/* * MRustC - Rust Compiler * - By John Hodge (Mutabah/thePowersGang) * * trans/target.cpp * - Target-specific information */ #include "target.hpp" #include #include "../expand/cfg.hpp" #include #include #include #include TargetArch ARCH_X86_64 = { "x86_64", 64, false, { /*atomic(u8)=*/true, false, true, true, true } }; TargetArch ARCH_X86 = { "x86", 32, false, { /*atomic(u8)=*/true, false, true, false, true } }; TargetArch ARCH_ARM32 = { "arm", 32, false, { /*atomic(u8)=*/true, false, true, false, true } }; TargetSpec g_target; bool Target_GetSizeAndAlignOf(const Span& sp, const StaticTraitResolve& resolve, const ::HIR::TypeRef& ty, size_t& out_size, size_t& out_align); namespace { TargetSpec load_spec_from_file(const ::std::string& filename) { throw ""; } TargetSpec init_from_spec_name(const ::std::string& target_name) { if( ::std::ifstream(target_name).is_open() ) { return load_spec_from_file(target_name); } else if(target_name == "i586-linux-gnu") { return TargetSpec { "unix", "linux", "gnu", CodegenMode::Gnu11, "i586-pc-linux-gnu", ARCH_X86 }; } else if(target_name == "x86_64-linux-gnu") { return TargetSpec { "unix", "linux", "gnu", CodegenMode::Gnu11, "x86_64-pc-linux-gnu", ARCH_X86_64 }; } else if(target_name == "arm-linux-gnu") { return TargetSpec { "unix", "linux", "gnu", CodegenMode::Gnu11, "arm-elf-eabi", ARCH_ARM32 }; } else if(target_name == "i586-windows-gnu") { return TargetSpec { "windows", "windows", "gnu", CodegenMode::Gnu11, "mingw32", ARCH_X86 }; } else if(target_name == "x86_64-windows-gnu") { return TargetSpec { "windows", "windows", "gnu", CodegenMode::Gnu11, "x86_64-w64-mingw32", ARCH_X86_64 }; } else if (target_name == "x86-windows-msvc") { return TargetSpec { "windows", "windows", "msvc", CodegenMode::Msvc, "x86", ARCH_X86 }; } else if (target_name == "x86_64-windows-msvc") { return TargetSpec { "windows", "windows", "msvc", CodegenMode::Msvc, "amd64", ARCH_X86_64 }; } else if(target_name == "i686-unknown-openbsd") { return TargetSpec { "unix", "openbsd", "gnu", CodegenMode::Gnu11, "i686-unknown-openbsd", ARCH_X86 }; } else if(target_name == "x86_64-unknown-openbsd") { return TargetSpec { "unix", "openbsd", "gnu", CodegenMode::Gnu11, "x86_64-unknown-openbsd", ARCH_X86_64 }; } else if(target_name == "arm-unknown-openbsd") { return TargetSpec { "unix", "openbsd", "gnu", CodegenMode::Gnu11, "arm-unknown-openbsd", ARCH_ARM32 }; } else { ::std::cerr << "Unknown target name '" << target_name << "'" << ::std::endl; abort(); } throw ""; } } const TargetSpec& Target_GetCurSpec() { return g_target; } void Target_SetCfg(const ::std::string& target_name) { g_target = init_from_spec_name(target_name); if(g_target.m_family == "unix") { Cfg_SetFlag("unix"); } else if( g_target.m_family == "windows") { Cfg_SetFlag("windows"); } Cfg_SetValue("target_family", g_target.m_family); if( g_target.m_os_name == "linux" ) { Cfg_SetFlag("linux"); Cfg_SetValue("target_vendor", "gnu"); } Cfg_SetValue("target_env", g_target.m_env_name); if( g_target.m_os_name == "openbsd" ) { Cfg_SetFlag("openbsd"); Cfg_SetValue("target_vendor", "unknown"); } Cfg_SetValue("target_env", g_target.m_env_name); Cfg_SetValue("target_os", g_target.m_os_name); Cfg_SetValue("target_pointer_width", FMT(g_target.m_arch.m_pointer_bits)); Cfg_SetValue("target_endian", g_target.m_arch.m_big_endian ? "big" : "little"); Cfg_SetValue("target_arch", g_target.m_arch.m_name); Cfg_SetValueCb("target_has_atomic", [&](const ::std::string& s) { if(s == "8") return g_target.m_arch.m_atomics.u8; // Has an atomic byte if(s == "ptr") return g_target.m_arch.m_atomics.ptr; // Has an atomic pointer-sized value return false; }); Cfg_SetValueCb("target_feature", [](const ::std::string& s) { return false; }); } namespace { // Returns NULL when the repr can't be determined ::std::unique_ptr make_struct_repr(const Span& sp, const StaticTraitResolve& resolve, const ::HIR::TypeRef& ty) { TRACE_FUNCTION_F(ty); ::std::vector ents; bool packed = false; bool allow_sort = false; if( const auto* te = ty.m_data.opt_Path() ) { const auto& str = *te->binding.as_Struct(); auto monomorph_cb = monomorphise_type_get_cb(sp, nullptr, &te->path.m_data.as_Generic().m_params, nullptr); auto monomorph = [&](const auto& tpl) { auto rv = monomorphise_type_with(sp, tpl, monomorph_cb); resolve.expand_associated_types(sp, rv); return rv; }; TU_MATCHA( (str.m_data), (se), (Unit, ), (Tuple, unsigned int idx = 0; for(const auto& e : se) { auto ty = monomorph(e.ent); size_t size, align; if( !Target_GetSizeAndAlignOf(sp, resolve, ty, size,align) ) return nullptr; if( size == SIZE_MAX ) BUG(sp, "Unsized type in tuple struct"); ents.push_back(StructRepr::Ent { idx++, size, align, mv$(ty) }); } ), (Named, unsigned int idx = 0; for(const auto& e : se) { auto ty = monomorph(e.second.ent); size_t size, align; if( !Target_GetSizeAndAlignOf(sp, resolve, ty, size,align) ) return nullptr; if( size == SIZE_MAX ) BUG(sp, "Unsized type in struct"); ents.push_back(StructRepr::Ent { idx++, size, align, mv$(ty) }); } ) ) switch(str.m_repr) { case ::HIR::Struct::Repr::Packed: packed = true; TODO(sp, "make_struct_repr - repr(packed)"); // needs codegen help break; case ::HIR::Struct::Repr::C: // No sorting, no packing break; case ::HIR::Struct::Repr::Rust: allow_sort = true; break; } } else if( const auto* te = ty.m_data.opt_Tuple() ) { unsigned int idx = 0; for(const auto& t : *te) { size_t size, align; if( !Target_GetSizeAndAlignOf(sp, resolve, t, size,align) ) return nullptr; if( size == SIZE_MAX ) BUG(sp, "Unsized type in tuple"); ents.push_back(StructRepr::Ent { idx++, size, align, t.clone() }); } } else { BUG(sp, "Unexpected type in creating struct repr"); } if( allow_sort ) { // TODO: Sort by alignment then size (largest first) // - Requires codegen to use this information } StructRepr rv; size_t cur_ofs = 0; size_t max_align = 1; for(auto& e : ents) { // Increase offset to fit alignment if( !packed ) { while( cur_ofs % e.align != 0 ) { rv.ents.push_back({ ~0u, 1, 1, ::HIR::TypeRef( ::HIR::CoreType::U8 ) }); cur_ofs ++; } } max_align = ::std::max(max_align, e.align); rv.ents.push_back(mv$(e)); cur_ofs += e.size; } if( !packed ) { while( cur_ofs % max_align != 0 ) { rv.ents.push_back({ ~0u, 1, 1, ::HIR::TypeRef( ::HIR::CoreType::U8 ) }); cur_ofs ++; } } return box$(rv); } } const StructRepr* Target_GetStructRepr(const Span& sp, const StaticTraitResolve& resolve, const ::HIR::TypeRef& ty) { // TODO: Thread safety // Map of generic paths to struct representations. static ::std::map<::HIR::TypeRef, ::std::unique_ptr> s_cache; auto it = s_cache.find(ty); if( it != s_cache.end() ) { return it->second.get(); } auto ires = s_cache.insert(::std::make_pair( ty.clone(), make_struct_repr(sp, resolve, ty) )); return ires.first->second.get(); } // TODO: Include NonZero and other repr optimisations here bool Target_GetSizeAndAlignOf(const Span& sp, const StaticTraitResolve& resolve, const ::HIR::TypeRef& ty, size_t& out_size, size_t& out_align) { TRACE_FUNCTION_FR(ty, "size=" << out_size << ", align=" << out_align); TU_MATCHA( (ty.m_data), (te), (Infer, BUG(sp, "sizeof on _ type"); ), (Diverge, out_size = 0; out_align = 0; return true; ), (Primitive, switch(te) { case ::HIR::CoreType::Bool: case ::HIR::CoreType::U8: case ::HIR::CoreType::I8: out_size = 1; out_align = 1; return true; case ::HIR::CoreType::U16: case ::HIR::CoreType::I16: out_size = 2; out_align = 2; return true; case ::HIR::CoreType::U32: case ::HIR::CoreType::I32: case ::HIR::CoreType::Char: out_size = 4; out_align = 4; return true; case ::HIR::CoreType::U64: case ::HIR::CoreType::I64: out_size = 8; out_align = 8; return true; case ::HIR::CoreType::U128: case ::HIR::CoreType::I128: out_size = 16; // TODO: If i128 is emulated, this can be 8 out_align = 16; return true; case ::HIR::CoreType::Usize: case ::HIR::CoreType::Isize: out_size = g_target.m_arch.m_pointer_bits / 8; out_align = g_target.m_arch.m_pointer_bits / 8; return true; case ::HIR::CoreType::F32: out_size = 4; out_align = 4; return true; case ::HIR::CoreType::F64: out_size = 8; out_align = 8; return true; case ::HIR::CoreType::Str: DEBUG("sizeof on a `str` - unsized"); out_size = SIZE_MAX; out_align = 1; return true; } ), (Path, const auto* repr = Target_GetTypeRepr(sp, resolve, ty); if( !repr ) { DEBUG("Cannot get type repr for " << ty); return false; } out_size = repr->size; out_align = repr->align; return true; ), (Generic, // Unknown - return false DEBUG("No repr for Generic - " << ty); return false; ), (TraitObject, out_align = 0; out_size = SIZE_MAX; DEBUG("sizeof on a trait object - unsized"); return true; ), (ErasedType, BUG(sp, "sizeof on an erased type - shouldn't exist"); ), (Array, if( !Target_GetSizeAndAlignOf(sp, resolve, *te.inner, out_size,out_align) ) return false; if( out_size == SIZE_MAX ) BUG(sp, "Unsized type in array - " << ty); if( te.size_val == 0 || out_size == 0 ) { out_size = 0; } else { if( SIZE_MAX / te.size_val <= out_size ) BUG(sp, "Integer overflow calculating array size"); out_size *= te.size_val; } return true; ), (Slice, if( !Target_GetAlignOf(sp, resolve, *te.inner, out_align) ) return false; out_size = SIZE_MAX; DEBUG("sizeof on a slice - unsized"); return true; ), (Tuple, const auto* repr = Target_GetTypeRepr(sp, resolve, ty); if( !repr ) { DEBUG("Cannot get type repr for " << ty); return false; } out_size = repr->size; out_align = repr->align; return true; ), (Borrow, // - Alignment is machine native out_align = g_target.m_arch.m_pointer_bits / 8; // - Size depends on Sized-nes of the parameter if( resolve.type_is_sized(sp, *te.inner) ) { out_size = g_target.m_arch.m_pointer_bits / 8; return true; } // TODO: Handle different types of Unsized (ones with different pointer sizes) out_size = g_target.m_arch.m_pointer_bits / 8 * 2; return true; ), (Pointer, // - Alignment is machine native out_align = g_target.m_arch.m_pointer_bits / 8; // - Size depends on Sized-nes of the parameter if( resolve.type_is_sized(sp, *te.inner) ) { out_size = g_target.m_arch.m_pointer_bits / 8; return true; } // TODO: Handle different types of Unsized (ones with different pointer sizes) out_size = g_target.m_arch.m_pointer_bits / 8 * 2; return true; ), (Function, // Pointer size out_size = g_target.m_arch.m_pointer_bits / 8; out_align = g_target.m_arch.m_pointer_bits / 8; return true; ), (Closure, // TODO. DEBUG("TODO Closure - " << ty); ) ) return false; } bool Target_GetSizeOf(const Span& sp, const StaticTraitResolve& resolve, const ::HIR::TypeRef& ty, size_t& out_size) { size_t ignore_align; bool rv = Target_GetSizeAndAlignOf(sp, resolve, ty, out_size, ignore_align); if( out_size == SIZE_MAX ) BUG(sp, "Getting size of Unsized type - " << ty); return rv; } bool Target_GetAlignOf(const Span& sp, const StaticTraitResolve& resolve, const ::HIR::TypeRef& ty, size_t& out_align) { size_t ignore_size; bool rv = Target_GetSizeAndAlignOf(sp, resolve, ty, ignore_size, out_align); if( ignore_size == SIZE_MAX ) BUG(sp, "Getting alignment of Unsized type - " << ty); return rv; } namespace { // Returns NULL when the repr can't be determined ::std::unique_ptr make_type_repr_struct(const Span& sp, const StaticTraitResolve& resolve, const ::HIR::TypeRef& ty) { TRACE_FUNCTION_F(ty); struct Ent { unsigned int field; size_t size; size_t align; }; ::std::vector fields; ::std::vector ents; bool packed = false; bool allow_sort = false; if( ty.m_data.is_Path() && ty.m_data.as_Path().binding.is_Struct() ) { const auto& te = ty.m_data.as_Path(); const auto& str = *te.binding.as_Struct(); auto monomorph_cb = monomorphise_type_get_cb(sp, nullptr, &te.path.m_data.as_Generic().m_params, nullptr); auto monomorph = [&](const auto& tpl) { auto rv = monomorphise_type_with(sp, tpl, monomorph_cb); resolve.expand_associated_types(sp, rv); return rv; }; TU_MATCHA( (str.m_data), (se), (Unit, ), (Tuple, unsigned int idx = 0; for(const auto& e : se) { auto ty = monomorph(e.ent); size_t size, align; if( !Target_GetSizeAndAlignOf(sp, resolve, ty, size,align) ) { DEBUG("Can't get size/align of " << ty); return nullptr; } ents.push_back(Ent { idx++, size, align }); fields.push_back(TypeRepr::Field { 0, mv$(ty) }); } ), (Named, unsigned int idx = 0; for(const auto& e : se) { auto ty = monomorph(e.second.ent); size_t size, align; if( !Target_GetSizeAndAlignOf(sp, resolve, ty, size,align) ) { DEBUG("Can't get size/align of " << ty); return nullptr; } ents.push_back(Ent { idx++, size, align }); fields.push_back(TypeRepr::Field { 0, mv$(ty) }); } ) ) switch(str.m_repr) { case ::HIR::Struct::Repr::Packed: packed = true; TODO(sp, "make_struct_repr - repr(packed)"); // needs codegen help break; case ::HIR::Struct::Repr::C: // No sorting, no packing break; case ::HIR::Struct::Repr::Rust: allow_sort = true; break; } } else if( const auto* te = ty.m_data.opt_Tuple() ) { DEBUG("Tuple " << ty); unsigned int idx = 0; for(const auto& t : *te) { size_t size, align; if( !Target_GetSizeAndAlignOf(sp, resolve, t, size,align) ) { DEBUG("Can't get size/align of " << t); return