1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
|
/** \file search_graph.h */ // -*-c++-*-
// Copyright (C) 2009-2010 Daniel Burrows
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING. If not, write to
// the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
// Boston, MA 02111-1307, USA.
#ifndef SEARCH_GRAPH_H
#define SEARCH_GRAPH_H
#include <loggers.h>
#include "choice.h"
#include "choice_indexed_map.h"
#include "choice_set.h"
#include "promotion_set.h"
#include "solution.h"
#include "tier.h"
#include "tier_limits.h"
#include "tier_operation.h"
#include <generic/util/compare3.h>
#include <generic/util/immlist.h>
#include <generic/util/immset.h>
#include <boost/flyweight.hpp>
#include <boost/flyweight/hashed_factory.hpp>
#include <boost/functional/hash.hpp>
#include <boost/optional.hpp>
#include <boost/shared_ptr.hpp>
// solver_information and dep_solvers are top-level declarations so
// they can easily get an operator<< that works.
/** \brief Information about a single solver of a dependency.
*
* The solver itself is not stored here; this just tracks
* metadata.
*/
template<typename PackageUniverse>
class generic_solver_information
{
public:
typedef generic_choice<PackageUniverse> choice;
typedef generic_choice_set<PackageUniverse> choice_set;
private:
class combine_reason_hashes
{
std::size_t ⌖
public:
combine_reason_hashes(std::size_t &_target)
: target(_target)
{
}
bool operator()(const choice &c) const
{
boost::hash_combine(target, c);
return true;
}
};
class choice_set_with_hash
{
choice_set choices;
std::size_t hash;
static std::size_t get_choice_set_hash(const choice_set &choices)
{
std::size_t rval = 0;
choices.for_each(combine_reason_hashes(rval));
return rval;
}
public:
choice_set_with_hash(const choice_set &_choices)
: choices(_choices), hash(get_choice_set_hash(choices))
{
}
bool operator==(const choice_set_with_hash &other) const
{
return hash == other.hash && choices == other.choices;
}
const choice_set &get_choices() const { return choices; }
std::size_t get_hash() const { return hash; }
};
class hash_choice_set_with_hash
{
public:
std::size_t operator()(const choice_set_with_hash &c) const
{
return c.get_hash();
}
};
struct foo
{
template<typename X>
struct apply
{
typedef std::allocator<X> type;
};
};
// Contrary to the Boost documentation, there are no default
// arguments to hashed_factory, so I have to write out the default
// values of the second two arguments.
typedef boost::flyweight<choice_set_with_hash,
boost::flyweights::hashed_factory<hash_choice_set_with_hash> >
choice_set_flyweight;
tier_operation t_op;
choice_set_flyweight reasons;
cwidget::util::ref_ptr<expression<bool> > tier_operation_valid;
cwidget::util::ref_ptr<expression_box<bool> > is_deferred_listener;
public:
generic_solver_information()
: t_op(),
reasons(),
tier_operation_valid(),
is_deferred_listener()
{
}
/** \brief Create a new solver_information.
*
* \param _t_op The tier operation of the associated solver.
* \param _reason The reasons for the solver's tier (other than
* the solver itself).
* \param _tier_operation valid
* A pure expression indicating whether the tier
* operation of this solver is valid. Used to
* create promotions.
* \param _is_deferred_listener
* A side-effecting expression whose sub-expression
* is true exactly when this solver violates a
* user-imposed constraint. A reference is stored
* here to ensure that the expression remains alive
* while this solver exists.
*/
generic_solver_information(const tier_operation &_t_op,
const choice_set &_reasons,
const cwidget::util::ref_ptr<expression<bool> > &_tier_operation_valid,
const cwidget::util::ref_ptr<expression_box<bool> > &_is_deferred_listener)
: t_op(_t_op), reasons(_reasons),
tier_operation_valid(_tier_operation_valid),
is_deferred_listener(_is_deferred_listener)
{
}
/** \brief Retrieve the tier of the associated solver. */
const tier_operation &get_tier_op() const { return t_op; }
/** \brief Retrieve the reason that this solver has the tier
* that it does.
