilt->pmask));
stmt->d.s_prifilt.t_then = t_then;
stmt->d.s_prifilt.t_else = t_else;
if(func->nParams == 0)
stmt->printable = (uchar*)strdup("[Optimizer Result]");
else
stmt->printable = (uchar*)
es_str2cstr(((struct cnfstringval*)func->expr[0])->estr, NULL);
cnfexprDestruct(expr);
cnfstmtOptimizePRIFilt(stmt);
}
}
}
static inline void
cnfstmtOptimizeAct(struct cnfstmt *stmt)
{
action_t *pAct;
pAct = stmt->d.act;
if(!strcmp((char*)modGetName(pAct->pMod), "builtin:omdiscard")) {
DBGPRINTF("optimizer: replacing omdiscard by STOP\n");
actionDestruct(stmt->d.act);
stmt->nodetype = S_STOP;
}
}
static void
cnfstmtOptimizePRIFilt(struct cnfstmt *stmt)
{
int i;
int isAlways = 1;
struct cnfstmt *subroot, *last;
stmt->d.s_prifilt.t_then = removeNOPs(stmt->d.s_prifilt.t_then);
cnfstmtOptimize(stmt->d.s_prifilt.t_then);
for(i = 0; i <= LOG_NFACILITIES; i++)
if(stmt->d.s_prifilt.pmask[i] != 0xff) {
isAlways = 0;
break;
}
if(!isAlways)
goto done;
DBGPRINTF("optimizer: removing always-true PRIFILT %p\n", stmt);
if(stmt->d.s_prifilt.t_else != NULL) {
parser_errmsg("error: always-true PRI filter has else part!\n");
cnfstmtDestructLst(stmt->d.s_prifilt.t_else);
}
free(stmt->printable);
stmt->printable = NULL;
subroot = stmt->d.s_prifilt.t_then;
if(subroot == NULL) {
/* very strange, we set it to NOP, best we can do
* This case is NOT expected in practice
*/
stmt->nodetype = S_NOP;
goto done;
}
for(last = subroot ; last->next != NULL ; last = last->next)
/* find last node in subtree */;
last->next = stmt->next;
memcpy(stmt, subroot, sizeof(struct cnfstmt));
free(subroot);
done: return;
}
/* we abuse "optimize" a bit. Actually, we obtain a ruleset pointer, as
* all rulesets are only known later in the process (now!).
*/
static void
cnfstmtOptimizeCall(struct cnfstmt *stmt)
{
ruleset_t *pRuleset;
rsRetVal localRet;
uchar *rsName;
rsName = (uchar*) es_str2cstr(stmt->d.s_call.name, NULL);
localRet = rulesetGetRuleset(loadConf, &pRuleset, rsName);
if(localRet != RS_RET_OK) {
/* in that case, we accept that a NOP will "survive" */
parser_errmsg("ruleset '%s' cannot be found\n", rsName);
es_deleteStr(stmt->d.s_call.name);
stmt->nodetype = S_NOP;
goto done;
}
DBGPRINTF("CALL obtained ruleset ptr %p for ruleset %s [hasQueue:%d]\n",
pRuleset, rsName, rulesetHasQueue(pRuleset));
if(rulesetHasQueue(pRuleset)) {
stmt->d.s_call.ruleset = pRuleset;
} else {
stmt->d.s_call.ruleset = NULL;
stmt->d.s_call.stmt = pRuleset->root;
}
done:
free(rsName);
return;
}
/* (recursively) optimize a statement */
void
cnfstmtOptimize(struct cnfstmt *root)
{
struct cnfstmt *stmt;
if(root == NULL) goto done;
for(stmt = root ; stmt != NULL ; stmt = stmt->next) {
switch(stmt->nodetype) {
case S_IF:
cnfstmtOptimizeIf(stmt);
break;
case S_PRIFILT:
cnfstmtOptimizePRIFilt(stmt);
break;
case S_PROPFILT:
stmt->d.s_propfilt.t_then = removeNOPs(stmt->d.s_propfilt.t_then);
cnfstmtOptimize(stmt->d.s_propfilt.t_then);
break;
case S_SET:
stmt->d.s_set.expr = cnfexprOptimize(stmt->d.s_set.expr);
break;
case S_ACT:
cnfstmtOptimizeAct(stmt);
break;
case S_CALL:
cnfstmtOptimizeCall(stmt);
break;
case S_STOP:
if(stmt->next != NULL)
parser_errmsg("STOP is followed by unreachable statements!\n");
break;
case S_UNSET: /* nothing to do */
break;
case S_NOP:
DBGPRINTF("optimizer error: we see a NOP, how come?\n");
break;
default:
dbgprintf("error: unknown stmt type %u during optimizer run\n",
(unsigned) stmt->nodetype);
break;
}
}
done: return;
}
struct cnffparamlst *
cnffparamlstNew(struct cnfexpr *expr, struct cnffparamlst *next)
{
struct cnffparamlst* lst;
if((lst = malloc(sizeof(struct cnffparamlst))) != NULL) {
lst->nodetype = 'P';
lst->expr = expr;
lst->next = next;
}
return lst;
}
/* Obtain function id from name AND number of params. Issues the
* relevant error messages if errors are detected.
