/* * MRustC - Rust Compiler * - By John Hodge (Mutabah/thePowersGang) * * trans/enumerate.cpp * - Translation item enumeration * * Enumerates items required for translation. */ #include "main_bindings.hpp" #include "trans_list.hpp" #include #include #include // monomorph #include // StaticTraitResolve #include #include #include namespace { struct EnumState { const ::HIR::Crate& crate; TransList rv; // Queue of items to enumerate ::std::deque fcn_queue; ::std::vector fcns_to_type_visit; EnumState(const ::HIR::Crate& crate): crate(crate) {} void enum_fcn(::HIR::Path p, const ::HIR::Function& fcn, Trans_Params pp) { if(auto* e = rv.add_function(mv$(p))) { fcns_to_type_visit.push_back(e); e->ptr = &fcn; e->pp = mv$(pp); fcn_queue.push_back(e); } } }; } TransList Trans_Enumerate_CommonPost(EnumState& state); void Trans_Enumerate_Types(EnumState& state); void Trans_Enumerate_FillFrom_Path(EnumState& state, const ::HIR::Path& path, const Trans_Params& pp); void Trans_Enumerate_FillFrom(EnumState& state, const ::HIR::Function& function, const Trans_Params& pp); void Trans_Enumerate_FillFrom(EnumState& state, const ::HIR::Static& stat, TransList_Static& stat_out, Trans_Params pp={}); void Trans_Enumerate_FillFrom_VTable (EnumState& state, ::HIR::Path vtable_path, const Trans_Params& pp); void Trans_Enumerate_FillFrom_Literal(EnumState& state, const ::HIR::Literal& lit, const Trans_Params& pp); void Trans_Enumerate_FillFrom_MIR(EnumState& state, const ::MIR::Function& code, const Trans_Params& pp); /// Enumerate trans items starting from `::main` (binary crate) TransList Trans_Enumerate_Main(const ::HIR::Crate& crate) { static Span sp; EnumState state { crate }; auto c_start_path = crate.get_lang_item_path_opt("mrustc-start"); if( c_start_path == ::HIR::SimplePath() ) { // "start" language item // - Takes main, and argc/argv as arguments { auto start_path = crate.get_lang_item_path(sp, "start"); const auto& fcn = crate.get_function_by_path(sp, start_path); state.enum_fcn( start_path, fcn, {} ); } // user entrypoint { auto main_path = crate.get_lang_item_path(Span(), "mrustc-main"); const auto& fcn = crate.get_function_by_path(sp, main_path); state.enum_fcn( main_path, fcn, {} ); } } else { const auto& fcn = crate.get_function_by_path(sp, c_start_path); state.enum_fcn( c_start_path, fcn, {} ); } return Trans_Enumerate_CommonPost(state); } namespace { void Trans_Enumerate_Public_Mod(EnumState& state, ::HIR::Module& mod, ::HIR::SimplePath mod_path, bool is_visible) { // TODO: Make this configurable, and debug cases where it breaks // (needs to be `true` currently) // - Errors likely caused by re-exports making items visible that // aren't otherwise. const bool EMIT_ALL = true; for(auto& vi : mod.m_value_items) { TU_MATCHA( (vi.second->ent), (e), (Import, // TODO: If visible, ensure that target is visited. ), (StructConstant, ), (StructConstructor, ), (Constant, ), (Static, if( EMIT_ALL || (is_visible && vi.second->is_public) ) { // HACK: Refuse to emit unused generated statics // - Needed because all items are visited (regardless of // visibility) if(e.m_type.m_data.is_Infer()) continue ; //state.enum_static(mod_path + vi.first, *e); auto* ptr = state.rv.add_static(mod_path + vi.first); if(ptr) Trans_Enumerate_FillFrom(state, e, *ptr); } ), (Function, if( e.m_params.m_types.size() == 0 ) { if( EMIT_ALL || (is_visible && vi.second->is_public) ) { state.enum_fcn(mod_path + vi.first, e, {}); } } else { const_cast<::HIR::Function&>(e).m_save_code = true; // TODO: If generic, enumerate concrete functions used } ) ) } for(auto& ti : mod.m_mod_items) { if(auto* e = ti.second->ent.opt_Module() ) { Trans_Enumerate_Public_Mod(state, *e, mod_path + ti.first, ti.second->is_public); } } } } /// Enumerate trans items for all public non-generic items (library crate) TransList Trans_Enumerate_Public(::HIR::Crate& crate) { static Span sp; EnumState state { crate }; Trans_Enumerate_Public_Mod(state, crate.m_root_module, ::HIR::SimplePath(crate.m_crate_name,{}), true); // Impl blocks StaticTraitResolve resolve { crate }; for(auto& impl : crate.m_trait_impls) { const auto& impl_ty = impl.second.m_type; TRACE_FUNCTION_F("Impl " << impl.first << impl.second.m_trait_args << " for " << impl_ty); if( impl.second.m_params.m_types.size() == 0 ) { auto cb_monomorph = monomorphise_type_get_cb(sp, &impl_ty, &impl.second.m_trait_args, nullptr); // Emit each method/static (in the trait itself) const auto& trait = crate.get_trait_by_path(sp, impl.first); for(const auto& vi : trait.m_values) { TRACE_FUNCTION_F("Item " << vi.first << " : " << vi.second.tag_str()); // Constant, no codegen if( vi.second.is_Constant() ) ; // Generic method, no codegen else if( vi.second.is_Function() && vi.second.as_Function().m_params.m_types.size() > 0 ) ; // VTable, magic else if( vi.first == "#vtable" ) ; else { // Check bounds before queueing for codegen if( vi.second.is_Function() ) { bool rv = true; for(const