/* net.c
* Implementation of network-related stuff.
*
* File begun on 2007-07-20 by RGerhards (extracted from syslogd.c)
* This file is under development and has not yet arrived at being fully
* self-contained and a real object. So far, it is mostly an excerpt
* of the "old" networking code without any modifications. However, it
* helps to have things at the right place one we go to the meat of it.
*
* Starting 2007-12-24, I have begun to shuffle more network-related code
* from syslogd.c to over here. I am not sure if it will stay here in the
* long term, but it is good to have it out of syslogd.c. Maybe this here is
* an interim location ;)
*
* Copyright 2007-2011 Rainer Gerhards and Adiscon GmbH.
*
* rgerhards, 2008-04-16: I changed this code to LGPL today. I carefully analyzed
* that it does not borrow code from the original sysklogd and that I have
* permission to do so from all other contributors. My analysis found that all
* code from sysklogd has been superseeded by our own functionality, so it
* is OK to move this file to LGPL. Some variable sysklogd variable names
* remain, but even this will change as the net object evolves.
*
* This file is part of the rsyslog runtime library.
*
* The rsyslog runtime library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* The rsyslog runtime library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the rsyslog runtime library. If not, see .
*
* A copy of the GPL can be found in the file "COPYING" in this distribution.
* A copy of the LGPL can be found in the file "COPYING.LESSER" in this distribution.
*/
#include "config.h"
#include "rsyslog.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#if HAVE_GETIFADDRS
#include
#else
#include "compat/ifaddrs.h"
#endif /* HAVE_GETIFADDRS */
#include
#include
#include "syslogd-types.h"
#include "module-template.h"
#include "parse.h"
#include "srUtils.h"
#include "obj.h"
#include "errmsg.h"
#include "net.h"
#include "dnscache.h"
#include "prop.h"
#ifdef OS_SOLARIS
# define s6_addr32 _S6_un._S6_u32
typedef unsigned int u_int32_t;
#endif
MODULE_TYPE_LIB
MODULE_TYPE_NOKEEP
/* static data */
DEFobjStaticHelpers
DEFobjCurrIf(errmsg)
DEFobjCurrIf(glbl)
DEFobjCurrIf(prop)
/* support for defining allowed TCP and UDP senders. We use the same
* structure to implement this (a linked list), but we define two different
* list roots, one for UDP and one for TCP.
* rgerhards, 2005-09-26
*/
/* All of the five below are read-only after startup */
struct AllowedSenders *pAllowedSenders_UDP = NULL; /* the roots of the allowed sender */
struct AllowedSenders *pAllowedSenders_TCP = NULL; /* lists. If NULL, all senders are ok! */
static struct AllowedSenders *pLastAllowedSenders_UDP = NULL; /* and now the pointers to the last */
static struct AllowedSenders *pLastAllowedSenders_TCP = NULL; /* element in the respective list */
#ifdef USE_GSSAPI
struct AllowedSenders *pAllowedSenders_GSS = NULL;
static struct AllowedSenders *pLastAllowedSenders_GSS = NULL;
#endif
int ACLAddHostnameOnFail = 0; /* add hostname to acl when DNS resolving has failed */
int ACLDontResolve = 0; /* add hostname to acl instead of resolving it to IP(s) */
/* ------------------------------ begin permitted peers code ------------------------------ */
/* sets the correct allow root pointer based on provided type
* rgerhards, 2008-12-01
*/
static inline rsRetVal
setAllowRoot(struct AllowedSenders **ppAllowRoot, uchar *pszType)
{
DEFiRet;
if(!strcmp((char*)pszType, "UDP"))
*ppAllowRoot = pAllowedSenders_UDP;
else if(!strcmp((char*)pszType, "TCP"))
*ppAllowRoot = pAllowedSenders_TCP;
#ifdef USE_GSSAPI
else if(!strcmp((char*)pszType, "GSS"))
*ppAllowRoot = pAllowedSenders_GSS;
#endif
else {
dbgprintf("program error: invalid allowed sender ID '%s', denying...\n", pszType);
ABORT_FINALIZE(RS_RET_CODE_ERR); /* everything is invalid for an invalid type */
}
finalize_it:
RETiRet;
}
/* re-initializes (sets to NULL) the correct allow root pointer
* rgerhards, 2009-01-12
*/
static inline rsRetVal
reinitAllowRoot(uchar *pszType)
{
DEFiRet;
if(!strcmp((char*)pszType, "UDP"))
pAllowedSenders_UDP = NULL;
else if(!strcmp((char*)pszType, "TCP"))
pAllowedSenders_TCP = NULL;
#ifdef USE_GSSAPI
else if(!strcmp((char*)pszType, "GSS"))
pAllowedSenders_GSS = NULL;
#endif
else {
dbgprintf("program error: invalid allowed sender ID '%s', denying...\n", pszType);
ABORT_FINALIZE(RS_RET_CODE_ERR); /* everything is invalid for an invalid type */
}
finalize_it:
RETiRet;
}
/* add a wildcard entry to this permitted peer. Entries are always
* added at the tail of the list. pszStr and lenStr identify the wildcard
* entry to be added. Note that the string is NOT \0 terminated, so
* we must rely on lenStr for when it is finished.
* rgerhards, 2008-05-27
*/
static rsRetVal
AddPermittedPeerWildcard(permittedPeers_t *pPeer, uchar* pszStr, size_t lenStr)
{
permittedPeerWildcard_t *pNew = NULL;
size_t iSrc;
size_t iDst;
DEFiRet;
assert(pPeer != NULL);
assert(pszStr != NULL);
CHKmalloc(pNew = calloc(1, sizeof(permittedPeers_t)));
if(lenStr == 0) { /* empty domain components are permitted */
pNew->wildcardType = PEER_WILDCARD_EMPTY_COMPONENT;
FINALIZE;
} else {
/* alloc memory for the domain component. We may waste a byte or
* two, but that's ok.
*/
CHKmalloc(pNew->pszDomainPart = MALLOC(lenStr +1 ));
}
if(pszStr[0] == '*') {
pNew->wildcardType = PEER_WILDCARD_AT_START;
iSrc = 1; /* skip '*' */
} else {
iSrc = 0;
}
for(iDst = 0 ; iSrc < lenStr && pszStr[iSrc] != '*' ; ++iSrc, ++iDst) {
pNew->pszDomainPart[iDst] = pszStr[iSrc];
}
if(iSrc < lenStr) {
if(iSrc + 1 == lenStr && pszStr[iSrc] == '*') {
if(pNew->wildcardType == PEER_WILDCARD_AT_START) {
ABORT_FINALIZE(RS_RET_INVALID_WILDCARD);
} else {
pNew->wildcardType = PEER_WILDCARD_AT_END;
}
} else {
/* we have an invalid wildcard, something follows the asterisk! */
ABORT_FINALIZE(RS_RET_INVALID_WILDCARD);
}
}
if(lenStr == 1 && pNew->wildcardType == PEER_WILDCARD_AT_START) {
pNew->wildcardType = PEER_WILDCARD_MATCH_ALL;
}
/* if we reach this point, we had a valid wildcard. We now need to
* properly terminate the domain component string.