*/
static inline enum cnffuncid
funcName2ID(es_str_t *fname, unsigned short nParams)
{
if(!es_strbufcmp(fname, (unsigned char*)"strlen", sizeof("strlen") - 1)) {
if(nParams != 1) {
parser_errmsg("number of parameters for strlen() must be one "
"but is %d.", nParams);
return CNFFUNC_INVALID;
}
return CNFFUNC_STRLEN;
} else if(!es_strbufcmp(fname, (unsigned char*)"getenv", sizeof("getenv") - 1)) {
if(nParams != 1) {
parser_errmsg("number of parameters for getenv() must be one "
"but is %d.", nParams);
return CNFFUNC_INVALID;
}
return CNFFUNC_GETENV;
} else if(!es_strbufcmp(fname, (unsigned char*)"tolower", sizeof("tolower") - 1)) {
if(nParams != 1) {
parser_errmsg("number of parameters for tolower() must be one "
"but is %d.", nParams);
return CNFFUNC_INVALID;
}
return CNFFUNC_TOLOWER;
} else if(!es_strbufcmp(fname, (unsigned char*)"cstr", sizeof("cstr") - 1)) {
if(nParams != 1) {
parser_errmsg("number of parameters for cstr() must be one "
"but is %d.", nParams);
return CNFFUNC_INVALID;
}
return CNFFUNC_CSTR;
} else if(!es_strbufcmp(fname, (unsigned char*)"cnum", sizeof("cnum") - 1)) {
if(nParams != 1) {
parser_errmsg("number of parameters for cnum() must be one "
"but is %d.", nParams);
return CNFFUNC_INVALID;
}
return CNFFUNC_CNUM;
} else if(!es_strbufcmp(fname, (unsigned char*)"re_match", sizeof("re_match") - 1)) {
if(nParams != 2) {
parser_errmsg("number of parameters for re_match() must be two "
"but is %d.", nParams);
return CNFFUNC_INVALID;
}
return CNFFUNC_RE_MATCH;
} else if(!es_strbufcmp(fname, (unsigned char*)"re_extract", sizeof("re_extract") - 1)) {
if(nParams != 5) {
parser_errmsg("number of parameters for re_extract() must be five "
"but is %d.", nParams);
return CNFFUNC_INVALID;
}
return CNFFUNC_RE_EXTRACT;
} else if(!es_strbufcmp(fname, (unsigned char*)"field", sizeof("field") - 1)) {
if(nParams != 3) {
parser_errmsg("number of parameters for field() must be three "
"but is %d.", nParams);
return CNFFUNC_INVALID;
}
return CNFFUNC_FIELD;
} else if(!es_strbufcmp(fname, (unsigned char*)"exec_template", sizeof("exec_template") - 1)) {
if(nParams != 1) {
parser_errmsg("number of parameters for exec-template() must be one "
"but is %d.", nParams);
return CNFFUNC_INVALID;
}
return CNFFUNC_EXEC_TEMPLATE;
} else if(!es_strbufcmp(fname, (unsigned char*)"prifilt", sizeof("prifilt") - 1)) {
if(nParams != 1) {
parser_errmsg("number of parameters for prifilt() must be one "
"but is %d.", nParams);
return CNFFUNC_INVALID;
}
return CNFFUNC_PRIFILT;
} else if(!es_strbufcmp(fname, (unsigned char*)"lookup", sizeof("lookup") - 1)) {
if(nParams != 2) {
parser_errmsg("number of parameters for lookup() must be two "
"but is %d.", nParams);
return CNFFUNC_INVALID;
}
return CNFFUNC_LOOKUP;
} else {
return CNFFUNC_INVALID;