nullptr; } if( size == SIZE_MAX ) { TODO(sp, "Unsized type in struct - " << t); } ents.push_back(Ent { idx++, size, align }); fields.push_back(TypeRepr::Field { 0, t.clone() }); } } else { BUG(sp, "Unexpected type in creating type repr - " << ty); } if( allow_sort ) { // TODO: Sort by alignment then size (largest first) // - Requires codegen to use this information // - NOTE: ?Sized fields (which includes unsized fields) MUST be at the end, even after monomorph } TypeRepr rv; size_t cur_ofs = 0; size_t max_align = 1; for(const auto& e : ents) { // Increase offset to fit alignment if( !packed && e.align > 0 ) { while( cur_ofs % e.align != 0 ) { cur_ofs ++; } } max_align = ::std::max(max_align, e.align); fields[e.field].offset = cur_ofs; if( e.size == SIZE_MAX ) { // TODO: Ensure that this is the last item ASSERT_BUG(sp, &e == &ents.back(), "Unsized item isn't the last item in " << ty); cur_ofs = SIZE_MAX; } else { cur_ofs += e.size; } } if( !packed && cur_ofs != SIZE_MAX ) { // Size must be a multiple of alignment while( cur_ofs % max_align != 0 ) { cur_ofs ++; } } rv.align = max_align; rv.size = cur_ofs; rv.fields = ::std::move(fields); DEBUG("size = " << rv.size << ", align = " << rv.align); return box$(rv); } bool get_nonzero_path(const Span& sp, const StaticTraitResolve& resolve, const ::HIR::TypeRef& ty, TypeRepr::FieldPath& out_path) { switch(ty.m_data.tag()) { TU_ARM(ty.m_data, Path, te) { if( te.binding.is_Struct() ) { const TypeRepr* r = Target_GetTypeRepr(sp, resolve, ty); if( !r ) { return false; } for(size_t i = 0; i < r->fields.size(); i ++) { if( get_nonzero_path(sp, resolve, r->fields[i].ty, out_path) ) { out_path.sub_fields.push_back(i); return true; } } } } break; TU_ARM(ty.m_data, Borrow, _te) { (void)_te; //out_path.sub_fields.push_back(0); Target_GetSizeOf(sp, resolve, ty, out_path.size); return true; } break; TU_ARM(ty.m_data, Function, _te) (void)_te; //out_path.sub_fields.push_back(0); Target_GetSizeOf(sp, resolve, ty, out_path.size); return true; default: break; } return false; } ::std::unique_ptr make_type_repr_enum(const Span& sp, const StaticTraitResolve& resolve, const ::HIR::TypeRef& ty) { const auto& te = ty.m_data.as_Path(); const auto& enm = *te.binding.as_Enum(); auto monomorph_cb = monomorphise_type_get_cb(sp, nullptr, &te.path.m_data.as_Generic().m_params, nullptr); auto monomorph = [&](const auto& tpl) { auto rv = monomorphise_type_with(sp, tpl, monomorph_cb); resolve.expand_associated_types(sp, rv); return rv; }; TypeRepr rv; switch(enm.m_data.tag()) { case ::HIR::Enum::Class::TAGDEAD: throw ""; TU_ARM(enm.m_data, Data, e) { ::std::vector<::HIR::TypeRef> mono_types; for(const auto& var : e) { mono_types.push_back( monomorph(var.type) ); } TypeRepr::FieldPath nz_path; if( e.size() == 2 && mono_types[0] == ::HIR::TypeRef::new_unit() && get_nonzero_path(sp, resolve, mono_types[1], nz_path) ) { nz_path.index = 1; ::std::reverse(nz_path.sub_fields.begin(), nz_path.sub_fields.end()); size_t max_size = 0; size_t max_align = 0; for(auto& t : mono_types) { size_t size, align; if( !Target_GetSizeAndAlignOf(sp, resolve, t, size, align) ) { DEBUG("Generic type in enum - " << t); return nullptr; } if( size == SIZE_MAX ) { BUG(sp, "Unsized type in enum - " << t); } max_size = ::std::max(max_size , size); max_align = ::std::max(max_align, align); rv.fields.push_back(TypeRepr::Field { 0, mv$(t) }); } rv.size = max_size; rv.align = max_align; rv.variants = TypeRepr::VariantMode::make_NonZero({ nz_path, 0 }); } else { size_t max_size = 0; size_t max_align = 0; for(auto& t : mono_types) { size_t size, align; if( !Target_GetSizeAndAlignOf(sp, resolve, t, size, align) ) { DEBUG("Generic type in enum - " << t); return nullptr; } if( size == SIZE_MAX ) { BUG(sp, "Unsized type in enum - " << t); } max_size = ::std::max(max_size , size); max_align = ::std::max(max_align, align); rv.fields.push_back(TypeRepr::Field { 0, mv$(t) }); } DEBUG("max_size = " << max_size << ", max_align = " << max_align); // HACK: This is required for the C backend, because the union that contains the enum variants is // padded out to align. if(max_size > 0) { while(max_size % max_align) max_size ++; } size_t tag_size = 0; // TODO: repr(C) enums if( mono_types.size() == 0 ) { // Unreachable } else if( mono_types.size() == 1 ) { // No need for a tag } else if( mono_types.size() <= 255 ) { rv.fields.push_back(TypeRepr::Field { max_size, ::HIR::CoreType::U8 }); tag_size = 1; DEBUG("u8 data tag"); } else { ASSERT_BUG(sp, mono_types.size() <= 0xFFFF, ""); while(max_size % 2) max_size ++; rv.fields.push_back(TypeRepr::Field { max_size, ::HIR::CoreType::U16 }); tag_size = 2; DEBUG("u16 data tag"); } max_align = ::std::max(max_align, tag_size); ::std::vector vals; for(size_t i = 0; i < e.size(); i++) { vals.push_back(i); } if( vals.size() > 1 ) { rv.variants = TypeRepr::VariantMode::make_Values({ { mono_types.size(), tag_size, {} }, ::std::move(vals) }); } else { // Leave the enum with NoVariants } if( max_align > 0 ) { // Size must be a multiple of alignment rv.size = (max_size + tag_size); while(rv.size % max_align) rv.size ++; rv.align = max_align; } else { ASSERT_BUG(sp, max_size == 0, "Zero alignment, but non-zero size"); } // TODO: Variants. } } break; TU_ARM(enm.m_data, Value, e) { switch(e.repr) { case ::HIR::Enum::Repr::C: // No auto-sizing, just i32? rv.fields.push_back(TypeRepr::Field { 0, ::HIR::CoreType::U32 }); break; case ::HIR::Enum::Repr::Rust: { int pow8 = 0; for( const auto& v : e.variants ) { auto v2 = static_cast(v.val); if( -0x80 <= v2 && v2 < 0x80 ) { pow8 = ::std::max(pow8, 1); } else if( -0x8000 <= v2 && v2 < 0x8000 ) { pow8 = ::std::max(pow8, 2); } else if( -0x80000000 <= v2 && v2 < 0x80000000 ) { pow8 = ::std::max(pow8, 3); } else { pow8 = 4; } } switch(pow8) { case 0: break; case 1: rv.fields.push_back(TypeRepr::Field { 0, ::HIR::CoreType::I8 }); break; case 2: rv.fields.push_back(TypeRepr::Field { 0, ::HIR::CoreType::I16 }); break; case 3: rv.fields.push_back(TypeRepr::Field { 0, ::HIR::CoreType::I32 }); break; case 4: rv.fields.push_back(TypeRepr::Field { 0, ::HIR::CoreType::I64 }); break; default: break; } } break; case ::HIR::Enum::Repr::U8: rv.fields.push_back(TypeRepr::Field { 0, ::HIR::CoreType::U8 }); break; case ::HIR::Enum::Repr::U16: rv.fields.push_back(TypeRepr::Field { 0, ::HIR::CoreType::U16 }); break; case ::HIR::Enum::Repr::U32: rv.fields.push_back(TypeRepr::Field { 0, ::HIR::CoreType::U32 }); break; case ::HIR::Enum::Repr::U64: rv.fields.push_back(TypeRepr::Field { 0, ::HIR::CoreType::U64 }); break; case ::HIR::Enum::Repr::Usize: if( g_target.m_arch.m_pointer_bits == 16 ) { rv.fields.push_back(TypeRepr::Field { 0, ::HIR::CoreType::U16 }); } else if( g_target.m_arch.m_pointer_bits == 32 ) { rv.fields.push_back(TypeRepr::Field { 0, ::HIR::CoreType::U32 }); } else if( g_target.m_arch.m_pointer_bits == 64 ) { rv.fields.push_back(TypeRepr::Field { 0, ::HIR::CoreType::U64 }); } break; } if( rv.fields.size() > 0 ) { // Can't return false or unsized Target_GetSizeAndAlignOf(sp, resolve, rv.fields.back().ty, rv.size, rv.align); ::std::vector vals; for(const auto& v : e.variants) { vals.push_back(v.val); } rv.variants = TypeRepr::VariantMode::make_Values({ { 0, static_cast(rv.size), {} }, ::std::move(vals) }); } } break; } DEBUG("rv.variants = " << rv.variants.tag_str()); return box$(rv); } ::std::unique_ptr make_type_repr(const Span& sp, const StaticTraitResolve& resolve, const ::HIR::TypeRef& ty) { TRACE_FUNCTION_F(ty); if( TU_TEST1(ty.m_data, Path, .binding.is_Struct()) || ty.m_data.is_Tuple() ) { return make_type_repr_struct(sp, resolve, ty); } else if( TU_TEST1(ty.m_data, Path, .binding.is_Union()) ) { const auto& te = ty.m_data.as_Path(); const auto& unn = *te.binding.as_Union(); auto monomorph_cb = monomorphise_type_get_cb(sp, nullptr, &te.path.m_data.as_Generic().m_params, nullptr); auto monomorph = [&](const auto& tpl) { auto rv = monomorphise_type_with(sp, tpl, monomorph_cb); resolve.expand_associated_types(sp, rv); return rv; }; TypeRepr rv; for(const auto& var : unn.m_variants) { rv.fields.push_back({ 0, monomorph(var.second.ent) }); size_t size, align; if( !Target_GetSizeAndAlignOf(sp, resolve, rv.fields.back().ty, size, align) ) { // Generic? - Not good. DEBUG("Generic type encounterd after monomorphise in union - " << rv.fields.back().ty); return nullptr; } if( size == SIZE_MAX ) { BUG(sp, "Unsized type in union"); } rv.size = ::std::max(rv.size , size ); rv.align = ::std::max(rv.align, align); } return box$(rv); } else if( TU_TEST1(ty.m_data, Path, .binding.is_Enum()) ) { return make_type_repr_enum(sp, resolve, ty); } else if( ty.m_data.is_Primitive() ) { return nullptr; } else if( ty.m_data.is_Borrow() || ty.m_data.is_Pointer() ) { return nullptr; } else { TODO(sp, "Type repr for " << ty); return nullptr; } } } const TypeRepr* Target_GetTypeRepr(const Span& sp, const StaticTraitResolve& resolve, const ::HIR::TypeRef& ty) { // TODO: Thread safety // Map of generic types to type representations. static ::std::map<::HIR::TypeRef, ::std::unique_ptr> s_cache; auto it = s_cache.find(ty); if( it != s_cache.end() ) { return it->second.get(); } auto ires = s_cache.insert(::std::make_pair( ty.clone(), make_type_repr(sp, resolve, ty) )); return ires.first->second.get(); } const ::HIR::TypeRef& Target_GetInnerType(const Span& sp, const StaticTraitResolve& resolve, const TypeRepr& repr, size_t idx, const ::std::vector& sub_fields, size_t ofs) { const auto& ty = repr.fields.at(idx).ty; if( sub_fields.size() == ofs ) { return ty; } const auto* inner_repr = Target_GetTypeRepr(sp, resolve, ty); ASSERT_BUG(sp, inner_repr, "No inner repr for " << ty); return Target_GetInnerType(sp, resolve, *inner_repr, sub_fields[ofs], sub_fields, ofs+1); }