*/
pNew->pszDomainPart[iDst] = '\0';
pNew->lenDomainPart = strlen((char*)pNew->pszDomainPart);
finalize_it:
if(iRet != RS_RET_OK) {
if(pNew != NULL) {
if(pNew->pszDomainPart != NULL)
free(pNew->pszDomainPart);
free(pNew);
}
} else {
/* enqueue the element */
if(pPeer->pWildcardRoot == NULL) {
pPeer->pWildcardRoot = pNew;
pPeer->pWildcardLast = pNew;
} else {
pPeer->pWildcardLast->pNext = pNew;
}
pPeer->pWildcardLast = pNew;
}
RETiRet;
}
/* Destruct a permitted peer's wildcard list -- rgerhards, 2008-05-27 */
static rsRetVal
DestructPermittedPeerWildcards(permittedPeers_t *pPeer)
{
permittedPeerWildcard_t *pCurr;
permittedPeerWildcard_t *pDel;
DEFiRet;
assert(pPeer != NULL);
for(pCurr = pPeer->pWildcardRoot ; pCurr != NULL ; /*EMPTY*/) {
pDel = pCurr;
pCurr = pCurr->pNext;
free(pDel->pszDomainPart);
free(pDel);
}
pPeer->pWildcardRoot = NULL;
pPeer->pWildcardLast = NULL;
RETiRet;
}
/* add a permitted peer. PermittedPeers is an interim solution until we can provide
* access control via enhanced RainerScript methods.
* Note: the provided string is handed over to this function, caller must
* no longer access it. -- rgerhards, 2008-05-19
*/
static rsRetVal
AddPermittedPeer(permittedPeers_t **ppRootPeer, uchar* pszID)
{
permittedPeers_t *pNew = NULL;
DEFiRet;
assert(ppRootPeer != NULL);
assert(pszID != NULL);
CHKmalloc(pNew = calloc(1, sizeof(permittedPeers_t))); /* we use calloc() for consistency with "real" objects */
CHKmalloc(pNew->pszID = (uchar*)strdup((char*)pszID));
if(*ppRootPeer != NULL) {
pNew->pNext = *ppRootPeer;
}
*ppRootPeer = pNew;
finalize_it:
if(iRet != RS_RET_OK) {
if(pNew != NULL)
free(pNew);
}
RETiRet;
}
/* Destruct a permitted peers list -- rgerhards, 2008-05-19 */
static rsRetVal
DestructPermittedPeers(permittedPeers_t **ppRootPeer)
{
permittedPeers_t *pCurr;
permittedPeers_t *pDel;
DEFiRet;
assert(ppRootPeer != NULL);
for(pCurr = *ppRootPeer ; pCurr != NULL ; /*EMPTY*/) {
pDel = pCurr;
pCurr = pCurr->pNext;
DestructPermittedPeerWildcards(pDel);
free(pDel->pszID);
free(pDel);
}
*ppRootPeer = NULL;
RETiRet;
}
/* Compile a wildcard. The function first checks if there is a wildcard
* present and compiles it only if so ;) It sets the etryType status
* accordingly.
* rgerhards, 2008-05-27
*/
static rsRetVal
PermittedPeerWildcardCompile(permittedPeers_t *pPeer)
{
uchar *pC;
uchar *pStart;
DEFiRet;
assert(pPeer != NULL);
assert(pPeer->pszID != NULL);
/* first check if we have a wildcard */
for(pC = pPeer->pszID ; *pC != '\0' && *pC != '*' ; ++pC)
/*EMPTY, just skip*/;
if(*pC == '\0') {
/* no wildcard found, we are mostly done */
pPeer->etryType = PERM_PEER_TYPE_PLAIN;
FINALIZE;
}
/* if we reach this point, the string contains wildcards. So let's
* compile the structure. To do so, we must parse from dot to dot
* and create a wildcard entry for each domain component we find.
* We must also flag problems if we have an asterisk in the middle
* of the text (it is supported at the start or end only).
*/
pPeer->etryType = PERM_PEER_TYPE_WILDCARD;
pC = pPeer->pszID;
while(*pC != '\0') {
pStart = pC;
/* find end of domain component */
for( ; *pC != '\0' && *pC != '.' ; ++pC)
/*EMPTY, just skip*/;
CHKiRet(AddPermittedPeerWildcard(pPeer, pStart, pC - pStart));
/* now check if we have an empty component at end of string */
if(*pC == '.' && *(pC + 1) == '\0') {
/* pStart is a dummy, it is not used if length is 0 */
CHKiRet(AddPermittedPeerWildcard(pPeer, pStart, 0));
}
if(*pC != '\0')
++pC;
}
finalize_it:
if(iRet != RS_RET_OK) {
errmsg.LogError(0, iRet, "error compiling wildcard expression '%s'",
pPeer->pszID);
}
RETiRet;
}
/* Do a (potential) wildcard match. The function first checks if the wildcard
* has already been compiled and, if not, compiles it. If the peer entry in
* question does NOT contain a wildcard, a simple strcmp() is done.
* *pbIsMatching is set to 0 if there is no match and something else otherwise.
* rgerhards, 2008-05-27 */
static rsRetVal
PermittedPeerWildcardMatch(permittedPeers_t *pPeer, uchar *pszNameToMatch, int *pbIsMatching)
{
permittedPeerWildcard_t *pWildcard;
uchar *pC;
uchar *pStart; /* start of current domain component */
size_t iWildcard, iName; /* work indexes for backward comparisons */
DEFiRet;
assert(pPeer != NULL);
assert(pszNameToMatch != NULL);
assert(pbIsMatching != NULL);
if(pPeer->etryType == PERM_PEER_TYPE_UNDECIDED) {
PermittedPeerWildcardCompile(pPeer);
}
if(pPeer->etryType == PERM_PEER_TYPE_PLAIN) {
*pbIsMatching = !strcmp((char*)pPeer->pszID, (char*)pszNameToMatch);
FINALIZE;
}
/* we have a wildcard, so we need to extract the domain components and
* check then against the provided wildcards.