*/
const choice_set &get_reasons() const { return reasons.get().get_choices(); }
/** \brief Retrieve an expression that returns whether the
* tier is valid (if true, the tier is always valid).
*/
const cwidget::util::ref_ptr<expression<bool> > &
get_tier_op_valid() const
{
return tier_operation_valid;
}
/** \brief Retrieve the listener that tracks whether the solver
* is deferred.
*/
const cwidget::util::ref_ptr<expression_box<bool> > &
get_is_deferred_listener() const
{
return is_deferred_listener;
}
/** \brief Retrieve an expression that returns whether the
* solver is deferred.
*/
cwidget::util::ref_ptr<expression<bool> >
get_is_deferred() const
{
if(is_deferred_listener.valid())
return is_deferred_listener->get_child();
else
return cwidget::util::ref_ptr<expression<bool> >();
}
std::size_t get_hash_value() const
{
std::size_t rval = 0;
boost::hash_combine(rval, tier_operation_valid.unsafe_get_ref());
boost::hash_combine(rval, is_deferred_listener.unsafe_get_ref());
boost::hash_combine(rval, t_op);
boost::hash_combine(rval, reasons.get().get_hash());
return rval;
}
/** \brief Compare two solver_information objects.
*
* solver_informations are compared according to their fields.
* This comparison is used to memoize solver_information objects;
* the resolver is careful to ensure that solvers which can be
* merged have the same deferred listeners and tier-valid
* expressions.
*/
int compare(const generic_solver_information &other) const
{
if(tier_operation_valid < other.tier_operation_valid)
return -1;
else if(other.tier_operation_valid < tier_operation_valid)
return -1;
else if(is_deferred_listener < other.is_deferred_listener)
return -1;
else if(other.is_deferred_listener < is_deferred_listener)
return 1;
else
{
const int tier_operation_compare =
aptitude::util::compare3<tier_operation>(t_op, other.t_op);
if(tier_operation_compare != 0)
return tier_operation_compare;
else
return aptitude::util::compare3<choice_set>(reasons.get().get_choices(), other.reasons.get().get_choices());
}
}
bool operator==(const generic_solver_information &other) const
{
return compare(other) == 0;
}
bool operator<(const generic_solver_information &other) const
{
return compare(other) < 0;
}
};
template<typename PackageUniverse>
std::size_t hash_value(const generic_solver_information<PackageUniverse> &inf)
{
return inf.get_hash_value();
}
template<typename PackageUniverse> class generic_dep_solvers;
template<typename PackageUniverse>
std::ostream &operator<<(std::ostream &out, const generic_dep_solvers<PackageUniverse> &solvers);
template<typename PackageUniverse> class generic_dump_solvers;
template<typename PackageUniverse>
std::ostream &operator<<(std::ostream &out, const generic_dump_solvers<PackageUniverse> &solvers);
template<typename PackageUniverse>
class generic_dump_solvers
{
typedef generic_choice<PackageUniverse> choice;
typedef generic_solver_information<PackageUniverse> solver_information;
const std::vector<std::pair<choice, solver_information> > &solvers;
friend std::ostream &operator<<<PackageUniverse>(std::ostream &out, const generic_dump_solvers &);
friend class generic_dep_solvers<PackageUniverse>;
generic_dump_solvers(const std::vector<std::pair<choice, solver_information> > &_solvers)
: solvers(_solvers)
{
}
};
template<typename PackageUniverse>
inline std::ostream &operator<<(std::ostream &out, const generic_dump_solvers<PackageUniverse> &dump_solvers)
{
typedef generic_choice<PackageUniverse> choice;
typedef generic_solver_information<PackageUniverse> solver_information;
out << "{";
for(typename std::vector<std::pair<choice, solver_information> >::const_iterator
it = dump_solvers.solvers.begin(); it != dump_solvers.solvers.end(); ++it)
{
if(it != dump_solvers.solvers.begin())
out << ", ";
out << it->first << " -> " << it->second;
}
out << "}";
return out;
}
/** \brief A structure that tracks the state of the solvers of a
* dependency.