}
}
static inline rsRetVal
initFunc_re_match(struct cnffunc *func)
{
rsRetVal localRet;
char *regex = NULL;
regex_t *re;
DEFiRet;
func->funcdata = NULL;
if(func->expr[1]->nodetype != 'S') {
parser_errmsg("param 2 of re_match/extract() must be a constant string");
FINALIZE;
}
CHKmalloc(re = malloc(sizeof(regex_t)));
func->funcdata = re;
regex = es_str2cstr(((struct cnfstringval*) func->expr[1])->estr, NULL);
if((localRet = objUse(regexp, LM_REGEXP_FILENAME)) == RS_RET_OK) {
if(regexp.regcomp(re, (char*) regex, REG_EXTENDED) != 0) {
parser_errmsg("cannot compile regex '%s'", regex);
ABORT_FINALIZE(RS_RET_ERR);
}
} else { /* regexp object could not be loaded */
parser_errmsg("could not load regex support - regex ignored");
ABORT_FINALIZE(RS_RET_ERR);
}
finalize_it:
free(regex);
RETiRet;
}
static rsRetVal
initFunc_exec_template(struct cnffunc *func)
{
char *tplName = NULL;
DEFiRet;
if(func->expr[0]->nodetype != 'S') {
parser_errmsg("exec_template(): param 1 must be a constant string");
FINALIZE;
}
tplName = es_str2cstr(((struct cnfstringval*) func->expr[0])->estr, NULL);
func->funcdata = tplFind(ourConf, tplName, strlen(tplName));
if(func->funcdata == NULL) {
parser_errmsg("exec_template(): template '%s' could not be found", tplName);
FINALIZE;
}
finalize_it:
free(tplName);
RETiRet;
}
static inline rsRetVal
initFunc_prifilt(struct cnffunc *func)
{
struct funcData_prifilt *pData;
uchar *cstr;
DEFiRet;
func->funcdata = NULL;
if(func->expr[0]->nodetype != 'S') {
parser_errmsg("param 1 of prifilt() must be a constant string");
FINALIZE;
}
CHKmalloc(pData = calloc(1, sizeof(struct funcData_prifilt)));
func->funcdata = pData;
cstr = (uchar*)es_str2cstr(((struct cnfstringval*) func->expr[0])->estr, NULL);
CHKiRet(DecodePRIFilter(cstr, pData->pmask));
free(cstr);
finalize_it:
RETiRet;
}
static inline rsRetVal
initFunc_lookup(struct cnffunc *func)
{
uchar *cstr = NULL;
DEFiRet;
func->funcdata = NULL;
if(func->expr[0]->nodetype != 'S') {
parser_errmsg("table name (param 1) of lookup() must be a constant string");
FINALIZE;
}
cstr = (uchar*)es_str2cstr(((struct cnfstringval*) func->expr[0])->estr, NULL);
if((func->funcdata = lookupFindTable(cstr)) == NULL) {
parser_errmsg("lookup table '%s' not found", cstr);
FINALIZE;
}
finalize_it:
free(cstr);
RETiRet;
}
struct cnffunc *
cnffuncNew(es_str_t *fname, struct cnffparamlst* paramlst)
{
struct cnffunc* func;
struct cnffparamlst *param, *toDel;
unsigned short i;
unsigned short nParams;
/* we first need to find out how many params we have */
nParams = 0;
for(param = paramlst ; param != NULL ; param = param->next)
++nParams;
if((func = malloc(sizeof(struct cnffunc) + (nParams * sizeof(struct cnfexp*))))
!= NULL) {
func->nodetype = 'F';
func->fname = fname;
