/* * MRustC - Rust Compiler * - By John Hodge (Mutabah/thePowersGang) * * macro_rules/parse.cpp * - macro_rules! evaluation (expansion) */ #include #include "macro_rules.hpp" #include #include #include #include #include "pattern_checks.hpp" #include extern AST::ExprNodeP Parse_ExprBlockNode(TokenStream& lex); extern AST::ExprNodeP Parse_Stmt(TokenStream& lex); class ParameterMappings { TAGGED_UNION_EX(CaptureLayer, (), Vals, ( (Vals, ::std::vector), (Nested, ::std::vector) ), (), (), ( public: CaptureLayer& next_layer_or_self(unsigned int idx) { TU_IFLET(CaptureLayer, (*this), Nested, e, return e.at(idx); ) else { return *this; } } friend ::std::ostream& operator<<(::std::ostream& os, const CaptureLayer& x) { TU_MATCH(CaptureLayer, (x), (e), (Vals, os << "[" << e << "]"; ), (Nested, os << "{" << e << "}"; ) ) return os; } ) ); /// Represents the value struct CapturedVar { CaptureLayer top_layer; friend ::std::ostream& operator<<(::std::ostream& os, const CapturedVar& x) { os << "CapturedVar { top_layer: " << x.top_layer << " }"; return os; } }; ::std::vector m_mappings; unsigned m_layer_count; public: ParameterMappings(): m_layer_count(0) { } ParameterMappings(ParameterMappings&&) = default; const ::std::vector& mappings() const { return m_mappings; } void dump() const { DEBUG("m_mappings = {" << m_mappings << "}"); } size_t layer_count() const { return m_layer_count+1; } void insert(unsigned int name_index, const ::std::vector& iterations, InterpolatedFragment data) { if( name_index >= m_mappings.size() ) { m_mappings.resize( name_index + 1 ); } auto* layer = &m_mappings[name_index].top_layer; if( iterations.size() > 0 ) { for(unsigned int i = 0; i < iterations.size()-1; i ++ ) { auto iter = iterations[i]; if( layer->is_Vals() ) { assert( layer->as_Vals().size() == 0 ); *layer = CaptureLayer::make_Nested({}); } auto& e = layer->as_Nested(); while( e.size() < iter ) { DEBUG("- Skipped iteration " << e.size()); e.push_back( CaptureLayer::make_Nested({}) ); } if(e.size() == iter) { e.push_back( CaptureLayer::make_Vals({}) ); } else { if( e.size() > iter ) { DEBUG("ERROR: Iterations ran backwards?"); } } layer = &e[iter]; } ASSERT_BUG(Span(), layer->as_Vals().size() == iterations.back(), "Capture count mismatch with iteration index - iterations=[" << iterations << "]"); layer->as_Vals().push_back( mv$(data) ); } else { assert(layer->as_Vals().size() == 0); layer->as_Vals().push_back( mv$(data) ); } } InterpolatedFragment* get(const ::std::vector& iterations, unsigned int name_idx) { DEBUG("(iterations=[" << iterations << "], name_idx=" << name_idx << ")"); auto& e = m_mappings.at(name_idx); //DEBUG("- e = " << e); auto* layer = &e.top_layer; // - If the top layer is a 1-sized set of values, unconditionally return TU_IFLET(CaptureLayer, (*layer), Vals, e, if( e.size() == 1 ) { return &e[0]; } ) for(const auto iter : iterations) { TU_MATCH(CaptureLayer, (*layer), (e), (Vals, return &e[iter]; ), (Nested, layer = &e[iter]; ) ) } ERROR(Span(), E0000, "Variable #" << name_idx << " is still repeating at this level (" << iterations.size() << ")"); } unsigned int count_in(const ::std::vector& iterations, unsigned int name_idx) { DEBUG("(iterations=[" << iterations << "], name_idx=" << name_idx << ")"); if( name_idx >= m_mappings.size() ) { return 0; } auto& e = m_mappings.at(name_idx); auto* layer = &e.top_layer; for(const auto iter : iterations) { TU_MATCH(CaptureLayer, (*layer), (e), (Vals, return 0; ), (Nested, layer = &e[iter]; ) ) } TU_MATCH(CaptureLayer, (*layer), (e), (Vals, return e.size(); ), (Nested, return e.size(); ) ) return 0; } }; /// Simple pattern entry for macro_rules! arm patterns TAGGED_UNION( SimplePatEnt, End, // End of the pattern stream (End, struct{}), // Expect a specific token (ExpectTok, Token), // Expect a pattern match (ExpectPat, struct { MacroPatEnt::Type type; unsigned int idx; }), // Compare the head of the input stream and poke the pattern stream (IfTok, struct { bool is_equal; Token tok; }), // Compare the head of the input stream and poke the pattern stream (IfPat, struct { bool is_equal; MacroPatEnt::Type type; }) ); class MacroPatternStream { const ::std::vector* m_pattern; // Position in each nested pattern ::std::vector m_pos; // Iteration index of each active loop level ::std::vector m_loop_iterations; ::std::vector m_stack; public: MacroPatternStream(const ::std::vector& pattern): m_pattern(&pattern), m_pos({0}) { } /// Get the next pattern entry SimplePatEnt next(); /// Inform the stream that the `if` rule that was just returned succeeded void if_succeeded(); /// Get the current loop iteration count const ::std::vector& get_loop_iters() const { return m_loop_iterations; } private: SimplePatEnt emit_loop_start(const MacroPatEnt& pat); }; SimplePatEnt MacroPatternStream::next() { TRACE_FUNCTION_F("m_pos=[" << m_pos << "], m_stack.size()=" << m_stack.size()); assert(m_pos.size() >= 1); // Pop off the generation stack if( ! m_stack.empty() ) { auto rv = mv$(m_stack.back()); m_stack.pop_back(); return rv; } /* if( m_break_if_not && ! m_condition_fired ) { // Break out of the current loop then continue downwards. } */ const MacroPatEnt* parent_pat = nullptr; const auto* ents = m_pattern; for(unsigned int i = 0; i < m_pos.size() - 1; i ++) { auto idx = m_pos[i]; //DEBUG(i << " idx=" << idx << " ents->size()=" << ents->size()); assert( idx < ents->size() ); assert( (*ents)[idx].type == MacroPatEnt::PAT_LOOP ); parent_pat = &(*ents)[idx]; ents = &parent_pat->subpats; } DEBUG( (m_pos.size()-1) << " " << m_pos.back() << " / " << ents->size()); if( m_pos.back() < ents->size() ) { const auto& pat = ents->at( m_pos.back() ); if( pat.type == MacroPatEnt::PAT_LOOP ) { DEBUG("Enter " << pat); // Increase level, return entry control m_pos.push_back( 0 ); m_loop_iterations.push_back( 0 ); if( pat.name == "*" ) { return emit_loop_start(pat); } else { // If the name is "+" then this is should always be entered, so just recurse assert( pat.name == "+" ); return next(); } } else if( pat.type == MacroPatEnt::PAT_TOKEN ) { m_pos.back() += 1; return SimplePatEnt::make_ExpectTok( pat.tok.clone() ); } else { m_pos.back() += 1; return SimplePatEnt::make_ExpectPat({ pat.type, pat.name_index }); } } else { if( parent_pat ) { // Last entry in a loop - return the breakout control // - Reset the loop back to the start m_pos.back() = 0; m_loop_iterations.back() += 1; // - Emit break conditions