*/
pWildcard = pPeer->pWildcardRoot;
pC = pszNameToMatch;
while(*pC != '\0') {
if(pWildcard == NULL) {
/* we have more domain components than we have wildcards --> no match */
*pbIsMatching = 0;
FINALIZE;
}
pStart = pC;
while(*pC != '\0' && *pC != '.') {
++pC;
}
/* got the component, now do the match */
switch(pWildcard->wildcardType) {
case PEER_WILDCARD_NONE:
if( pWildcard->lenDomainPart != (size_t) (pC - pStart)
|| strncmp((char*)pStart, (char*)pWildcard->pszDomainPart, pC - pStart)) {
*pbIsMatching = 0;
FINALIZE;
}
break;
case PEER_WILDCARD_AT_START:
/* we need to do the backwards-matching manually */
if(pWildcard->lenDomainPart > (size_t) (pC - pStart)) {
*pbIsMatching = 0;
FINALIZE;
}
iName = (size_t) (pC - pStart) - pWildcard->lenDomainPart;
iWildcard = 0;
while(iWildcard < pWildcard->lenDomainPart) {
if(pWildcard->pszDomainPart[iWildcard] != pStart[iName]) {
*pbIsMatching = 0;
FINALIZE;
}
++iName;
++iWildcard;
}
break;
case PEER_WILDCARD_AT_END:
if( pWildcard->lenDomainPart > (size_t) (pC - pStart)
|| strncmp((char*)pStart, (char*)pWildcard->pszDomainPart, pWildcard->lenDomainPart)) {
*pbIsMatching = 0;
FINALIZE;
}
break;
case PEER_WILDCARD_MATCH_ALL:
/* everything is OK, just continue */
break;
case PEER_WILDCARD_EMPTY_COMPONENT:
if(pC - pStart > 0) {
/* if it is not empty, it is no match... */
*pbIsMatching = 0;
FINALIZE;
}
break;
}
pWildcard = pWildcard->pNext; /* we processed this entry */
/* skip '.' if we had it and so prepare for next iteration */
if(*pC == '.')
++pC;
}
if(pWildcard != NULL) {
/* we have more domain components than in the name to be
* checked. So this is no match.
*/
*pbIsMatching = 0;
FINALIZE;
}
*pbIsMatching = 1; /* finally... it matches ;) */
finalize_it:
RETiRet;
}
/* ------------------------------ end permitted peers code ------------------------------ */
/* Code for handling allowed/disallowed senders
*/
static inline void MaskIP6 (struct in6_addr *addr, uint8_t bits) {
register uint8_t i;
assert (addr != NULL);
assert (bits <= 128);
i = bits/32;
if (bits%32)
addr->s6_addr32[i++] &= htonl(0xffffffff << (32 - (bits % 32)));
for (; i < (sizeof addr->s6_addr32)/4; i++)
addr->s6_addr32[i] = 0;
}
static inline void MaskIP4 (struct in_addr *addr, uint8_t bits) {
assert (addr != NULL);
assert (bits <=32 );
addr->s_addr &= htonl(0xffffffff << (32 - bits));
}
#define SIN(sa) ((struct sockaddr_in *)(void*)(sa))
#define SIN6(sa) ((struct sockaddr_in6 *)(void*)(sa))
/* This is a cancel-safe getnameinfo() version, because we learned
* (via drd/valgrind) that getnameinfo() seems to have some issues
* when being cancelled, at least if the module was dlloaded.
* rgerhards, 2008-09-30
*/
static inline int
mygetnameinfo(const struct sockaddr *sa, socklen_t salen,
char *host, size_t hostlen,
char *serv, size_t servlen, int flags)
{
int iCancelStateSave;
int i;
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &iCancelStateSave);
i = getnameinfo(sa, salen, host, hostlen, serv, servlen, flags);
pthread_setcancelstate(iCancelStateSave, NULL);
return i;
}
/* This function adds an allowed sender entry to the ACL linked list.
* In any case, a single entry is added. If an error occurs, the
* function does its error reporting itself. All validity checks
* must already have been done by the caller.
* This is a helper to AddAllowedSender().
* rgerhards, 2007-07-17
*/
static rsRetVal AddAllowedSenderEntry(struct AllowedSenders **ppRoot, struct AllowedSenders **ppLast,
struct NetAddr *iAllow, uint8_t iSignificantBits)
{
struct AllowedSenders *pEntry = NULL;
assert(ppRoot != NULL);
assert(ppLast != NULL);
assert(iAllow != NULL);
if((pEntry = (struct AllowedSenders*) calloc(1, sizeof(struct AllowedSenders))) == NULL) {
return RS_RET_OUT_OF_MEMORY; /* no options left :( */
}
memcpy(&(pEntry->allowedSender), iAllow, sizeof (struct NetAddr));
pEntry->pNext = NULL;
pEntry->SignificantBits = iSignificantBits;
/* enqueue */
if(*ppRoot == NULL) {
*ppRoot = pEntry;
} else {
(*ppLast)->pNext = pEntry;
}
*ppLast = pEntry;
return RS_RET_OK;
}
/* function to clear the allowed sender structure in cases where
* it must be freed (occurs most often when HUPed).
* rgerhards, 2008-12-02: revamped this code when we fixed the interface
* definition. Now an iterative algorithm is used.
*/
static void
clearAllowedSenders(uchar *pszType)
{
struct AllowedSenders *pPrev;
struct AllowedSenders *pCurr = NULL;
if(setAllowRoot(&pCurr, pszType) != RS_RET_OK)
return; /* if something went wrong, so let's leave */
while(pCurr != NULL) {
pPrev = pCurr;
pCurr = pCurr->pNext;
/* now delete the entry we are right now processing */
if(F_ISSET(pPrev->allowedSender.flags, ADDR_NAME))
free(pPrev->allowedSender.addr.HostWildcard);
else
free(pPrev->allowedSender.addr.NetAddr);
free(pPrev);
}
/* indicate root pointer is de-init (was forgotten previously, resulting in
* all kinds of interesting things) -- rgerhards, 2009-01-12
*/
reinitAllowRoot(pszType);
}
/* function to add an allowed sender to the allowed sender list. The
* root of the list is caller-provided, so it can be used for all
* supported lists. The caller must provide a pointer to the root,
* as it eventually needs to be updated. Also, a pointer to the
* pointer to the last element must be provided (to speed up adding
* list elements).
* rgerhards, 2005-09-26
* If a hostname is given there are possible multiple entries
* added (all addresses from that host).
*/
static rsRetVal AddAllowedSender(struct AllowedSenders **ppRoot, struct AllowedSenders **ppLast,
struct NetAddr *iAllow, uint8_t iSignificantBits)
{
DEFiRet;
assert(ppRoot != NULL);
assert(ppLast != NULL);
assert(iAllow != NULL);
if (!F_ISSET(iAllow->flags, ADDR_NAME)) {
if(iSignificantBits == 0)
/* we handle this seperatly just to provide a better
* error message.
*/
errmsg.LogError(0, NO_ERRCODE, "You can not specify 0 bits of the netmask, this would "
"match ALL systems. If you really intend to do that, "
"remove all $AllowedSender directives.");
switch (iAllow->addr.NetAddr->sa_family) {
case AF_INET:
if((iSignificantBits < 1) || (iSignificantBits > 32)) {
errmsg.LogError(0, NO_ERRCODE, "Invalid number of bits (%d) in IPv4 address - adjusted to 32",
(int)iSignificantBits);
iSignificantBits = 32;
}
MaskIP4 (&(SIN(iAllow->addr.NetAddr)->sin_addr), iSignificantBits);
break;
case AF_INET6:
if((iSignificantBits < 1) || (iSignificantBits > 128)) {
errmsg.LogError(0, NO_ERRCODE, "Invalid number of bits (%d) in IPv6 address - adjusted to 128",
iSignificantBits);
iSignificantBits = 128;
}
MaskIP6 (&(SIN6(iAllow->addr.NetAddr)->sin6_addr), iSignificantBits);
break;
default:
/* rgerhards, 2007-07-16: We have an internal program error in this
* case. However, there is not much we can do against it right now. Of
* course, we could abort, but that would probably cause more harm
* than good. So we continue to run. We simply do not add this line - the
* worst thing that happens is that one host will not be allowed to
* log.