func->nParams = nParams;
func->funcdata = NULL;
func->fID = funcName2ID(fname, nParams);
/* shuffle params over to array (access speed!) */
param = paramlst;
for(i = 0 ; i < nParams ; ++i) {
func->expr[i] = param->expr;
toDel = param;
param = param->next;
free(toDel);
}
/* some functions require special initialization */
switch(func->fID) {
case CNFFUNC_RE_MATCH:
case CNFFUNC_RE_EXTRACT:
/* need to compile the regexp in param 2, so this MUST be a constant */
initFunc_re_match(func);
break;
case CNFFUNC_PRIFILT:
initFunc_prifilt(func);
break;
case CNFFUNC_LOOKUP:
initFunc_lookup(func);
break;
case CNFFUNC_EXEC_TEMPLATE:
initFunc_exec_template(func);
break;
default:break;
}
}
return func;
}
/* A special function to create a prifilt() expression during optimization
* phase.
*/
struct cnffunc *
cnffuncNew_prifilt(int fac)
{
struct cnffunc* func;
if((func = malloc(sizeof(struct cnffunc))) != NULL) {
func->nodetype = 'F';
func->fname = es_newStrFromCStr("prifilt", sizeof("prifilt")-1);
func->nParams = 0;
func->fID = CNFFUNC_PRIFILT;
func->funcdata = calloc(1, sizeof(struct funcData_prifilt));
((struct funcData_prifilt *)func->funcdata)->pmask[fac >> 3] = TABLE_ALLPRI;
}
return func;
}
/* returns 0 if everything is OK and config parsing shall continue,
* and 1 if things are so wrong that config parsing shall be aborted.
*/
int
cnfDoInclude(char *name)
{
char *cfgFile;
char *finalName;
int i;
int result;
glob_t cfgFiles;
struct stat fileInfo;
char nameBuf[MAXFNAME+1];
char cwdBuf[MAXFNAME+1];
finalName = name;
if(stat(name, &fileInfo) == 0) {
/* stat usually fails if we have a wildcard - so this does NOT indicate error! */
if(S_ISDIR(fileInfo.st_mode)) {
/* if we have a directory, we need to add "*" to get its files */
snprintf(nameBuf, sizeof(nameBuf), "%s*", name);
finalName = nameBuf;
}
}
/* Use GLOB_MARK to append a trailing slash for directories. */
/* Use GLOB_NOMAGIC to detect wildcards that match nothing. */
#ifdef HAVE_GLOB_NOMAGIC
/* Silently ignore wildcards that match nothing */
result = glob(finalName, GLOB_MARK | GLOB_NOMAGIC, NULL, &cfgFiles);
if(result == GLOB_NOMATCH) {
#else
result = glob(finalName, GLOB_MARK, NULL, &cfgFiles);
if(result == GLOB_NOMATCH && containsGlobWildcard(finalName)) {
#endif /* HAVE_GLOB_NOMAGIC */
return 0;
}
if(result == GLOB_NOSPACE || result == GLOB_ABORTED) {
char errStr[1024];
rs_strerror_r(errno, errStr, sizeof(errStr));
if(getcwd(cwdBuf, sizeof(cwdBuf)) == NULL)
strcpy(cwdBuf, "??getcwd() failed??");
parser_errmsg("error accessing config file or directory '%s' [cwd:%s]: %s",
finalName, cwdBuf, errStr);
return 1;
}
/* note: bison "stacks" the files, so we need to submit them
* in reverse order to the *stack* in order to get the proper
* parsing order. Also see