if( parent_pat->tok == TOK_NULL ) { // Loop separator is TOK_NULL - get the first token of the loop and use it. // - This shares the code that controls if a loop is entered return emit_loop_start(*parent_pat); } else { // - Yeild `IF NOT sep BREAK` and `EXPECT sep` m_stack.push_back( SimplePatEnt::make_ExpectTok( parent_pat->tok.clone() ) ); return SimplePatEnt::make_IfTok({ false, parent_pat->tok.clone() }); } } else { // End of the input sequence return SimplePatEnt::make_End({}); } } } /// Returns (and primes m_stack) the rules to control the start of a loop /// This code emits rules to break out of the loop if the entry conditions are not met SimplePatEnt MacroPatternStream::emit_loop_start(const MacroPatEnt& pat) { // Find the next non-loop pattern to control if this loop should be entered const auto* entry_pat = &pat.subpats.at(0); while( entry_pat->type == MacroPatEnt::PAT_LOOP ) { entry_pat = &entry_pat->subpats.at(0); } // - TODO: What if there's multiple tokens that can be used to enter the loop? // > `$( $(#[...])* foo)*` should enter based on `#` and `foo` // > Requires returning multiple controllers and requiring that at least one succeed // Emit an if based on it if( entry_pat->type == MacroPatEnt::PAT_TOKEN ) return SimplePatEnt::make_IfTok({ false, entry_pat->tok.clone() }); else return SimplePatEnt::make_IfPat({ false, entry_pat->type }); } void MacroPatternStream::if_succeeded() { // Break out of an active loop (pop level and increment parent level) assert( m_pos.size() >= 1 ); // - This should never be called when on the top level assert( m_pos.size() != 1 ); // HACK: Clear the stack if an if succeeded m_stack.clear(); m_pos.pop_back(); m_pos.back() += 1; m_loop_iterations.pop_back(); } // ---------------------------------------------------------------- class MacroExpander: public TokenStream { public: private: const RcString m_macro_filename; const ::std::string m_crate_name; const ::std::vector& m_root_contents; ParameterMappings m_mappings; struct t_offset { unsigned read_pos; unsigned loop_index; unsigned max_index; }; /// Layer states : Index and Iteration ::std::vector< t_offset > m_offsets; ::std::vector< unsigned int> m_iterations; /// Cached pointer to the current layer const ::std::vector* m_cur_ents; // For faster lookup. Token m_next_token; // used for inserting a single token into the stream ::std::unique_ptr m_ttstream; public: MacroExpander(const MacroExpander& x) = delete; MacroExpander(const ::std::string& macro_name, const ::std::vector& contents, ParameterMappings mappings, ::std::string crate_name): m_macro_filename( FMT("Macro:" << macro_name) ), m_crate_name( mv$(crate_name) ), m_root_contents(contents), m_mappings( mv$(mappings) ), m_offsets({ {0,0,0} }), m_cur_ents(&m_root_contents) { prep_counts(); } virtual Position getPosition() const override; virtual Token realGetToken() override; private: const MacroExpansionEnt& getCurLayerEnt() const; const ::std::vector* getCurLayer() const; void prep_counts(); }; void Macro_InitDefaults() { } bool Macro_TryPatternCap(/*const*/ TTStream& lex, MacroPatEnt::Type type) { switch(type) { case MacroPatEnt::PAT_TOKEN: BUG(lex.getPosition(), ""); case MacroPatEnt::PAT_LOOP: BUG(lex.getPosition(), ""); case MacroPatEnt::PAT_BLOCK: return LOOK_AHEAD(lex) == TOK_BRACE_OPEN || LOOK_AHEAD(lex) == TOK_INTERPOLATED_BLOCK; case MacroPatEnt::PAT_IDENT: return LOOK_AHEAD(lex) == TOK_IDENT; case MacroPatEnt::PAT_TT: return LOOK_AHEAD(lex) != TOK_EOF; case MacroPatEnt::PAT_PATH: return is_token_path( LOOK_AHEAD(lex) ); case MacroPatEnt::PAT_TYPE: return is_token_type( LOOK_AHEAD(lex) ); case MacroPatEnt::PAT_EXPR: return is_token_expr( LOOK_AHEAD(lex) ); case MacroPatEnt::PAT_STMT: return is_token_stmt( LOOK_AHEAD(lex) ); case MacroPatEnt::PAT_PAT: return is_token_pat( LOOK_AHEAD(lex) ); case MacroPatEnt::PAT_META: return LOOK_AHEAD(lex) == TOK_IDENT || LOOK_AHEAD(lex) == TOK_INTERPOLATED_META; } BUG(lex.getPosition(), ""); } bool Macro_TryPattern(TTStream& lex, const MacroPatEnt& pat) { DEBUG("pat = " << pat); Token tok; switch(pat.type) { case MacroPatEnt::PAT_TOKEN: { GET_TOK(tok, lex); bool rv = (tok == pat.tok); PUTBACK(tok, lex); return rv; } case MacroPatEnt::PAT_LOOP: if( pat.name == "*" ) return true; return Macro_TryPattern(lex, pat.subpats[0]); default: return Macro_TryPatternCap(lex, pat.type); } } void Macro_HandlePatternCap(TTStream& lex, unsigned int index, MacroPatEnt::Type type, const ::std::vector& iterations, ParameterMappings& bound_tts) { Token tok; switch(type) { case MacroPatEnt::PAT_TOKEN: BUG(lex.getPosition(), ""); case MacroPatEnt::PAT_LOOP: BUG(lex.getPosition(), ""); case MacroPatEnt::PAT_TT: DEBUG("TT"); if( GET_TOK(tok, lex) == TOK_EOF ) throw ParseError::Unexpected(lex, TOK_EOF); else PUTBACK(tok, lex); bound_tts.insert( index, iterations, InterpolatedFragment( Parse_TT(lex, false) ) ); break; case MacroPatEnt::PAT_PAT: bound_tts.insert( index, iterations, InterpolatedFragment( Parse_Pattern(lex, true) ) ); break; case MacroPatEnt::PAT_TYPE: bound_tts.insert( index, iterations, InterpolatedFragment( Parse_Type(lex) ) ); break; case MacroPatEnt::PAT_EXPR: bound_tts.insert( index, iterations, InterpolatedFragment( InterpolatedFragment::EXPR, Parse_Expr0(lex).release() ) ); break; case MacroPatEnt::PAT_STMT: bound_tts.insert( index, iterations, InterpolatedFragment( InterpolatedFragment::STMT, Parse_Stmt(lex).release() ) ); break; case MacroPatEnt::PAT_PATH: bound_tts.insert( index, iterations, InterpolatedFragment( Parse_Path(lex, PATH_GENERIC_TYPE) ) ); // non-expr mode break; case MacroPatEnt::PAT_BLOCK: bound_tts.insert( index, iterations, InterpolatedFragment( InterpolatedFragment::BLOCK, Parse_ExprBlockNode(lex).release() ) ); break; case MacroPatEnt::PAT_META: bound_tts.insert( index, iterations, InterpolatedFragment( Parse_MetaItem(lex) ) ); break; case MacroPatEnt::PAT_IDENT: GET_CHECK_TOK(tok, lex, TOK_IDENT); bound_tts.insert( index, iterations, InterpolatedFragment( TokenTree(tok) ) ); break; } } bool Macro_HandlePattern(TTStream& lex, const MacroPatEnt& pat, ::std::vector& iterations, ParameterMappings& bound_tts) { TRACE_FUNCTION_F("iterations = " << iterations); Token tok; switch(pat.type) { case MacroPatEnt::PAT_TOKEN: DEBUG("Token " << pat.tok); GET_CHECK_TOK(tok, lex, pat.tok.type()); break; case MacroPatEnt::PAT_LOOP: //case MacroPatEnt::PAT_OPTLOOP: { unsigned int match_count = 