*/
errmsg.LogError(0, NO_ERRCODE, "Internal error caused AllowedSender to be ignored, AF = %d",
iAllow->addr.NetAddr->sa_family);
ABORT_FINALIZE(RS_RET_ERR);
}
/* OK, entry constructed, now lets add it to the ACL list */
iRet = AddAllowedSenderEntry(ppRoot, ppLast, iAllow, iSignificantBits);
} else {
/* we need to process a hostname ACL */
if(glbl.GetDisableDNS()) {
errmsg.LogError(0, NO_ERRCODE, "Ignoring hostname based ACLs because DNS is disabled.");
ABORT_FINALIZE(RS_RET_OK);
}
if (!strchr (iAllow->addr.HostWildcard, '*') &&
!strchr (iAllow->addr.HostWildcard, '?') &&
ACLDontResolve == 0) {
/* single host - in this case, we pull its IP addresses from DNS
* and add IP-based ACLs.
*/
struct addrinfo hints, *res, *restmp;
struct NetAddr allowIP;
memset (&hints, 0, sizeof (struct addrinfo));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
# ifdef AI_ADDRCONFIG /* seems not to be present on all systems */
hints.ai_flags = AI_ADDRCONFIG;
# endif
if (getaddrinfo (iAllow->addr.HostWildcard, NULL, &hints, &res) != 0) {
errmsg.LogError(0, NO_ERRCODE, "DNS error: Can't resolve \"%s\"", iAllow->addr.HostWildcard);
if (ACLAddHostnameOnFail) {
errmsg.LogError(0, NO_ERRCODE, "Adding hostname \"%s\" to ACL as a wildcard entry.", iAllow->addr.HostWildcard);
iRet = AddAllowedSenderEntry(ppRoot, ppLast, iAllow, iSignificantBits);
FINALIZE;
} else {
errmsg.LogError(0, NO_ERRCODE, "Hostname \"%s\" WON\'T be added to ACL.", iAllow->addr.HostWildcard);
ABORT_FINALIZE(RS_RET_NOENTRY);
}
}
for (restmp = res ; res != NULL ; res = res->ai_next) {
switch (res->ai_family) {
case AF_INET: /* add IPv4 */
iSignificantBits = 32;
allowIP.flags = 0;
if((allowIP.addr.NetAddr = MALLOC(res->ai_addrlen)) == NULL) {
ABORT_FINALIZE(RS_RET_OUT_OF_MEMORY);
}
memcpy(allowIP.addr.NetAddr, res->ai_addr, res->ai_addrlen);
if((iRet = AddAllowedSenderEntry(ppRoot, ppLast, &allowIP, iSignificantBits))
!= RS_RET_OK)
FINALIZE;
break;
case AF_INET6: /* IPv6 - but need to check if it is a v6-mapped IPv4 */
if(IN6_IS_ADDR_V4MAPPED (&SIN6(res->ai_addr)->sin6_addr)) {
/* extract & add IPv4 */
iSignificantBits = 32;
allowIP.flags = 0;
if((allowIP.addr.NetAddr = MALLOC(sizeof(struct sockaddr_in)))
== NULL) {
ABORT_FINALIZE(RS_RET_OUT_OF_MEMORY);
}
SIN(allowIP.addr.NetAddr)->sin_family = AF_INET;
#ifdef HAVE_STRUCT_SOCKADDR_SA_LEN
SIN(allowIP.addr.NetAddr)->sin_len = sizeof (struct sockaddr_in);
#endif
SIN(allowIP.addr.NetAddr)->sin_port = 0;
memcpy(&(SIN(allowIP.addr.NetAddr)->sin_addr.s_addr),
&(SIN6(res->ai_addr)->sin6_addr.s6_addr32[3]),
sizeof (in_addr_t));
if((iRet = AddAllowedSenderEntry(ppRoot, ppLast, &allowIP,
iSignificantBits))
!= RS_RET_OK)
FINALIZE;
} else {
/* finally add IPv6 */
iSignificantBits = 128;
allowIP.flags = 0;
if((allowIP.addr.NetAddr = MALLOC(res->ai_addrlen)) == NULL) {
ABORT_FINALIZE(RS_RET_OUT_OF_MEMORY);
}
memcpy(allowIP.addr.NetAddr, res->ai_addr, res->ai_addrlen);
if((iRet = AddAllowedSenderEntry(ppRoot, ppLast, &allowIP,
iSignificantBits))
!= RS_RET_OK)
FINALIZE;
}
break;
}
}
freeaddrinfo (restmp);
} else {
/* wildcards in hostname - we need to add a text-based ACL.
* For this, we already have everything ready and just need
* to pass it along...
*/
iRet = AddAllowedSenderEntry(ppRoot, ppLast, iAllow, iSignificantBits);
}
}
finalize_it:
RETiRet;
}
/* Print an allowed sender list. The caller must tell us which one.
* iListToPrint = 1 means UDP, 2 means TCP
* rgerhards, 2005-09-27
*/
void PrintAllowedSenders(int iListToPrint)
{
struct AllowedSenders *pSender;
uchar szIP[64];
assert((iListToPrint == 1) || (iListToPrint == 2)
#ifdef USE_GSSAPI
|| (iListToPrint == 3)
#endif
);
dbgprintf("Allowed %s Senders:\n",
(iListToPrint == 1) ? "UDP" :
#ifdef USE_GSSAPI
(iListToPrint == 3) ? "GSS" :
#endif
"TCP");
pSender = (iListToPrint == 1) ? pAllowedSenders_UDP :
#ifdef USE_GSSAPI
(iListToPrint == 3) ? pAllowedSenders_GSS :
#endif
pAllowedSenders_TCP;
if(pSender == NULL) {
dbgprintf("\tNo restrictions set.\n");
} else {
while(pSender != NULL) {
if (F_ISSET(pSender->allowedSender.flags, ADDR_NAME))
dbgprintf ("\t%s\n", pSender->allowedSender.addr.HostWildcard);
else {
if(mygetnameinfo (pSender->allowedSender.addr.NetAddr,
SALEN(pSender->allowedSender.addr.NetAddr),
(char*)szIP, 64, NULL, 0, NI_NUMERICHOST) == 0) {
dbgprintf ("\t%s/%u\n", szIP, pSender->SignificantBits);
} else {
/* getnameinfo() failed - but as this is only a
* debug function, we simply spit out an error and do
* not care much about it.