* http://bugzilla.adiscon.com/show_bug.cgi?id=411
*/
for(i = cfgFiles.gl_pathc - 1; i >= 0 ; i--) {
cfgFile = cfgFiles.gl_pathv[i];
if(stat(cfgFile, &fileInfo) != 0) {
char errStr[1024];
rs_strerror_r(errno, errStr, sizeof(errStr));
if(getcwd(cwdBuf, sizeof(cwdBuf)) == NULL)
strcpy(cwdBuf, "??getcwd() failed??");
parser_errmsg("error accessing config file or directory '%s' "
"[cwd: %s]: %s", cfgFile, cwdBuf, errStr);
return 1;
}
if(S_ISREG(fileInfo.st_mode)) { /* config file */
dbgprintf("requested to include config file '%s'\n", cfgFile);
cnfSetLexFile(cfgFile);
} else if(S_ISDIR(fileInfo.st_mode)) { /* config directory */
dbgprintf("requested to include directory '%s'\n", cfgFile);
cnfDoInclude(cfgFile);
} else {
dbgprintf("warning: unable to process IncludeConfig directive '%s'\n", cfgFile);
}
}
globfree(&cfgFiles);
return 0;
}
void
varDelete(struct var *v)
{
switch(v->datatype) {
case 'S':
es_deleteStr(v->d.estr);
break;
case 'A':
cnfarrayContentDestruct(v->d.ar);
free(v->d.ar);
break;
default:break;
}
}
void
cnfparamvalsDestruct(struct cnfparamvals *paramvals, struct cnfparamblk *blk)
{
int i;
if(paramvals == NULL)
return;
for(i = 0 ; i < blk->nParams ; ++i) {
if(paramvals[i].bUsed) {
varDelete(¶mvals[i].val);
}
}
free(paramvals);
}
/* find the index (or -1!) for a config param by name. This is used to
* address the parameter array. Of course, we could use with static
* indices, but that would create some extra bug potential. So we
* resort to names. As we do this only during the initial config parsing
* stage the (considerable!) extra overhead is OK. -- rgerhards, 2011-07-19
*/
int
cnfparamGetIdx(struct cnfparamblk *params, char *name)
{
int i;
for(i = 0 ; i < params->nParams ; ++i)
if(!strcmp(params->descr[i].name, name))
break;
if(i == params->nParams)
i = -1; /* not found */
return i;
}
void
cstrPrint(char *text, es_str_t *estr)
{
char *str;
str = es_str2cstr(estr, NULL);
dbgprintf("%s%s", text, str);
free(str);
}
char *
rmLeadingSpace(char *s)
{
char *p;
for(p = s ; *p && isspace(*p) ; ++p)
;
return(p);
}
/* init must be called once before any parsing of the script files start */
rsRetVal
initRainerscript(void)
{
DEFiRet;
CHKiRet(objGetObjInterface(&obj));
finalize_it:
RETiRet;
}
/* we need a function to check for octal digits */
static inline int
isodigit(uchar c)
{
return(c >= '0' && c <= '7');
}
/**
* Get numerical value of a hex digit. This is a helper function.
* @param[in] c a character containing 0..9, A..Z, a..z anything else
* is an (undetected) error.
*/
static inline int
hexDigitVal(char c)
{
int r;
if(c < 'A')
r = c - '0';
else if(c < 'a')
r = c - 'A' + 10;
else
r = c - 'a' + 10;
return r;
}
/* Handle the actual unescaping.
* a helper to unescapeStr(), to help make the function easier to read.