*/
template<typename PackageUniverse>
class generic_dep_solvers
{
public:
typedef generic_choice<PackageUniverse> choice;
typedef generic_solver_information<PackageUniverse> solver_information;
private:
typedef std::vector<std::pair<choice, solver_information> > solvers_list;
solvers_list solvers;
imm::list<choice> structural_reasons;
mutable std::size_t hash_cache;
mutable bool hash_dirty;
friend std::ostream &operator<<<PackageUniverse>(std::ostream &out, const generic_dep_solvers &);
class hash_choices
{
std::size_t &hash_val;
public:
hash_choices(std::size_t &_hash_val)
: hash_val(_hash_val)
{
}
bool operator()(const std::pair<choice, solver_information> &p) const
{
boost::hash_combine(hash_val, p);
return true;
}
};
class compare_by_solver
{
public:
bool operator()(const std::pair<choice, solver_information> &p1,
const std::pair<choice, solver_information> &p2) const
{
return p1.first < p2.first;
}
bool operator()(const std::pair<choice, solver_information> &p1,
const choice &c2) const
{
return p1.first < c2;
}
bool operator()(const choice &c1,
const std::pair<choice, solver_information> &p2) const
{
return c1 < p2.first;
}
bool operator()(const choice &c1,
const choice &c2) const
{
return c1 < c2;
}
};
class find_solver
{
const choice &solver;
public:
find_solver(const choice &_solver)
: solver(_solver)
{
}
bool operator()(const std::pair<choice, solver_information> &p) const
{
return p.first == solver;
}
};
public:
generic_dep_solvers()
: hash_dirty(true)
{
}
generic_dep_solvers(const std::vector<std::pair<choice, solver_information> > &_solvers,
const imm::list<choice> &_structural_reasons)
: solvers(_solvers), structural_reasons(_structural_reasons),
hash_dirty(true)
{
std::sort(solvers.begin(), solvers.end(), compare_by_solver());
}
std::size_t get_hash_value() const
{
if(hash_dirty)
{
hash_cache = 0;
boost::hash_combine(hash_cache, solvers);
// Try to avoid any confusion caused by mixing the structural
// reasons with the solvers.
boost::hash_combine(hash_cache, 987654321);
for(typename imm::list<choice>::const_iterator it = structural_reasons.begin();
it != structural_reasons.end(); ++it)
boost::hash_combine(hash_cache, *it);
hash_dirty = false;
}
return hash_cache;
}
/** \brief Manipulators. */
// @{
void add_structural_reason(const choice &c)
{
hash_dirty = true;
structural_reasons.push_front(c);
}
bool set_solver_information(const choice &c, const solver_information &inf)
{
hash_dirty = true;
const std::pair<typename solvers_list::iterator, typename solvers_list::iterator>
insert_loc = std::equal_range(solvers.begin(), solvers.end(), c, compare_by_solver());
if(insert_loc.first == insert_loc.second)
{
solvers.insert(insert_loc.first, std::make_pair(c, inf));
return true;
}
else
{
insert_loc.first->second = inf;
return false;
}
}
bool remove_solver(const choice &c)
{
hash_dirty = true;
typename solvers_list::iterator new_end(std::remove_if(solvers.begin(), solvers.end(),
find_solver(c)));
if(new_end == solvers.end())
return false;
else
{
solvers.erase(new_end, solvers.end());
return true;
}
}
// @}
/** \brief Look up information about the given solver.
*
* \return a pointer to the solver's information, or \b NULL if it
* is not in this set of solvers.
*/
const solver_information *
lookup_solver_information(const choice &solver) const
{
std::pair<typename solvers_list::const_iterator, typename solvers_list::const_iterator>
found = std::equal_range(solvers.begin(), solvers.end(), solver, compare_by_solver());
if(found.first == found.second)
return NULL;
else
return &found.first->second;
}
/** \brief The type used to represent the number of solvers in this set. */
typedef typename solvers_list::size_type solvers_size_type;
/** \brief Retrieve the number of solvers in this set. */
solvers_size_type get_solvers_size() const
{
return solvers.size();
}
/** \brief Retrieve a wrapper around the solver set that can only be
* used to write it to a stream.