0; DEBUG("Loop"); iterations.push_back(0); for(;;) { if( ! Macro_TryPattern(lex, pat.subpats[0]) ) { DEBUG("break"); break; } for( unsigned int i = 0; i < pat.subpats.size(); i ++ ) { if( !Macro_HandlePattern(lex, pat.subpats[i], iterations, bound_tts) ) { DEBUG("Ent " << i << " failed"); return false; } } match_count += 1; iterations.back() += 1; DEBUG("succ"); if( pat.tok.type() != TOK_NULL ) { if( GET_TOK(tok, lex) != pat.tok.type() ) { lex.putback( mv$(tok) ); break; } } } iterations.pop_back(); DEBUG("Done (" << match_count << " matches)"); break; } default: Macro_HandlePatternCap(lex, pat.name_index, pat.type, iterations, bound_tts); break; } return true; } /// Parse the input TokenTree according to the `macro_rules!` patterns and return a token stream of the replacement ::std::unique_ptr Macro_InvokeRules(const char *name, const MacroRules& rules, const TokenTree& input) { TRACE_FUNCTION; Span sp;// = input // - List of active rules (rules that haven't yet failed) ::std::vector< ::std::pair > active_arms; active_arms.reserve( rules.m_rules.size() ); for(unsigned int i = 0; i < rules.m_rules.size(); i ++) { active_arms.push_back( ::std::make_pair(i, MacroPatternStream(rules.m_rules[i].m_pattern)) ); } ParameterMappings bound_tts; unsigned int rule_index; TTStream lex(input); while(true) { // 1. Get concrete patterns for all active rules (i.e. no If* patterns) ::std::vector arm_pats; for(auto& arm : active_arms) { SimplePatEnt pat; // Consume all If* rules do { pat = arm.second.next(); TU_IFLET( SimplePatEnt, pat, IfPat, e, DEBUG("IfPat(" << e.is_equal << " ?" << e.type << ")"); if( Macro_TryPatternCap(lex, e.type) == e.is_equal ) { DEBUG("- Succeeded"); arm.second.if_succeeded(); } ) else TU_IFLET( SimplePatEnt, pat, IfTok, e, DEBUG("IfTok(" << e.is_equal << " ?" << e.tok << ")"); auto tok = lex.getToken(); if( (tok == e.tok) == e.is_equal ) { DEBUG("- Succeeded"); arm.second.if_succeeded(); } lex.putback( mv$(tok) ); ) else { break; } } while( pat.is_IfPat() || pat.is_IfTok() ); arm_pats.push_back( mv$(pat) ); } assert( arm_pats.size() == active_arms.size() ); // 2. Prune imposible arms for(unsigned int i = 0; i < arm_pats.size(); ) { const auto& pat = arm_pats[i]; bool fail = false; TU_MATCH( SimplePatEnt, (pat), (e), (IfPat, BUG(sp, "IfTok unexpected here");), (IfTok, BUG(sp, "IfTok unexpected here");), (ExpectTok, DEBUG(i << " ExpectTok(" << e << ")"); auto tok = lex.getToken(); fail = !(tok == e); lex.putback( mv$(tok) ); ), (ExpectPat, DEBUG(i << " ExpectPat(" << e.type << " => $" << e.idx << ")"); fail = !Macro_TryPatternCap(lex, e.type); ), (End, DEBUG(i << " End"); fail = !(lex.lookahead(0) == TOK_EOF); ) ) if( fail ) { DEBUG("- Failed arm " << active_arms[i].first); arm_pats.erase( arm_pats.begin() + i ); active_arms.erase( active_arms.begin() + i ); } else { i ++; } } if( arm_pats.size() == 0 ) { ERROR(sp, E0000, "No rules expected " << lex.getToken()); } // 3. Check that all remaining arms are the same pattern. for(unsigned int i = 1; i < arm_pats.size(); i ++) { if( arm_pats[0].tag() != arm_pats[i].tag() ) { ERROR(lex.getPosition(), E0000, "Incompatible macro arms - " << arm_pats[0].tag_str() << " vs " << arm_pats[i].tag_str()); } TU_MATCH( SimplePatEnt, (arm_pats[0], arm_pats[i]), (e1, e2), (IfPat, BUG(sp, "IfPat unexpected here");), (IfTok, BUG(sp, "IfTok unexpected here");), (ExpectTok, // NOTE: This should never fail. if( e1 != e2 ) { ERROR(lex.getPosition(), E0000, "Incompatible macro arms - mismatched token expectation " << e1 << " vs " << e2); } ), (ExpectPat, // Can fail, as :expr and :stmt overlap in their trigger set if( e1.type != e2.type ) { ERROR(lex.getPosition(), E0000, "Incompatible macro arms - mismatched patterns"); } if( e1.idx != e2.idx ) { ERROR(lex.getPosition(), E0000, "Incompatible macro arms - mismatched pattern bindings " << e1.idx << " and " << e2.idx); } ), (End, ) ) } // 4. Apply patterns. // - Check for an end rule outside of the match so it can break correctly. if( arm_pats[0].is_End() ) { auto tok = lex.getToken(); if( tok.type() != TOK_EOF ) { ERROR(lex.getPosition(), E0000, "Unexpected " << tok << ", expected TOK_EOF"); } // NOTE: There can be multiple arms active, take the first. rule_index = active_arms[0].first; break ; } TU_MATCH( SimplePatEnt, (arm_pats[0]), (e), (IfPat, BUG(sp, "IfPat unexpected here");), (IfTok, BUG(sp, "IfTok unexpected here");), (ExpectTok, auto tok = lex.getToken(); if( tok != e ) { ERROR(lex.getPosition(), E0000, "Unexpected " << tok << ", expected " << e); } ), (ExpectPat, // NOTE: This is going to fail somewhere, but need to determine what to do when it does for( unsigned int i = 1; i < active_arms.size(); i ++ ) { if( active_arms[0].second.get_loop_iters() != active_arms[i].second.get_loop_iters() ) { TODO(sp, "ExpectPat with mismatched loop iterations"); } } Macro_HandlePatternCap(lex, e.idx, e.type, active_arms[0].second.get_loop_iters(), bound_tts); ), (End, BUG(sp, "SimplePatEnt::End unexpected here"); ) ) // Keep looping - breakout is handled by an if above } const auto& rule = rules.m_rules.at(rule_index); DEBUG( rule.m_contents.size() << " rule contents with " << bound_tts.mappings().size() << " bound values - " << name ); assert( rule.m_param_names.size() >= bound_tts.mappings().size() ); for( unsigned int i = 0; i < bound_tts.mappings().size(); i ++ ) { DEBUG(" - " << rule.m_param_names.at(i) << " = [" << bound_tts.mappings()[i] << "]"); } //bound_tts.dump(); TokenStream* ret_ptr = new MacroExpander(name, rule.m_contents, mv$(bound_tts), rules.m_source_crate); return ::std::unique_ptr( ret_ptr ); } Position MacroExpander::getPosition() const { return Position(m_macro_filename, 0, m_offsets[0].read_pos); } Token MacroExpander::realGetToken() { // Use m_next_token first if( m_next_token.type() != TOK_NULL ) { DEBUG("m_next_token = " << m_next_token); return ::std::move(m_next_token); } // Then try m_ttstream if( m_ttstream.get() ) { DEBUG("TTStream set"); Token rv = m_ttstream->getToken(); if( rv.type() != TOK_EOF ) return rv; m_ttstream.reset(); } //DEBUG("ofs " << m_offsets << " < " << m_root_contents.size()); // Check offset of lowest layer while(m_offsets.size() > 0) { unsigned int layer = m_offsets.size() - 1; const auto& ents = *m_cur_ents; // Obtain current read position in layer, and increment size_t idx = m_offsets.back().read_pos++; // Check if limit has been reached if( idx < ents.size() ) { // - If not, just