*/
dbgprintf("\tERROR in getnameinfo() - something may be wrong "
"- ignored for now\n");
}
}
pSender = pSender->pNext;
}
}
}
/* parse an allowed sender config line and add the allowed senders
* (if the line is correct).
* rgerhards, 2005-09-27
*/
rsRetVal addAllowedSenderLine(char* pName, uchar** ppRestOfConfLine)
{
struct AllowedSenders **ppRoot;
struct AllowedSenders **ppLast;
rsParsObj *pPars;
rsRetVal iRet;
struct NetAddr *uIP = NULL;
int iBits;
assert(pName != NULL);
assert(ppRestOfConfLine != NULL);
assert(*ppRestOfConfLine != NULL);
if(!strcasecmp(pName, "udp")) {
ppRoot = &pAllowedSenders_UDP;
ppLast = &pLastAllowedSenders_UDP;
} else if(!strcasecmp(pName, "tcp")) {
ppRoot = &pAllowedSenders_TCP;
ppLast = &pLastAllowedSenders_TCP;
#ifdef USE_GSSAPI
} else if(!strcasecmp(pName, "gss")) {
ppRoot = &pAllowedSenders_GSS;
ppLast = &pLastAllowedSenders_GSS;
#endif
} else {
errmsg.LogError(0, RS_RET_ERR, "Invalid protocol '%s' in allowed sender "
"list, line ignored", pName);
return RS_RET_ERR;
}
/* OK, we now know the protocol and have valid list pointers.
* So let's process the entries. We are using the parse class
* for this.
*/
/* create parser object starting with line string without leading colon */
if((iRet = rsParsConstructFromSz(&pPars, (uchar*) *ppRestOfConfLine) != RS_RET_OK)) {
errmsg.LogError(0, iRet, "Error %d constructing parser object - ignoring allowed sender list", iRet);
return(iRet);
}
while(!parsIsAtEndOfParseString(pPars)) {
if(parsPeekAtCharAtParsPtr(pPars) == '#')
break; /* a comment-sign stops processing of line */
/* now parse a single IP address */
if((iRet = parsAddrWithBits(pPars, &uIP, &iBits)) != RS_RET_OK) {
errmsg.LogError(0, iRet, "Error %d parsing address in allowed sender"
"list - ignoring.", iRet);
rsParsDestruct(pPars);
return(iRet);
}
if((iRet = AddAllowedSender(ppRoot, ppLast, uIP, iBits)) != RS_RET_OK) {
if(iRet == RS_RET_NOENTRY) {
errmsg.LogError(0, iRet, "Error %d adding allowed sender entry "
"- ignoring.", iRet);
} else {
errmsg.LogError(0, iRet, "Error %d adding allowed sender entry "
"- terminating, nothing more will be added.", iRet);
rsParsDestruct(pPars);
return(iRet);
}
}
free (uIP); /* copy stored in AllowedSenders list */
}
/* cleanup */
*ppRestOfConfLine += parsGetCurrentPosition(pPars);
return rsParsDestruct(pPars);
}
/* compares a host to an allowed sender list entry. Handles all subleties
* including IPv4/v6 as well as domain name wildcards.
* This is a helper to isAllowedSender. As it is only called once, it is
* declared inline.
* Returns 0 if they do not match, 1 if they match and 2 if a DNS name would have been required.
* contributed 2007-07-16 by mildew@gmail.com
*/
static inline int
MaskCmp(struct NetAddr *pAllow, uint8_t bits, struct sockaddr *pFrom, const char *pszFromHost, int bChkDNS)
{
assert(pAllow != NULL);
assert(pFrom != NULL);
if(F_ISSET(pAllow->flags, ADDR_NAME)) {
if(bChkDNS == 0)
return 2;
dbgprintf("MaskCmp: host=\"%s\"; pattern=\"%s\"\n", pszFromHost, pAllow->addr.HostWildcard);
# if !defined(FNM_CASEFOLD)
/* TODO: I don't know if that then works, seen on HP UX, what I have not in lab... ;) */
return(fnmatch(pAllow->addr.HostWildcard, pszFromHost, FNM_NOESCAPE) == 0);
# else
return(fnmatch(pAllow->addr.HostWildcard, pszFromHost, FNM_NOESCAPE|FNM_CASEFOLD) == 0);
# endif
} else {/* We need to compare an IP address */
switch (pFrom->sa_family) {
case AF_INET:
if (AF_INET == pAllow->addr.NetAddr->sa_family)
return(( SIN(pFrom)->sin_addr.s_addr & htonl(0xffffffff << (32 - bits)) )
== SIN(pAllow->addr.NetAddr)->sin_addr.s_addr);
else
return 0;
break;
case AF_INET6:
switch (pAllow->addr.NetAddr->sa_family) {
case AF_INET6: {
struct in6_addr ip, net;
register uint8_t i;
memcpy (&ip, &(SIN6(pFrom))->sin6_addr, sizeof (struct in6_addr));
memcpy (&net, &(SIN6(pAllow->addr.NetAddr))->sin6_addr, sizeof (struct in6_addr));
i = bits/32;
if (bits % 32)
ip.s6_addr32[i++] &= htonl(0xffffffff << (32 - (bits % 32)));
for (; i < (sizeof ip.s6_addr32)/4; i++)
ip.s6_addr32[i] = 0;
return (memcmp (ip.s6_addr, net.s6_addr, sizeof ip.s6_addr) == 0 &&
(SIN6(pAllow->addr.NetAddr)->sin6_scope_id != 0 ?
SIN6(pFrom)->sin6_scope_id == SIN6(pAllow->addr.NetAddr)->sin6_scope_id : 1));
}
case AF_INET: {
struct in6_addr *ip6 = &(SIN6(pFrom))->sin6_addr;
struct in_addr *net = &(SIN(pAllow->addr.NetAddr))->sin_addr;
if ((ip6->s6_addr32[3] & (u_int32_t) htonl((0xffffffff << (32 - bits)))) == net->s_addr &&
#if BYTE_ORDER == LITTLE_ENDIAN
(ip6->s6_addr32[2] == (u_int32_t)0xffff0000) &&
#else
(ip6->s6_addr32[2] == (u_int32_t)0x0000ffff) &&
#endif
(ip6->s6_addr32[1] == 0) && (ip6->s6_addr32[0] == 0))
return 1;
else
return 0;
}
default:
/* Unsupported AF */
return 0;
}
default:
/* Unsupported AF */
return 0;
}
}
}
/* check if a sender is allowed. The root of the the allowed sender.
* list must be proveded by the caller. As such, this function can be
* used to check both UDP and TCP allowed sender lists.
* returns 1, if the sender is allowed, 0 if not and 2 if we could not
* obtain a result because we would need a dns name, which we don't have
* (2 was added rgerhards, 2009-11-16).