*/
static inline void
doUnescape(unsigned char *c, int len, int *iSrc, int iDst)
{
if(c[*iSrc] == '\\') {
if(++(*iSrc) == len) {
/* error, incomplete escape, treat as single char */
c[iDst] = '\\';
}
/* regular case, unescape */
switch(c[*iSrc]) {
case 'a':
c[iDst] = '\007';
break;
case 'b':
c[iDst] = '\b';
break;
case 'f':
c[iDst] = '\014';
break;
case 'n':
c[iDst] = '\n';
break;
case 'r':
c[iDst] = '\r';
break;
case 't':
c[iDst] = '\t';
break;
case '\'':
c[iDst] = '\'';
break;
case '"':
c[iDst] = '"';
break;
case '?':
c[iDst] = '?';
break;
case '$':
c[iDst] = '$';
break;
case '\\':
c[iDst] = '\\';
break;
case 'x':
if( (*iSrc)+2 >= len
|| !isxdigit(c[(*iSrc)+1])
|| !isxdigit(c[(*iSrc)+2])) {
/* error, incomplete escape, use as is */
c[iDst] = '\\';
--(*iSrc);
}
c[iDst] = (hexDigitVal(c[(*iSrc)+1]) << 4) +
hexDigitVal(c[(*iSrc)+2]);
*iSrc += 2;
break;
case '0': /* octal escape */
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
if( (*iSrc)+2 >= len
|| !isodigit(c[(*iSrc)+1])
|| !isodigit(c[(*iSrc)+2])) {
/* error, incomplete escape, use as is */
c[iDst] = '\\';
--(*iSrc);
}
c[iDst] = ((c[(*iSrc) ] - '0') << 6) +
((c[(*iSrc)+1] - '0') << 3) +
( c[(*iSrc)+2] - '0');
*iSrc += 2;
break;
default:
/* error, incomplete escape, indicate by '?' */
c[iDst] = '?';
break;
}
} else {
/* regular character */
c[iDst] = c[*iSrc];
}
}
void
unescapeStr(uchar *s, int len)
{
int iSrc, iDst;
assert(s != NULL);
/* scan for first escape sequence (if we are luky, there is none!) */
iSrc = 0;
while(iSrc < len && s[iSrc] != '\\')
++iSrc;
/* now we have a sequence or end of string. In any case, we process
* all remaining characters (maybe 0!) and unescape.
*/
if(iSrc != len) {
iDst = iSrc;
while(iSrc < len) {
doUnescape(s, len, &iSrc, iDst);
++iSrc;
++iDst;
}
s[iDst] = '\0';
}
}
char *
tokenval2str(int tok)
{
if(tok < 256) return "";
switch(tok) {
case NAME: return "NAME";
case FUNC: return "FUNC";
case BEGINOBJ: return "BEGINOBJ";
case ENDOBJ: return "ENDOBJ";
case BEGIN_ACTION: return "BEGIN_ACTION";
case BEGIN_PROPERTY: return "BEGIN_PROPERTY";
case BEGIN_CONSTANT: return "BEGIN_CONSTANT";
case BEGIN_TPL: return "BEGIN_TPL";
case BEGIN_RULESET: return "BEGIN_RULESET";
case STOP: return "STOP";
case SET: return "SET";
case UNSET: return "UNSET";
case CONTINUE: return "CONTINUE";
case CALL: return "CALL";
case LEGACY_ACTION: return "LEGACY_ACTION";
case LEGACY_RULESET: return "LEGACY_RULESET";
case PRIFILT: return "PRIFILT";
case PROPFILT: return "PROPFILT";
case BSD_TAG_SELECTOR: return "BSD_TAG_SELECTOR";
case BSD_HOST_SELECTOR: return "BSD_HOST_SELECTOR";
case IF: return "IF";
case THEN: return "THEN";
case ELSE: return "ELSE";
case OR: return "OR";
case AND: return "AND";
case NOT: return "NOT";
case VAR: return "VAR";
case STRING: return "STRING";
case NUMBER: return "NUMBER";
case CMP_EQ: return "CMP_EQ";
case CMP_NE: return "CMP_NE";
case CMP_LE: return "CMP_LE";
case CMP_GE: return "CMP_GE";
case CMP_LT: return "CMP_LT";
case CMP_GT: return "CMP_GT";
case CMP_CONTAINS: return "CMP_CONTAINS";
case CMP_CONTAINSI: return "CMP_CONTAINSI";
case CMP_STARTSWITH: return "CMP_STARTSWITH";
case CMP_STARTSWITHI: return "CMP_STARTSWITHI";
case UMINUS: return "UMINUS";
default: return "UNKNOWN TOKEN";
}
}