auto& b : vi.second.as_Function().m_params.m_bounds) { if( !b.is_TraitBound() ) continue; const auto& be = b.as_TraitBound(); auto b_ty_mono = monomorphise_type_with(sp, be.type, cb_monomorph); resolve.expand_associated_types(sp, b_ty_mono); auto b_tp_mono = monomorphise_traitpath_with(sp, be.trait, cb_monomorph, false); for(auto& ty : b_tp_mono.m_path.m_params.m_types) { resolve.expand_associated_types(sp, ty); } for(auto& assoc_bound : b_tp_mono.m_type_bounds) { resolve.expand_associated_types(sp, assoc_bound.second); } rv = resolve.find_impl(sp, b_tp_mono.m_path.m_path, b_tp_mono.m_path.m_params, b_ty_mono, [&](const auto& impl, bool) { return true; }); if( !rv ) break; } if( !rv ) continue ; } auto p = ::HIR::Path(impl_ty.clone(), ::HIR::GenericPath(impl.first, impl.second.m_trait_args.clone()), vi.first); Trans_Enumerate_FillFrom_Path(state, p, {}); } } for(auto& m : impl.second.m_methods) { if( m.second.data.m_params.m_types.size() > 0 ) m.second.data.m_save_code = true; } } else { for(auto& m : impl.second.m_methods) { m.second.data.m_save_code = true; } } } for(auto& impl : crate.m_type_impls) { if( impl.m_params.m_types.size() == 0 ) { for(auto& fcn : impl.m_methods) { if( fcn.second.data.m_params.m_types.size() == 0 ) { auto p = ::HIR::Path(impl.m_type.clone(), fcn.first); Trans_Enumerate_FillFrom_Path(state, p, {}); } else { fcn.second.data.m_save_code = true; } } } else { for(auto& m : impl.m_methods) { m.second.data.m_save_code = true; } } } auto rv = Trans_Enumerate_CommonPost(state); struct H { static bool is_generic(const ::HIR::TypeRef& ty) { return visit_ty_with(ty, [&](const auto& ty) { return ty.m_data.is_Generic(); }); } static bool is_generic(const ::HIR::PathParams& pp) { for(const auto& ty : pp.m_types) if( is_generic(ty) ) return true; return false; } static bool is_generic(const ::HIR::Path& p) { TU_MATCHA( (p.m_data), (pe), (Generic, return is_generic(pe.m_params); ), (UfcsKnown, if( is_generic(*pe.type) ) return true; if( is_generic(pe.trait.m_params) ) return true; if( is_generic(pe.params) ) return true; ), (UfcsInherent, if( is_generic(*pe.type) ) return true; if( is_generic(pe.params) ) return true; ), (UfcsUnknown, ) ) return false; } }; // Strip out any functions/types/statics that are still generic? for(auto it = rv.m_functions.begin(); it != rv.m_functions.end(); ) { if( H::is_generic(it->first) ) { rv.m_functions.erase(it++); } else { ++ it; } } for(auto it = rv.m_statics.begin(); it != rv.m_statics.end(); ) { if( H::is_generic(it->first) ) { rv.m_statics.erase(it++); } else { ++ it; } } return rv; } /// Common post-processing void Trans_Enumerate_CommonPost_Run(EnumState& state) { // Run the enumerate queue (keeps the recursion depth down) while( !state.fcn_queue.empty() ) { auto& fcn_out = *state.fcn_queue.front(); state.fcn_queue.pop_front(); TRACE_FUNCTION_F("Function " << ::std::find_if(state.rv.m_functions.begin(), state.rv.m_functions.end(), [&](const auto&x){ return x.second.get() == &fcn_out; })->first); Trans_Enumerate_FillFrom(state, *fcn_out.ptr, fcn_out.pp); } } TransList Trans_Enumerate_CommonPost(EnumState& state) { Trans_Enumerate_CommonPost_Run(state); Trans_Enumerate_Types(state); return mv$(state.rv); } namespace { struct PtrComp { template bool operator()(const T* lhs, const T* rhs) const { return *lhs < *rhs; } }; struct TypeVisitor { const ::HIR::Crate& m_crate; ::StaticTraitResolve m_resolve; ::std::vector< ::std::pair< ::HIR::TypeRef, bool> >& out_list; ::std::map< ::HIR::TypeRef, bool > visited; ::std::set< const ::HIR::TypeRef*, PtrComp> active_set; TypeVisitor(const ::HIR::Crate& crate, ::std::vector< ::std::pair< ::HIR::TypeRef, bool > >& out_list): m_crate(crate), m_resolve(crate), out_list(out_list) {} void visit_struct(const ::HIR::GenericPath& path, const ::HIR::Struct& item) { static Span sp; ::HIR::TypeRef tmp; auto monomorph = [&](const auto& x)->const auto& { if( monomorphise_type_needed(x) ) { tmp = monomorphise_type(sp, item.m_params, path.m_params, x); m_resolve.expand_associated_types(sp, tmp); return tmp; } else { return x; } }; TU_MATCHA( (item.m_data), (e), (Unit, ), (Tuple, for(const auto& fld : e) { visit_type( monomorph(fld.ent) ); } ), (Named, for(const auto& fld : e) visit_type( monomorph(fld.second.ent) ); ) ) } void visit_union(const ::HIR::GenericPath& path, const ::HIR::Union& item) { static Span sp; ::HIR::TypeRef tmp; auto monomorph = [&](const auto& x)->const auto& { if( monomorphise_type_needed(x) ) { tmp = monomorphise_type(sp, item.m_params, path.m_params, x); m_resolve.expand_associated_types(sp, tmp); return tmp; } else { return x; } }; for(const auto& variant : item.m_variants) { visit_type( monomorph(variant.second.ent) ); } } void visit_enum(const ::HIR::GenericPath& path, const ::HIR::Enum& item) { static Span sp; ::HIR::TypeRef tmp; auto monomorph = [&](const auto& x)->const auto& { if( monomorphise_type_needed(x) ) { tmp = monomorphise_type(sp, item.m_params, path.m_params, x); m_resolve.expand_associated_types(sp, tmp); return tmp; } else { return x; } }; for(const auto& variant : item.m_variants) { TU_MATCHA( (variant.second), (e), (Unit, ), (Value, ), (Tuple, for(const auto& ty : e) visit_type( monomorph(ty.ent) ); ), (Struct, for(const auto& fld : e) visit_type( monomorph(fld.second.ent) ); ) ) } } enum class Mode { Shallow, Normal, Deep, }; void visit_type(const ::HIR::TypeRef& ty, Mode mode = Mode::Normal) { // If the type has already been visited, AND either this is a shallow visit, or the previous wasn't { auto it = visited.find(ty); if( it != visited.end() ) { if( it->second == false || mode == Mode::Shallow ) { // Return early return ; } DEBUG("-- " << ty << " already visited as shallow"); it->second = false; } } TRACE_FUNCTION_F(ty << " - " << (mode == Mode::Shallow ? "Shallow" : (mode == Mode::Normal ? "Normal" : "Deep"))); if( mode == Mode::Shallow ) { TU_MATCH_DEF(::HIR::TypeRef::Data, (ty.m_data), (te), ( ), (Pointer, visit_type(*te.inner, Mode::Shallow); ), (Borrow, visit_type(*te.inner, Mode::Shallow); ) ) } else { if( active_set.find(&ty) != active_set.end() ) { // TODO: Handle recursion BUG(Span(), "- Type recursion on " << ty); } active_set.insert( &ty ); TU_MATCHA( (ty.m_data), (te), // Impossible (Infer, ), (Generic, BUG(Span(), "Generic type hit in enumeration - " << ty); ), (ErasedType, //BUG(Span(), "ErasedType hit in enumeration - " << ty); ), (Closure, BUG(Span(), "Closure type hit in enumeration - " << ty); ), // Nothing to do (Diverge, ), (Primitive, ), // Recursion! (Path, TU_MATCHA( (te.binding), (tpb), (Unbound, BUG(Span(), "Unbound type hit in enumeration - " << ty); ), (Opaque, BUG(Span(), "Opaque type hit in enumeration - " << ty); ), (Struct, visit_struct(te.path.m_data.as_Generic(), *tpb); ), (Union, visit_union(te.path.m_data.as_Generic(), *tpb); ), (Enum, visit_enum(te.path.m_data.as_Generic(), *tpb); ) ) ), (TraitObject, static Span sp; // Ensure that the data trait's vtable is present const auto& trait = *te.m_trait.m_trait_ptr; ASSERT_BUG(Span(), ! te.m_trait.m_path.m_path.m_components.empty(), "TODO: Data trait is empty, what can be done?"); auto vtable_ty_spath = te.m_trait.m_path.m_path; vtable_ty_spath.m_components.back() += "#vtable"; const auto& vtable_ref = m_crate.get_struct_by_path(sp, vtable_ty_spath); // Copy the param set from the trait in the trait object ::HIR::PathParams vtable_params = te.m_trait.m_path.m_params.clone(); // - Include associated types on bound for(const auto& ty_b : te.m_trait.m_type_bounds) { auto idx = trait.m_type_indexes.at(ty_b.first); if(vtable_params.m_types.size() <= idx) vtable_params.m_types.resize(idx+1); vtable_params.m_types[idx] = ty_b.second.clone(); } visit_type( ::HIR::TypeRef( ::HIR::GenericPath(vtable_ty_spath, mv$(vtable_params)), &vtable_ref ) ); ), (Array, visit_type(*te.inner, mode); ), (Slice, visit_type(*te.inner, mode); ), (Borrow, visit_type(*te.inner, mode != Mode::Deep ? Mode::Shallow : Mode::Deep); ), (Pointer, visit_type(*te.inner, mode != Mode::Deep ? Mode::Shallow : Mode::Deep); ), (Tuple, for(const auto& sty : te) visit_type(sty, mode); ), (Function, // TODO: Should shallow=true for these too? visit_type(*te.m_rettype, mode); for(const auto& sty : te.m_arg_types) visit_type(sty, mode); ) ) active_set.erase( active_set.find(&ty) ); } bool shallow = (mode == Mode::Shallow); { auto rv = visited.insert( ::std::make_pair(ty.clone(), shallow) ); if( !rv.second && ! shallow ) { rv.first->second = false; } } out_list.push_back( ::std::make_pair(ty.clone(), shallow) ); DEBUG("Add type " << ty << (shallow ? " (Shallow)": "")); } }; } // Enumerate types required for the enumerated items void Trans_Enumerate_Types(EnumState& state) { static Span sp; TypeVisitor tv { state.crate, state.rv.m_types }; unsigned int types_count = 0; bool constructors_added; do { // Visit all functions that haven't been type-visited yet for(unsigned int i = 0; i < state.fcns_to_type_visit.size(); i++) { auto p = state.fcns_to_type_visit[i]; TRACE_FUNCTION_F("Function " << ::std::find_if(state.rv.m_functions.begin(), state.rv.m_functions.end(), [&](const auto&x){ return x.second.get() == p; })->first); assert(p->ptr); const auto& fcn = *p->ptr; const auto& pp = p->pp; ::HIR::TypeRef tmp; auto monomorph = [&](const auto& ty)->const auto& { return monomorphise_type_needed(ty) ? tmp = pp.monomorph(tv.m_resolve, ty) : ty; }; // Handle erased types in the return type. if( visit_ty_with(fcn.m_return, [](const auto& x) { return x.m_data.is_ErasedType()||x.m_data.is_Generic(); }) ) { auto ret_ty = clone_ty_with(sp, fcn.m_return, [&](const auto& x, auto& out) { if( const auto* te = x.m_data.opt_ErasedType() ) { out = pp.monomorph(tv.m_resolve, fcn.m_code.m_erased_types.at(te->m_index)); return true; } else if( x.m_data.is_Generic() ) { out = pp.monomorph(tv.m_resolve, x); return true; } else { return