* rgerhards, 2005-09-26
*/
static int isAllowedSender2(uchar *pszType, struct sockaddr *pFrom, const char *pszFromHost, int bChkDNS)
{
struct AllowedSenders *pAllow;
struct AllowedSenders *pAllowRoot = NULL;
int bNeededDNS = 0; /* partial check because we could not resolve DNS? */
int ret;
assert(pFrom != NULL);
if(setAllowRoot(&pAllowRoot, pszType) != RS_RET_OK)
return 0; /* if something went wrong, we deny access - that's the better choice... */
if(pAllowRoot == NULL)
return 1; /* checking disabled, everything is valid! */
/* now we loop through the list of allowed senders. As soon as
* we find a match, we return back (indicating allowed). We loop
* until we are out of allowed senders. If so, we fall through the
* loop and the function's terminal return statement will indicate
* that the sender is disallowed.
*/
for(pAllow = pAllowRoot ; pAllow != NULL ; pAllow = pAllow->pNext) {
ret = MaskCmp (&(pAllow->allowedSender), pAllow->SignificantBits, pFrom, pszFromHost, bChkDNS);
if(ret == 1)
return 1;
else if(ret == 2)
bNeededDNS = 2;
}
return bNeededDNS;
}
/* legacy API, not to be used any longer */
static int
isAllowedSender(uchar *pszType, struct sockaddr *pFrom, const char *pszFromHost) {
return isAllowedSender2(pszType, pFrom, pszFromHost, 1);
}
/* The following #ifdef sequence is a small compatibility
* layer. It tries to work around the different availality
* levels of SO_BSDCOMPAT on linuxes...
* I borrowed this code from
* http://www.erlang.org/ml-archive/erlang-questions/200307/msg00037.html
* It still needs to be a bit better adapted to rsyslog.
* rgerhards 2005-09-19
*/
#include
static int
should_use_so_bsdcompat(void)
{
#ifndef OS_BSD
static int init_done = 0;
static int so_bsdcompat_is_obsolete = 0;
if (!init_done) {
struct utsname myutsname;
unsigned int version, patchlevel;
init_done = 1;
if (uname(&myutsname) < 0) {
char errStr[1024];
dbgprintf("uname: %s\r\n", rs_strerror_r(errno, errStr, sizeof(errStr)));
return 1;
}
/* Format is ..
where the first three are unsigned integers and the last
is an arbitrary string. We only care about the first two. */
if (sscanf(myutsname.release, "%u.%u", &version, &patchlevel) != 2) {
dbgprintf("uname: unexpected release '%s'\r\n",
myutsname.release);
return 1;
}
/* SO_BSCOMPAT is deprecated and triggers warnings in 2.5
kernels. It is a no-op in 2.4 but not in 2.2 kernels. */
if (version > 2 || (version == 2 && patchlevel >= 5))
so_bsdcompat_is_obsolete = 1;
}
return !so_bsdcompat_is_obsolete;
#else /* #ifndef OS_BSD */
return 1;
#endif /* #ifndef OS_BSD */
}
#ifndef SO_BSDCOMPAT
/* this shall prevent compiler errors due to undfined name */
#define SO_BSDCOMPAT 0
#endif
/* print out which socket we are listening on. This is only
* a debug aid. rgerhards, 2007-07-02
*/
void debugListenInfo(int fd, char *type)
{
char *szFamily;
int port;
struct sockaddr sa;
struct sockaddr_in *ipv4;
struct sockaddr_in6 *ipv6;
socklen_t saLen = sizeof(sa);
if(getsockname(fd, &sa, &saLen) == 0) {
switch(sa.sa_family) {
case PF_INET:
szFamily = "IPv4";
ipv4 = (struct sockaddr_in*)(void*) &sa;
port = ntohs(ipv4->sin_port);
break;
case PF_INET6:
szFamily = "IPv6";
ipv6 = (struct sockaddr_in6*)(void*) &sa;
port = ntohs(ipv6->sin6_port);
break;
default:
szFamily = "other";
port = -1;
break;
}
dbgprintf("Listening on %s syslogd socket %d (%s/port %d).\n",
type, fd, szFamily, port);
return;
}
/* we can not obtain peer info. We are just providing
* debug info, so this is no reason to break the program
* or do any serious error reporting.
*/
dbgprintf("Listening on syslogd socket %d - could not obtain peer info.\n", fd);
}
/* Return a printable representation of a host addresses. If
* a parameter is NULL, it is not set. rgerhards, 2013-01-22
*/
rsRetVal
cvthname(struct sockaddr_storage *f, prop_t **localName, prop_t **fqdn, prop_t **ip)
{
DEFiRet;
assert(f != NULL);
iRet = dnscacheLookup(f, NULL, fqdn, localName, ip);
RETiRet;
}
/* get the name of the local host. A pointer to a character pointer is passed
* in, which on exit points to the local hostname. This buffer is dynamically
* allocated and must be free()ed by the caller. If the functions returns an
* error, the pointer is NULL. This function is based on GNU/Hurd's localhostname
* function.
* rgerhards, 20080-04-10
*/
static rsRetVal
getLocalHostname(uchar **ppName)
{
DEFiRet;
uchar *buf = NULL;
size_t buf_len = 0;
assert(ppName != NULL);
do {
if(buf == NULL) {
buf_len = 128; /* Initial guess */
CHKmalloc(buf = MALLOC(buf_len));
} else {
buf_len += buf_len;
CHKmalloc(buf = realloc (buf, buf_len));
}
} while((gethostname((char*)buf, buf_len) == 0 && !memchr (buf, '\0', buf_len)) || errno == ENAMETOOLONG);
*ppName = buf;
buf = NULL;
finalize_it:
if(iRet != RS_RET_OK) {
if(buf != NULL)
free(buf);
}
RETiRet;
}
/* closes the UDP listen sockets (if they exist) and frees
* all dynamically assigned memory.
*/
void closeUDPListenSockets(int *pSockArr)
{
register int i;
assert(pSockArr != NULL);
if(pSockArr != NULL) {
for (i = 0; i < *pSockArr; i++)
close(pSockArr[i+1]);
free(pSockArr);
}
}
/* creates the UDP listen sockets
* hostname and/or pszPort may be NULL, but not both!