handle the next entry const auto& ent = ents[idx]; TU_MATCH( MacroExpansionEnt, (ent), (e), (Token, return e; ), (NamedValue, if( e >> 30 ) { switch( e & 0x3FFFFFFF ) { // - XXX: Hack for $crate special name case 0: DEBUG("Crate name hack"); if( m_crate_name != "" ) { m_next_token = Token(TOK_STRING, m_crate_name); return Token(TOK_DOUBLE_COLON); } break; default: BUG(Span(), "Unknown macro metavar"); } } else { auto* frag = m_mappings.get(m_iterations, e); if( !frag ) { throw ParseError::Generic(*this, FMT("Cannot find '" << e << "' for " << m_iterations)); } else { DEBUG("Insert replacement #" << e << " = " << *frag); if( frag->m_type == InterpolatedFragment::TT ) { m_ttstream.reset( new TTStream( frag->as_tt() ) ); return m_ttstream->getToken(); } else { return Token( *frag ); } } } ), (Loop, // 1. Get number of times this will repeat (based on the next iteration count) unsigned int num_repeats = 0; for(const auto idx : e.variables) { unsigned int this_repeats = m_mappings.count_in(m_iterations, idx); if( this_repeats > num_repeats ) num_repeats = this_repeats; } DEBUG("Looping " << num_repeats << " times"); if( num_repeats > 0 ) { m_offsets.push_back( {0, 0, num_repeats} ); m_iterations.push_back( 0 ); m_cur_ents = getCurLayer(); } ) ) // Fall through for loop } else if( layer > 0 ) { // - Otherwise, restart/end loop and fall through DEBUG("layer = " << layer << ", m_iterations = " << m_iterations); auto& cur_ofs = m_offsets.back(); DEBUG("Layer #" << layer << " Cur: " << cur_ofs.loop_index << ", Max: " << cur_ofs.max_index); if( cur_ofs.loop_index + 1 < cur_ofs.max_index ) { m_iterations.back() ++; DEBUG("Restart layer"); cur_ofs.read_pos = 0; cur_ofs.loop_index ++; auto& loop_layer = getCurLayerEnt(); if( loop_layer.as_Loop().joiner.type() != TOK_NULL ) { DEBUG("- Separator token = " << loop_layer.as_Loop().joiner); return loop_layer.as_Loop().joiner; } // Fall through and restart layer } else { DEBUG("Terminate layer"); // Terminate loop, fall through to lower layers m_offsets.pop_back(); m_iterations.pop_back(); // - Special case: End of macro, avoid issues if( m_offsets.size() == 0 ) break; m_cur_ents = getCurLayer(); } } else { DEBUG("Terminate evaluation"); m_offsets.pop_back(); assert( m_offsets.size() == 0 ); } } // while( m_offsets NONEMPTY ) DEBUG("EOF"); return Token(TOK_EOF); } /// Count the number of names at each layer void MacroExpander::prep_counts() { } const MacroExpansionEnt& MacroExpander::getCurLayerEnt() const { assert( m_offsets.size() > 1 ); const auto* ents = &m_root_contents; for( unsigned int i = 0; i < m_offsets.size()-2; i ++ ) { unsigned int ofs = m_offsets[i].read_pos; assert( ofs > 0 && ofs <= ents->size() ); ents = &(*ents)[ofs-1].as_Loop().entries; } return (*ents)[m_offsets[m_offsets.size()-2].read_pos-1]; } const ::std::vector* MacroExpander::getCurLayer() const { assert( m_offsets.size() > 0 ); const auto* ents = &m_root_contents; for( unsigned int i = 0; i < m_offsets.size()-1; i ++ ) { unsigned int ofs = m_offsets[i].read_pos; //DEBUG(i << " ofs=" << ofs << " / " << ents->size()); assert( ofs > 0 && ofs <= ents->size() ); ents = &(*ents)[ofs-1].as_Loop().entries; //DEBUG("ents = " << ents); } return ents; }