false; } }); tv.m_resolve.expand_associated_types(sp, ret_ty); tv.visit_type(ret_ty); } else { tv.visit_type( fcn.m_return ); } for(const auto& arg : fcn.m_args) tv.visit_type( monomorph(arg.second) ); if( fcn.m_code.m_mir ) { const auto& mir = *fcn.m_code.m_mir; for(const auto& ty : mir.locals) tv.visit_type(monomorph(ty)); // TODO: Find all LValue::Deref instances and get the result type for(const auto& block : mir.blocks) { struct H { static const ::HIR::TypeRef& visit_lvalue(TypeVisitor& tv, const Trans_Params& pp, const ::HIR::Function& fcn, const ::MIR::LValue& lv, ::HIR::TypeRef* tmp_ty_ptr = nullptr) { static ::HIR::TypeRef blank; TRACE_FUNCTION_F(lv << (tmp_ty_ptr ? " [type]" : "")); auto monomorph_outer = [&](const auto& tpl)->const auto& { assert(tmp_ty_ptr); if( monomorphise_type_needed(tpl) ) { return *tmp_ty_ptr = pp.monomorph(tv.m_resolve, tpl); } else { return tpl; } }; // Recurse, if Deref get the type and add it to the visitor TU_MATCHA( (lv), (e), (Return, if( tmp_ty_ptr ) { TODO(Span(), "Get return type for MIR type enumeration"); } ), (Argument, if( tmp_ty_ptr ) { return monomorph_outer(fcn.m_args[e.idx].second); } ), (Local, if( tmp_ty_ptr ) { return monomorph_outer(fcn.m_code.m_mir->locals[e]); } ), (Static, if( tmp_ty_ptr ) { const auto& path = e; TU_MATCHA( (path.m_data), (pe), (Generic, ASSERT_BUG(Span(), pe.m_params.m_types.empty(), "Path params on static - " << path); const auto& s = tv.m_resolve.m_crate.get_static_by_path(Span(), pe.m_path); return s.m_type; ), (UfcsKnown, TODO(Span(), "LValue::Static - UfcsKnown - " << path); ), (UfcsUnknown, BUG(Span(), "Encountered UfcsUnknown in LValue::Static - " << path); ), (UfcsInherent, TODO(Span(), "LValue::Static - UfcsInherent - " << path); ) ) } ), (Field, const auto& ity = visit_lvalue(tv,pp,fcn, *e.val, tmp_ty_ptr); if( tmp_ty_ptr ) { TU_MATCH_DEF(::HIR::TypeRef::Data, (ity.m_data), (te), ( BUG(Span(), "Field access of unexpected type - " << ity); ), (Tuple, return te[e.field_index]; ), (Array, return *te.inner; ), (Slice, return *te.inner; ), (Path, ASSERT_BUG(Span(), te.binding.is_Struct(), "Field on non-Struct - " << ity); const auto& str = *te.binding.as_Struct(); auto monomorph = [&](const auto& ty)->const auto& { if( monomorphise_type_needed(ty) ) { *tmp_ty_ptr = monomorphise_type(sp, str.m_params, te.path.m_data.as_Generic().m_params, ty); tv.m_resolve.expand_associated_types(sp, *tmp_ty_ptr); return *tmp_ty_ptr; } else { return ty; } }; TU_MATCHA( (str.m_data), (se), (Unit, BUG(Span(), "Field on unit-like struct - " << ity); ), (Tuple, ASSERT_BUG(Span(), e.field_index < se.size(), "Field index out of range in struct " << te.path); return monomorph(se.at(e.field_index).ent); ), (Named, ASSERT_BUG(Span(), e.field_index < se.size(), "Field index out of range in struct " << te.path); return monomorph(se.at(e.field_index).second.ent); ) ) ) ) } ), (Deref, ::HIR::TypeRef tmp; if( !tmp_ty_ptr ) tmp_ty_ptr = &tmp; const auto& ity = visit_lvalue(tv,pp,fcn, *e.val, tmp_ty_ptr); TU_MATCH_DEF(::HIR::TypeRef::Data, (ity.m_data), (te), ( BUG(Span(), "Deref of unexpected type - " << ity); ), (Path, if( const auto* inner_ptr = tv.m_resolve.is_type_owned_box(ity) ) { DEBUG("- Add type " << ity); tv.visit_type(*inner_ptr); return *inner_ptr; } else { BUG(Span(), "Deref on unexpected type - " << ity); } ), (Borrow, DEBUG("- Add type " << ity); tv.visit_type(*te.inner); return *te.inner; ), (Pointer, DEBUG("- Add type " << ity); tv.visit_type(*te.inner); return *te.inner; ) ) ), (Index, visit_lvalue(tv,pp,fcn, *e.idx, tmp_ty_ptr); const auto& ity = visit_lvalue(tv,pp,fcn, *e.val, tmp_ty_ptr); if( tmp_ty_ptr ) { TU_MATCH_DEF(::HIR::TypeRef::Data, (ity.m_data), (te), ( BUG(Span(), "Index of unexpected type - " << ity); ), (Array, return *te.inner; ), (Slice, return *te.inner; ) ) } ), (Downcast, const auto& ity = visit_lvalue(tv,pp,fcn, *e.val, tmp_ty_ptr); if( tmp_ty_ptr ) { TU_MATCH_DEF( ::HIR::TypeRef::Data, (ity.m_data), (te), ( BUG(Span(), "Downcast on unexpected type - " << ity); ), (Path, if( te.binding.is_Enum() ) { const auto& enm = *te.binding.as_Enum(); auto monomorph = [&](const auto& ty)->auto { ::HIR::TypeRef rv = monomorphise_type(pp.sp, enm.m_params, te.path.m_data.as_Generic().m_params, ty); tv.m_resolve.expand_associated_types(sp, rv); return rv; }; const auto& variants = enm.m_variants; ASSERT_BUG(Span(), e.variant_index < variants.size(), "Variant index out of range"); const auto& variant = variants[e.variant_index]; // TODO: Make data variants refer to associated types (unify enum and struct handling) TU_MATCHA( (variant.second), (ve), (Value, ), (Unit, ), (Tuple, // HACK! Create tuple. ::std::vector< ::HIR::TypeRef> tys; for(const auto& fld : ve) tys.push_back( monomorph(fld.ent) ); return *tmp_ty_ptr = ::HIR::TypeRef( mv$(tys) ); ), (Struct, // HACK! Create tuple. ::std::vector< ::HIR::TypeRef> tys; for(const auto& fld : ve) tys.push_back( monomorph(fld.second.ent) ); return *tmp_ty_ptr = ::HIR::TypeRef( mv$(tys) ); ) ) } else { const auto& unm = *te.binding.as_Union(); ASSERT_BUG(Span(), e.variant_index < unm.m_variants.size(), "Variant index out of range"); const auto& variant = unm.m_variants[e.variant_index]; const auto& var_ty = variant.second.ent; if( monomorphise_type_needed(var_ty) ) { *tmp_ty_ptr = monomorphise_type(pp.sp, unm.m_params, te.path.m_data.as_Generic().m_params, variant.second.ent); tv.m_resolve.expand_associated_types(pp.sp, *tmp_ty_ptr); return *tmp_ty_ptr; } else { return var_ty; } } ) ) } ) ) return blank; } static void visit_param(TypeVisitor& tv, const Trans_Params& pp, const ::HIR::Function& fcn, const ::MIR::Param& p) { TU_MATCHA( (p), (e), (LValue, H::visit_lvalue(tv, pp, fcn, e); ), (Constant, ) ) } }; for(const auto& stmt : block.statements) { TU_MATCHA( (stmt), (se), (Drop, H::visit_lvalue(tv,pp,fcn, se.slot); ), (SetDropFlag, ), (Asm, for(const auto& v : se.outputs) H::visit_lvalue(tv,pp,fcn, v.second); for(const auto& v : se.inputs) H::visit_lvalue(tv,pp,fcn, v.second); ), (ScopeEnd, ), (Assign, H::visit_lvalue(tv,pp,fcn, se.dst); TU_MATCHA( (se.src), (re), (Use, H::visit_lvalue(tv,pp,fcn, re); ), (Constant, ), (SizedArray, H::visit_param(tv,pp,fcn, re.val); ), (Borrow, H::visit_lvalue(tv,pp,fcn, re.val); ), (Cast, H::visit_lvalue(tv,pp,fcn, re.val); ), (BinOp, H::visit_param(tv,pp,fcn, re.val_l); H::visit_param(tv,pp,fcn, re.val_l); ), (UniOp, H::visit_lvalue(tv,pp,fcn, re.val); ), (DstMeta, H::visit_lvalue(tv,pp,fcn, re.val); ), (DstPtr, H::visit_lvalue(tv,pp,fcn, re.val); ), (MakeDst, H::visit_param(tv,pp,fcn, re.ptr_val); H::visit_param(tv,pp,fcn, re.meta_val); ), (Tuple, for(const auto& v : re.vals) H::visit_param(tv,pp,fcn, v); ), (Array, for(const auto& v : re.vals) H::visit_param(tv,pp,fcn, v); ), (Variant, H::visit_param(tv,pp,fcn, re.val); ), (Struct, for(const auto& v : re.vals) H::visit_param(tv,pp,fcn, v); ) ) ) ) } TU_MATCHA( (block.terminator), (te), (Incomplete, ), (Return, ), (Diverge, ), (Goto, ), (Panic, ), (If, H::visit_lvalue(tv,pp,fcn, te.cond); ), (Switch, H::visit_lvalue(tv,pp,fcn, te.val); ), (SwitchValue, H::visit_lvalue(tv,pp,fcn, te.val); ), (Call, if( te.fcn.is_Value() ) H::visit_lvalue(tv,pp,fcn, te.fcn.as_Value()); else if( te.fcn.is_Intrinsic() ) { for(const auto& ty : te.fcn.as_Intrinsic().params.m_types) tv.visit_type(monomorph(ty)); } H::visit_lvalue(tv,pp,fcn, te.ret_val); for(const auto& arg : te.args) H::visit_param(tv,pp,fcn, arg); ) ) } } } state.fcns_to_type_visit.clear(); // TODO: Similarly restrict revisiting of statics. for(const auto& ent : state.rv.m_statics) { TRACE_FUNCTION_F("Enumerate static " << ent.first); assert(ent.second->ptr); const auto& stat = *ent.second->ptr; const auto& pp = ent.second->pp; tv.visit_type( pp.monomorph(tv.m_resolve, stat.m_type) ); } for(const auto& ent : state.rv.m_vtables) { TRACE_FUNCTION_F("vtable " << ent.first); const auto& gpath = ent.first.m_data.as_UfcsKnown().trait; const auto& trait = state.crate.get_trait_by_path(sp, gpath.m_path); auto vtable_ty_spath = gpath.m_path; vtable_ty_spath.m_components.back() += "#vtable"; const auto& vtable_ref = state.crate.get_struct_by_path(sp, vtable_ty_spath); // Copy the param set from the trait in the trait object ::HIR::PathParams vtable_params = gpath.m_params.clone(); // - Include associated types on bound for(const auto& ty_idx : trait.m_type_indexes) { auto idx = ty_idx.second; if(vtable_params.m_types.size() <= idx) vtable_params.m_types.resize(idx+1); auto p = ent.first.clone(); p.m_data.as_UfcsKnown().item = ty_idx.first; vtable_params.m_types[idx] = ::HIR::TypeRef::new_path( mv$(p), {} ); tv.m_resolve.expand_associated_types( sp, vtable_params.m_types[idx] ); } tv.visit_type( *ent.first.m_data.as_UfcsKnown().type ); tv.visit_type( ::HIR::TypeRef( ::HIR::GenericPath(vtable_ty_spath, mv$(vtable_params)), &vtable_ref ) ); } constructors_added = false; for(unsigned int i = types_count; i < state.rv.m_types.size(); i ++ ) { const auto& ent = state.rv.m_types[i]; // Shallow? Skip. if( ent.second ) continue ; const auto& ty = ent.first; if( ty.m_data.is_Path() ) { const auto& te = ty.m_data.as_Path(); const ::HIR::TraitMarkings* markings_ptr = nullptr; TU_MATCHA( (te.binding), (tpb), (Unbound, ), (Opaque, ), (Struct, markings_ptr = &tpb->m_markings; ), (Union, markings_ptr = &tpb->m_markings; ), (Enum, markings_ptr = &tpb->m_markings; ) ) ASSERT_BUG(Span(), markings_ptr, "Path binding not set correctly - " << ty); // If the type has a drop impl, and it's either defined in this crate or has params (and thus was monomorphised) if( markings_ptr->has_drop_impl && (te.path.m_data.as_Generic().m_path.m_crate_name == state.crate.m_crate_name || te.path.m_data.as_Generic().m_params.has_params()) ) { // Add the Drop impl to the codegen list Trans_Enumerate_FillFrom_Path(state, ::HIR::Path( ty.clone(), state.crate.get_lang_item_path(sp, "drop"), "drop"), {}); constructors_added = true; } } if( const auto* ity = tv.m_resolve.is_type_owned_box(ty) ) { // Reqire drop glue for inner type. // - Should that already exist? // Requires box_free lang item Trans_Enumerate_FillFrom_Path(state, ::HIR::GenericPath( state.crate.get_lang_item_path(sp, "box_free"), { ity->clone() } ), {});; } } types_count = state.rv.m_types.size(); // Run queue Trans_Enumerate_CommonPost_Run(state); } while(constructors_added); } namespace { TAGGED_UNION(EntPtr, NotFound, (NotFound, struct{}), (AutoGenerate, struct{}), (Function, const ::HIR::Function*), (Static, const ::HIR::Static*), (Constant, const ::HIR::Constant*) ); EntPtr get_ent_simplepath(const Span& sp, const ::HIR::Crate& crate, const ::HIR::SimplePath& path) { const ::HIR::ValueItem* vip; if( path.m_components.size() > 1 ) { const auto& mi = crate.get_typeitem_by_path(sp, path, /*ignore_crate_name=*/false, /*ignore_last_node=*/true); TU_MATCH_DEF( ::HIR::TypeItem, (mi), (e), ( BUG(sp, "Node " << path.m_components.size()-1 << " of path " << path << " wasn't a module"); ), (Enum, // TODO: Check that this is a tuple variant return EntPtr::make_AutoGenerate({}); ), (Module, auto it = e.m_value_items.find( path.m_components.back() ); if( it == e.m_value_items.end() ) { return EntPtr {}; } vip = &it->second->ent; ) ) } else { vip = &crate.get_valitem_by_path(sp, path); } TU_MATCH( ::HIR::ValueItem, (*vip), (e), (Import, ), (StructConstant, ), (StructConstructor, // TODO: What to do with these? return EntPtr::make_AutoGenerate({}); ), (Function, return EntPtr { &e }; ), (Constant, return EntPtr { &e }; ), (Static, return EntPtr { &e }; ) ) BUG(sp, "Path " << path << " pointed to a invalid item - " << vip->tag_str()); } EntPtr get_ent_fullpath(const Span& sp, const ::HIR::Crate& crate, const ::HIR::Path& path, ::HIR::PathParams& impl_pp) { TRACE_FUNCTION_F(path); StaticTraitResolve resolve { crate }; TU_MATCH(::HIR::Path::Data, (path.m_data), (e), (Generic, return get_ent_simplepath(sp, crate, e.m_path); ), (UfcsInherent, // Easy (ish) EntPtr rv; crate.find_type_impls(*e.type, [](const auto&x)->const auto& { return x; }, [&](const auto& impl) { DEBUG("Found impl" << impl.m_params.fmt_args() << " " << impl.m_type); { auto fit = impl.m_methods.find(e.item); if( fit != impl.m_methods.end() ) { DEBUG("- Contains method, good"); rv = EntPtr { &fit->second.data }; return true; } } //{ // auto it = impl.m_constants.find(e.item); // if( it != impl.m_constants.end() ) // { // rv = EntPtr { &it->second.data }; // return true; // } //} return false; }); return rv; ), (UfcsKnown, EntPtr rv; // Obtain trait pointer (for default impl and to know what the item type is) const auto& trait_ref = crate.get_trait_by_path(sp, e.trait.m_path); auto trait_vi_it = trait_ref.m_values.find(e.item); ASSERT_BUG(sp, trait_vi_it != trait_ref.m_values.end(), "Couldn't find item " << e.item << " in trait " << e.trait.m_path); const auto& trait_vi = trait_vi_it->second; bool is_dynamic = false; ::std::vector<::HIR::TypeRef> best_impl_params; const ::HIR::TraitImpl* best_impl = nullptr; resolve.find_impl(sp, e.trait.m_path, e.trait.m_params, *e.type, [&](auto impl_ref, auto is_fuzz) { DEBUG("[get_ent_fullpath] Found " << impl_ref); //ASSERT_BUG(sp, !is_fuzz, "Fuzzy match not allowed here"); if( ! impl_ref.m_data.is_TraitImpl() ) { DEBUG("Trans impl search found an invalid impl type"); is_dynamic = true; // TODO: This can only really happen if it's a trait object magic impl, which should become a vtable lookup. return true; } const auto& impl_ref_e = impl_ref.m_data.as_TraitImpl(); const auto& impl = *impl_ref_e.impl; ASSERT_BUG(sp, impl.m_trait_args.m_types.size() == e.trait.m_params.m_types.size(), "Trait parameter count mismatch " << impl.m_trait_args << " vs " << e.trait.m_params); if( best_impl == nullptr || impl.more_specific_than(*best_impl) ) { best_impl = &impl; bool is_spec = false; TU_MATCHA( (trait_vi), (ve), (Constant, auto it = impl.m_constants.find(e.item); if( it == impl.m_constants.end() ) { DEBUG("Constant " << e.item << " missing in trait " << e.trait << " for " << *e.type); return false; } is_spec = it->second.is_specialisable; ), (Static, auto it = impl.m_statics.find(e.item); if( it == impl.m_statics.end() && e.item != "#vtable" ) { DEBUG("Static " << e.item << " missing in trait " << e.trait << " for " << *e.type); return false; } is_spec = it->second.is_specialisable; ), (Function, auto fit = impl.m_methods.find(e.item); if( fit == impl.m_methods.end() ) { DEBUG("Method " << e.item << " missing in trait " << e.trait << " for " << *e.type); return false; } is_spec = fit->second.is_specialisable; ) ) best_impl_params.clear(); for(unsigned int i = 0; i < impl_ref_e.params.size(); i ++) { if( impl_ref_e.params[i] ) best_impl_params.push_back( impl_ref_e.params[i]->clone() ); else if( ! impl_ref_e.params_ph[i].m_data.is_Generic() ) best_impl_params.push_back( impl_ref_e.params_ph[i].clone() ); else BUG(sp, "Parameter " << i << " unset"); } if( is_spec ) DEBUG("- Specialisable"); return !is_spec; } return false; }); if( is_dynamic ) return EntPtr::make_AutoGenerate( {} ); if( !best_impl ) return EntPtr {}; const auto& impl = *best_impl; impl_pp.m_types = mv$(best_impl_params); TU_MATCHA( (trait_vi), (ve), (Constant, auto it = impl.m_constants.find(e.item); if( it != impl.m_constants.end() ) { DEBUG("Found impl" << impl.m_params.fmt_args() << " " << impl.m_type); return EntPtr { &it->second.data }; } TODO(sp, "Associated constant - " << path); ), (Static, if( e.item == "#vtable" ) { DEBUG("VTable, autogen"); return EntPtr::make_AutoGenerate( {} ); } auto it = impl.m_statics.find(e.item); if( it != impl.m_statics.end() ) { DEBUG("Found impl" << impl.m_params.fmt_args() << " " << impl.m_type); return EntPtr { &it->second.data }; } TODO(sp, "Associated static - " << path); ), (Function, auto fit = impl.m_methods.find(e.item); if( fit != impl.m_methods.end() ) { DEBUG("Found impl" << impl.m_params.fmt_args() << " " << impl.m_type); return EntPtr { &fit->second.data }; } impl_pp = e.trait.m_params.clone(); // HACK! By adding a new parameter here, the MIR will always be monomorphised impl_pp.m_types.push_back( ::HIR::TypeRef() ); return EntPtr { &ve }; ) ) BUG(sp, ""); ), (UfcsUnknown, // TODO: Are these valid at this point in compilation? TODO(sp, "get_ent_fullpath(path = " << path << ")"); ) ) throw ""; } } void Trans_Enumerate_FillFrom_Path(EnumState& state, const ::HIR::Path& path, const Trans_Params& pp) { TRACE_FUNCTION_F(path); Span sp; auto path_mono = pp.monomorph(state.crate, path); DEBUG("- " << path_mono); Trans_Params sub_pp(sp); TU_MATCHA( (path_mono.m_data), (pe), (Generic, sub_pp.pp_method = pe.m_params.clone(); ), (UfcsKnown, sub_pp.pp_method = pe.params.clone(); sub_pp.self_type = pe.type->clone(); ), (UfcsInherent, sub_pp.pp_method = pe.params.clone(); sub_pp.pp_impl = pe.impl_params.clone(); sub_pp.self_type = pe.type->clone(); ), (UfcsUnknown, BUG(sp, "UfcsUnknown - " << path); ) ) // Get the item type // - Valid types are Function and Static auto item_ref = get_ent_fullpath(sp, state.crate, path_mono, sub_pp.pp_impl); TU_MATCHA( (item_ref), (e), (NotFound, BUG(sp, "Item not found for " << path_mono); ), (AutoGenerate, if( path_mono.m_data.is_Generic() ) { // Leave generation of struct/enum constructors to codgen // TODO: Add to a list of required constructors state.rv.m_constructors.insert( mv$(path_mono.m_data.as_Generic()) ); } // - ::#vtable else if( path_mono.m_data.is_UfcsKnown() && path_mono.m_data.as_UfcsKnown().item == "#vtable" ) { if( state.rv.add_vtable( path_mono.clone(), {} ) ) { // Fill from the vtable Trans_Enumerate_FillFrom_VTable(state, mv$(path_mono), sub_pp); } } // - <(Trait) as Trait>::method else if( path_mono.m_data.is_UfcsKnown() && path_mono.m_data.as_UfcsKnown().type->m_data.is_TraitObject() ) { // Must have been a dynamic dispatch request, just leave as-is } // - ::call* else if( path_mono.m_data.is_UfcsKnown() && path_mono.m_data.as_UfcsKnown().type->m_data.is_Function() ) { // Must have been a dynamic dispatch request, just leave as-is } else { BUG(sp, "AutoGenerate returned for unknown path type - " << path_mono); } ), (Function, // Add this path (monomorphised) to the queue state.enum_fcn(mv$(path_mono), *e, mv$(sub_pp)); ), (Static, if( auto* ptr = state.rv.add_static(mv$(path_mono)) ) { Trans_Enumerate_FillFrom(state, *e, *ptr, mv$(sub_pp)); } ), (Constant, Trans_Enumerate_FillFrom_Literal(state, e->m_value_res, sub_pp); ) ) } void Trans_Enumerate_FillFrom_MIR_LValue(EnumState& state, const ::MIR::LValue& lv, const Trans_Params& pp) { TU_MATCHA( (lv), (e), (Return, ), (Argument, ), (Local, ), (Static, Trans_Enumerate_FillFrom_Path(state, e, pp); ), (Field, Trans_Enumerate_FillFrom_MIR_LValue(state, *e.val, pp); ), (Deref, Trans_Enumerate_FillFrom_MIR_LValue(state, *e.val, pp); ), (Index, Trans_Enumerate_FillFrom_MIR_LValue(state, *e.val, pp); Trans_Enumerate_FillFrom_MIR_LValue(state, *e.idx, pp); ), (Downcast, Trans_Enumerate_FillFrom_MIR_LValue(state, *e.val, pp); ) ) } void Trans_Enumerate_FillFrom_MIR_Constant(EnumState& state, const ::MIR::Constant& c, const Trans_Params& pp) { TU_MATCHA( (c), (ce), (Int, ), (Uint,), (Float, ), (Bool, ), (Bytes, ), (StaticString, ), // String (Const, //Trans_Enumerate_FillFrom_Path(state, ce.p, pp); ), (ItemAddr, Trans_Enumerate_FillFrom_Path(state, ce, pp); ) ) } void Trans_Enumerate_FillFrom_MIR_Param(EnumState& state, const ::MIR::Param& p, const Trans_Params& pp) { TU_MATCHA( (p), (e), (LValue, Trans_Enumerate_FillFrom_MIR_LValue(state, e, pp); ), (Constant, Trans_Enumerate_FillFrom_MIR_Constant(state, e, pp); ) ) } void Trans_Enumerate_FillFrom_MIR(EnumState& state, const ::MIR::Function& code, const Trans_Params& pp) { for(const auto& bb : code.blocks) { for(const auto& stmt : bb.statements) { TU_MATCHA((stmt), (se), (Assign, DEBUG("- " << se.dst << " = " << se.src); Trans_Enumerate_FillFrom_MIR_LValue(state, se.dst, pp); TU_MATCHA( (se.src), (e), (Use, Trans_Enumerate_FillFrom_MIR_LValue(state, e, pp); ), (Constant, Trans_Enumerate_FillFrom_MIR_Constant(state, e, pp); ), (SizedArray, Trans_Enumerate_FillFrom_MIR_Param(state, e.val, pp); ), (Borrow, Trans_Enumerate_FillFrom_MIR_LValue(state, e.val, pp); ), (Cast, Trans_Enumerate_FillFrom_MIR_LValue(state, e.val, pp); ), (BinOp, Trans_Enumerate_FillFrom_MIR_Param(state, e.val_l, pp); Trans_Enumerate_FillFrom_MIR_Param(state, e.val_r, pp); ), (UniOp, Trans_Enumerate_FillFrom_MIR_LValue(state, e.val, pp); ), (DstMeta, Trans_Enumerate_FillFrom_MIR_LValue(state, e.val, pp); ), (DstPtr, Trans_Enumerate_FillFrom_MIR_LValue(state, e.val, pp); ), (MakeDst, Trans_Enumerate_FillFrom_MIR_Param(state, e.ptr_val, pp); Trans_Enumerate_FillFrom_MIR_Param(state, e.meta_val, pp); ), (Tuple, for(const auto& val : e.vals) Trans_Enumerate_FillFrom_MIR_Param(state, val, pp); ), (Array, for(const auto& val : e.vals) Trans_Enumerate_FillFrom_MIR_Param(state, val, pp); ), (Variant, Trans_Enumerate_FillFrom_MIR_Param(state, e.val, pp); ), (Struct, for(const auto& val : e.vals) Trans_Enumerate_FillFrom_MIR_Param(state, val, pp); ) ) ), (Asm, DEBUG("- asm! ..."); for(const auto& v : se.inputs) Trans_Enumerate_FillFrom_MIR_LValue(state, v.second, pp); for(const auto& v : se.outputs) Trans_Enumerate_FillFrom_MIR_LValue(state, v.second, pp); ), (SetDropFlag, ), (ScopeEnd, ), (Drop, DEBUG("- DROP " << se.slot); Trans_Enumerate_FillFrom_MIR_LValue(state, se.slot, pp); // TODO: Ensure that the drop glue for this type is generated ) ) } DEBUG("> " << bb.terminator); TU_MATCHA( (bb.terminator), (e), (Incomplete, ), (Return, ), (Diverge, ), (Goto, ), (Panic, ), (If, Trans_Enumerate_FillFrom_MIR_LValue(state, e.cond, pp); ), (Switch, Trans_Enumerate_FillFrom_MIR_LValue(state, e.val, pp); ), (SwitchValue, Trans_Enumerate_FillFrom_MIR_LValue(state, e.val, pp); ), (Call, Trans_Enumerate_FillFrom_MIR_LValue(state, e.ret_val, pp); TU_MATCHA( (e.fcn), (e2), (Value, Trans_Enumerate_FillFrom_MIR_LValue(state, e2, pp); ), (Path, Trans_Enumerate_FillFrom_Path(state, e2, pp); ), (Intrinsic, if( e2.name == "type_id" ) { // Add ::#type_id to the enumerate list state.rv.m_typeids.insert( pp.monomorph(state.crate, e2.params.m_types.at(0)) ); } ) ) for(const auto& arg : e.args) Trans_Enumerate_FillFrom_MIR_Param(state, arg, pp); ) ) } } void Trans_Enumerate_FillFrom_VTable(EnumState& state, ::HIR::Path vtable_path, const Trans_Params& pp) { static Span sp; const auto& type = *vtable_path.m_data.as_UfcsKnown().type; const auto& trait_path = vtable_path.m_data.as_UfcsKnown().trait; const auto& tr = state.crate.get_trait_by_path(Span(), trait_path.m_path); ASSERT_BUG(sp, !type.m_data.is_Slice(), "Getting vtable for unsized type - " << vtable_path); auto monomorph_cb_trait = monomorphise_type_get_cb(sp, &type, &trait_path.m_params, nullptr); for(const auto& m : tr.m_value_indexes) { DEBUG("- " << m.second.first << " = " << m.second.second << " :: " << m.first); auto gpath = monomorphise_genericpath_with(sp, m.second.second, monomorph_cb_trait, false); Trans_Enumerate_FillFrom_Path(state, ::HIR::Path(type.clone(), mv$(gpath), m.first), {}); } } void Trans_Enumerate_FillFrom_Literal(EnumState& state, const ::HIR::Literal& lit, const Trans_Params& pp) { TU_MATCHA( (lit), (e), (Invalid, ), (List, for(const auto& v : e) Trans_Enumerate_FillFrom_Literal(state, v, pp); ), (Variant, for(const auto& v : e.vals) Trans_Enumerate_FillFrom_Literal(state, v, pp); ), (Integer, ), (Float, ), (BorrowPath, Trans_Enumerate_FillFrom_Path(state, e, pp); ), (BorrowData, Trans_Enumerate_FillFrom_Literal(state, *e, pp); ), (String, ) ) } namespace { ::HIR::Function* find_function_by_link_name(const ::HIR::Module& mod, ::HIR::ItemPath mod_path, const char* name, ::HIR::SimplePath& out_path) { for(const auto& vi : mod.m_value_items) { TU_IFLET( ::HIR::ValueItem, vi.second->ent, Function, i, if( i.m_code.m_mir && i.m_linkage.name != "" && i.m_linkage.name == name ) { out_path = (mod_path + vi.first.c_str()).get_simple_path(); return &i; } ) } for(const auto& ti : mod.m_mod_items) { TU_IFLET( ::HIR::TypeItem, ti.second->ent, Module, i, if( auto rv = find_function_by_link_name(i, mod_path + ti.first.c_str(), name, out_path) ) return rv; ) } return nullptr; } ::HIR::Function* find_function_by_link_name(const ::HIR::Crate& crate, const char* name, ::HIR::SimplePath& out_path) { if(auto rv = find_function_by_link_name(crate.m_root_module, {crate.m_crate_name}, name, out_path)) return rv; for(const auto& e_crate : crate.m_ext_crates) { if(auto rv = find_function_by_link_name(e_crate.second.m_data->m_root_module, {e_crate.first}, name, out_path)) { assert( out_path.m_crate_name == e_crate.first ); return rv; } } return nullptr; } } void Trans_Enumerate_FillFrom(EnumState& state, const ::HIR::Function& function, const Trans_Params& pp) { TRACE_FUNCTION_F("Function pp=" << pp.pp_method<<"+"<