* bIsServer indicates if a server socket should be created
* 1 - server, 0 - client
* param rcvbuf indicates desired rcvbuf size; 0 means OS default
*/
int *create_udp_socket(uchar *hostname, uchar *pszPort, int bIsServer, int rcvbuf)
{
struct addrinfo hints, *res, *r;
int error, maxs, *s, *socks, on = 1;
int sockflags;
int actrcvbuf;
socklen_t optlen;
char errStr[1024];
assert(!((pszPort == NULL) && (hostname == NULL)));
memset(&hints, 0, sizeof(hints));
if(bIsServer)
hints.ai_flags = AI_PASSIVE | AI_NUMERICSERV;
else
hints.ai_flags = AI_NUMERICSERV;
hints.ai_family = glbl.GetDefPFFamily();
hints.ai_socktype = SOCK_DGRAM;
error = getaddrinfo((char*) hostname, (char*) pszPort, &hints, &res);
if(error) {
errmsg.LogError(0, NO_ERRCODE, "%s", gai_strerror(error));
errmsg.LogError(0, NO_ERRCODE, "UDP message reception disabled due to error logged in last message.\n");
return NULL;
}
/* Count max number of sockets we may open */
for (maxs = 0, r = res; r != NULL ; r = r->ai_next, maxs++)
/* EMPTY */;
socks = MALLOC((maxs+1) * sizeof(int));
if (socks == NULL) {
errmsg.LogError(0, NO_ERRCODE, "couldn't allocate memory for UDP sockets, suspending UDP message reception");
freeaddrinfo(res);
return NULL;
}
*socks = 0; /* num of sockets counter at start of array */
s = socks + 1;
for (r = res; r != NULL ; r = r->ai_next) {
*s = socket(r->ai_family, r->ai_socktype, r->ai_protocol);
if (*s < 0) {
if(!(r->ai_family == PF_INET6 && errno == EAFNOSUPPORT))
errmsg.LogError(errno, NO_ERRCODE, "create_udp_socket(), socket");
/* it is debateble if PF_INET with EAFNOSUPPORT should
* also be ignored...
*/
continue;
}
# ifdef IPV6_V6ONLY
if (r->ai_family == AF_INET6) {
int ion = 1;
if (setsockopt(*s, IPPROTO_IPV6, IPV6_V6ONLY,
(char *)&ion, sizeof (ion)) < 0) {
errmsg.LogError(errno, NO_ERRCODE, "setsockopt");
close(*s);
*s = -1;
continue;
}
}
# endif
/* if we have an error, we "just" suspend that socket. Eventually
* other sockets will work. At the end of this function, we check
* if we managed to open at least one socket. If not, we'll write
* a "inet suspended" message and declare failure. Else we use
* what we could obtain.
* rgerhards, 2007-06-22
*/
if (setsockopt(*s, SOL_SOCKET, SO_REUSEADDR,
(char *) &on, sizeof(on)) < 0 ) {
errmsg.LogError(errno, NO_ERRCODE, "setsockopt(REUSEADDR)");
close(*s);
*s = -1;
continue;
}
/* We need to enable BSD compatibility. Otherwise an attacker
* could flood our log files by sending us tons of ICMP errors.
*/
#if !defined(OS_BSD) && !defined(__hpux)
if (should_use_so_bsdcompat()) {
if (setsockopt(*s, SOL_SOCKET, SO_BSDCOMPAT,
(char *) &on, sizeof(on)) < 0) {
errmsg.LogError(errno, NO_ERRCODE, "setsockopt(BSDCOMPAT)");
close(*s);
*s = -1;
continue;
}
}
#endif
/* We must not block on the network socket, in case a packet
* gets lost between select and recv, otherwise the process
* will stall until the timeout, and other processes trying to
* log will also stall.
* Patch vom Colin Phipps to the original
* sysklogd source. Applied to rsyslogd on 2005-10-19.
*/
if ((sockflags = fcntl(*s, F_GETFL)) != -1) {
sockflags |= O_NONBLOCK;
/* SETFL could fail too, so get it caught by the subsequent
* error check.
*/
sockflags = fcntl(*s, F_SETFL, sockflags);
}
if (sockflags == -1) {
errmsg.LogError(errno, NO_ERRCODE, "fcntl(O_NONBLOCK)");
close(*s);
*s = -1;
continue;
}
if(rcvbuf != 0) {
# if defined(SO_RCVBUFFORCE)
if(setsockopt(*s, SOL_SOCKET, SO_RCVBUFFORCE, &rcvbuf, sizeof(rcvbuf)) < 0)
# endif
{
/* if we fail, try to do it the regular way. Experiments show that at
* least some platforms do not return an error here, but silently set
* it to the max permitted value. So we do our error check a bit
* differently by querying the size below.
*/
setsockopt(*s, SOL_SOCKET, SO_RCVBUF, &rcvbuf, sizeof(rcvbuf));
}
}
if(Debug || rcvbuf != 0) {
optlen = sizeof(actrcvbuf);
if(getsockopt(*s, SOL_SOCKET, SO_RCVBUF, &actrcvbuf, &optlen) == 0) {
dbgprintf("socket %d, actual os socket rcvbuf size %d\n", *s, actrcvbuf);
if(rcvbuf != 0 && actrcvbuf/2 != rcvbuf) {
errmsg.LogError(errno, NO_ERRCODE,
"cannot set os socket rcvbuf size %d for socket %d, value now is %d",
rcvbuf, *s, actrcvbuf/2);
}
} else {
dbgprintf("could not obtain os socket rcvbuf size for socket %d: %s\n",
*s, rs_strerror_r(errno, errStr, sizeof(errStr)));
}
}
if(bIsServer) {
/* rgerhards, 2007-06-22: if we run on a kernel that does not support
* the IPV6_V6ONLY socket option, we need to use a work-around. On such
* systems the IPv6 socket does also accept IPv4 sockets. So an IPv4
* socket can not listen on the same port as an IPv6 socket. The only
* workaround is to ignore the "socket in use" error. This is what we
* do if we have to.
*/
if( (bind(*s, r->ai_addr, r->ai_addrlen) < 0)
# ifndef IPV6_V6ONLY
&& (errno != EADDRINUSE)
# endif
) {
errmsg.LogError(errno, NO_ERRCODE, "bind");
close(*s);
*s = -1;
continue;
}
}
(*socks)++;
s++;
}
if(res != NULL)
freeaddrinfo(res);
if(Debug && *socks != maxs)
dbgprintf("We could initialize %d UDP listen sockets out of %d we received "
"- this may or may not be an error indication.\n", *socks, maxs);
if(*socks == 0) {
errmsg.LogError(0, NO_ERRCODE, "No UDP listen socket could successfully be initialized, "
"message reception via UDP disabled.\n");
/* we do NOT need to free any sockets, because there were none... */
free(socks);
return(NULL);
}
return(socks);
}
/* check if two provided socket addresses point to the same host. Note that the
* length of the sockets must be provided as third parameter. This is necessary to
* compare non IPv4/v6 hosts, in which case we do a simple memory compare of the
* address structure (in that case, the same host may not reliably be detected).
* Note that we need to do the comparison not on the full structure, because it contains things
* like the port, which we do not need to look at when thinking about hostnames. So we look
* at the relevant fields, what means a somewhat more complicated processing.
* Also note that we use a non-standard calling interface, as this is much more natural and
* it looks extremely unlikely that we get an exception of any kind here. What we
* return is mimiced after memcmp(), and as such useful for building binary trees
* (the order relation may be a bit arbritrary, but at least it is consistent).
* rgerhards, 2009-09-03
*/
static int CmpHost(struct sockaddr_storage *s1, struct sockaddr_storage* s2, size_t socklen)
{
int ret;
if(((struct sockaddr*) s1)->sa_family != ((struct sockaddr*) s2)->sa_family) {
ret = memcmp(s1, s2, socklen);
goto finalize_it;
}
if(((struct sockaddr*) s1)->sa_family == AF_INET) {
if(((struct sockaddr_in *) s1)->sin_addr.s_addr == ((struct sockaddr_in*)s2)->sin_addr.s_addr) {
ret = 0;
} else if(((struct sockaddr_in *) s1)->sin_addr.s_addr < ((struct sockaddr_in*)s2)->sin_addr.s_addr) {
ret = -1;
} else {
ret = 1;
}
} else if(((struct sockaddr*) s1)->sa_family == AF_INET6) {
/* IPv6 addresses are always 16 octets long */
ret = memcmp(((struct sockaddr_in6 *)s1)->sin6_addr.s6_addr, ((struct sockaddr_in6*)s2)->sin6_addr.s6_addr, 16);
} else {
ret = memcmp(s1, s2, socklen);
}
finalize_it:
return ret;
}
/* check if restrictions (ALCs) exists. The goal of this function is to disable the
* somewhat time-consuming ACL checks if no restrictions are defined (the usual case).
* This also permits to gain some speedup by using firewall-based ACLs instead of
* rsyslog ACLs (the recommended method.
* rgerhards, 2009-11-16
*/
static rsRetVal
HasRestrictions(uchar *pszType, int *bHasRestrictions) {
struct AllowedSenders *pAllowRoot = NULL;
DEFiRet;
CHKiRet(setAllowRoot(&pAllowRoot, pszType));
*bHasRestrictions = (pAllowRoot == NULL) ? 0 : 1;
finalize_it:
if(iRet != RS_RET_OK) {
*bHasRestrictions = 1; /* in this case it is better to check individually */
DBGPRINTF("Error %d trying to obtain ACL restriction state of '%s'\n", iRet, pszType);
}
RETiRet;
}
/* return the IP address (IPv4/6) for the provided interface. Returns
* RS_RET_NOT_FOUND if interface can not be found in interface list.
* The family must be correct (AF_INET vs. AF_INET6, AF_UNSPEC means
* either of *these two*).
* The function re-queries the interface list (at least in theory).
* However, it caches entries in order to avoid too-frequent requery.
* rgerhards, 2012-03-06
*/
static rsRetVal
getIFIPAddr(uchar *szif, int family, uchar *pszbuf, int lenBuf)
{
struct ifaddrs * ifaddrs = NULL;
struct ifaddrs * ifa;
void * pAddr;
DEFiRet;
if(getifaddrs(&ifaddrs) != 0) {
ABORT_FINALIZE(RS_RET_ERR);
}
for (ifa = ifaddrs; ifa != NULL; ifa = ifa->ifa_next) {
if(strcmp(ifa->ifa_name, (char*)szif))
continue;
if( (family == AF_INET6 || family == AF_UNSPEC)
&& ifa->ifa_addr->sa_family == AF_INET6) {
pAddr = &((struct sockaddr_in6 *)ifa->ifa_addr)->sin6_addr;
inet_ntop(AF_INET6, pAddr, (char*)pszbuf, lenBuf);
break;
} else if(/* (family == AF_INET || family == AF_UNSPEC)
&&*/ ifa->ifa_addr->sa_family == AF_INET) {
pAddr = &((struct sockaddr_in *)ifa->ifa_addr)->sin_addr;
inet_ntop(AF_INET, pAddr, (char*)pszbuf, lenBuf);
break;
}
}
if(ifaddrs != NULL)
freeifaddrs(ifaddrs);
if(ifa == NULL)
iRet = RS_RET_NOT_FOUND;
finalize_it:
RETiRet;
}
/* queryInterface function
* rgerhards, 2008-03-05
*/
BEGINobjQueryInterface(net)
CODESTARTobjQueryInterface(net)
if(pIf->ifVersion != netCURR_IF_VERSION) { /* check for current version, increment on each change */
ABORT_FINALIZE(RS_RET_INTERFACE_NOT_SUPPORTED);
}
/* ok, we have the right interface, so let's fill it
* Please note that we may also do some backwards-compatibility
* work here (if we can support an older interface version - that,
* of course, also affects the "if" above).
*/
pIf->cvthname = cvthname;
/* things to go away after proper modularization */
pIf->addAllowedSenderLine = addAllowedSenderLine;
pIf->PrintAllowedSenders = PrintAllowedSenders;
pIf->clearAllowedSenders = clearAllowedSenders;
pIf->debugListenInfo = debugListenInfo;
pIf->create_udp_socket = create_udp_socket;
pIf->closeUDPListenSockets = closeUDPListenSockets;
pIf->isAllowedSender = isAllowedSender;
pIf->isAllowedSender2 = isAllowedSender2;
pIf->should_use_so_bsdcompat = should_use_so_bsdcompat;
pIf->getLocalHostname = getLocalHostname;
pIf->AddPermittedPeer = AddPermittedPeer;
pIf->DestructPermittedPeers = DestructPermittedPeers;
pIf->PermittedPeerWildcardMatch = PermittedPeerWildcardMatch;
pIf->CmpHost = CmpHost;
pIf->HasRestrictions = HasRestrictions;
pIf->GetIFIPAddr = getIFIPAddr;
/* data members */
pIf->pACLAddHostnameOnFail = &ACLAddHostnameOnFail;
pIf->pACLDontResolve = &ACLDontResolve;
finalize_it:
ENDobjQueryInterface(net)
/* exit our class
* rgerhards, 2008-03-10
*/
BEGINObjClassExit(net, OBJ_IS_LOADABLE_MODULE) /* CHANGE class also in END MACRO! */
CODESTARTObjClassExit(net)
/* release objects we no longer need */
objRelease(glbl, CORE_COMPONENT);
objRelease(prop, CORE_COMPONENT);
objRelease(errmsg, CORE_COMPONENT);
ENDObjClassExit(net)
/* Initialize the net class. Must be called as the very first method
* before anything else is called inside this class.
* rgerhards, 2008-02-19
*/
BEGINAbstractObjClassInit(net, 1, OBJ_IS_CORE_MODULE) /* class, version */
/* request objects we use */
CHKiRet(objUse(errmsg, CORE_COMPONENT));
CHKiRet(objUse(glbl, CORE_COMPONENT));
CHKiRet(objUse(prop, CORE_COMPONENT));
/* set our own handlers */
ENDObjClassInit(net)
/* --------------- here now comes the plumbing that makes as a library module --------------- */
BEGINmodExit
CODESTARTmodExit
netClassExit();
ENDmodExit
BEGINqueryEtryPt
CODESTARTqueryEtryPt
CODEqueryEtryPt_STD_LIB_QUERIES
ENDqueryEtryPt
BEGINmodInit()
CODESTARTmodInit
*ipIFVersProvided = CURR_MOD_IF_VERSION; /* we only support the current interface specification */
/* Initialize all classes that are in our module - this includes ourselfs */
CHKiRet(netClassInit(pModInfo)); /* must be done after tcps_sess, as we use it */
ENDmodInit
/* vi:set ai:
*/