*/
generic_dump_solvers<PackageUniverse> dump_solvers() const
{
return generic_dump_solvers<PackageUniverse>(solvers);
}
/** \brief Apply the given function object to each (solver,
* information) pair in this set.
*/
template<typename F>
bool for_each_solver(F f) const
{
for(typename solvers_list::const_iterator it = solvers.begin();
it != solvers.end(); ++it)
{
if(!f(*it))
return false;
}
return true;
}
bool operator==(const generic_dep_solvers &other) const
{
return solvers == other.solvers && structural_reasons == other.structural_reasons;
}
/** \brief Return the reasons that the set of solvers for this
* dependency was narrowed.
*/
const imm::list<choice> &get_structural_reasons() const
{
return structural_reasons;
}
/** \todo This should use some sort of precomputed mostly-unique
* value to speed up comparisons.
*/
int compare(const generic_dep_solvers &other) const
{
const int solvers_cmp = aptitude::util::compare3(solvers, other.solvers);
if(solvers_cmp != 0)
return solvers_cmp;
else
return aptitude::util::compare3(structural_reasons, other.structural_reasons);
}
/** \todo This should use some sort of precomputed mostly-unique
* value to speed up comparisons.
*/
bool operator<(const generic_dep_solvers &other) const
{
return compare(other) < 0;
}
};
template<typename PackageUniverse>
std::size_t hash_value(const generic_dep_solvers<PackageUniverse> &dep_solvers)
{
return dep_solvers.get_hash_value();
}
/** \brief One entry in the queue of active promotions.
*
* Each entry in the queue contains its index (counting from 0) and
* the sum of the number of actions in all the previous promotions in
* the queue. All entries but the last contain a promotion and a
* pointer to the next entry. The nodes in the queue are
* reference-counted via boost::shared_ptr, so they can be cleaned up
* after all steps have advanced past them.
*/
template<typename PackageUniverse>
class generic_promotion_queue_entry
{
public:
typedef generic_promotion<PackageUniverse> promotion;
private:
unsigned int action_sum;
unsigned int index;
boost::optional<std::pair<promotion, boost::shared_ptr<generic_promotion_queue_entry> > > contents;
public:
/** \brief Create a promotion queue entry with no successor link or
* stored promotion.
*/
generic_promotion_queue_entry(unsigned int _action_sum, unsigned int _index)
: action_sum(_action_sum), index(_index)
{
}
/** \brief Retrieve the sum of the number of actions in all previous
* promotions in the queue.
*/
unsigned int get_action_sum() const { return action_sum; }
/** \brief Retrieve the index of this entry in the queue. */
unsigned int get_index() const { return index; }
/** \brief Fill in the promotion and successor information.
*
* This may be invoked only once on a given promotion queue entry.
* It will automatically generate a successor node when it is
* invoked.
*
* \return the new queue entry.
*/
void set_promotion(const promotion &p)
{
// Check that we don't have any contents yet.
eassert(!contents);
contents = std::make_pair(p, new generic_promotion_queue_entry(action_sum + p.get_choices().size(), index + 1));
}
/** \brief Return \b true if this queue entry has a promotion and a
* successor.
*/
bool get_has_contents() const { return contents; }
/** \brief Retrieve the promotion associated with this queue entry.
*/
promotion get_promotion() const
{
return contents->first;
}
/** \brief Retrieve the next link in the queue.
*
* If this is the last entry in the queue, returns a NULL pointer.
*/
boost::shared_ptr<generic_promotion_queue_entry> get_next() const
{
if(contents)
return contents->second;
else
return boost::shared_ptr<generic_promotion_queue_entry>();
}
};
/** \brief Represents the current search graph.
*
* This structure and its operations track all the visited search
* nodes and their parent-child relationships, handle inserting new
* steps into the graph, and handle backpropagation of promotions
* (currently disabled as it didn't work well in practice).
*/
template<typename PackageUniverse>
class generic_search_graph
{
typedef typename PackageUniverse::package package;
typedef typename PackageUniverse::version version;
typedef typename PackageUniverse::dep dep;
typedef generic_solution<PackageUniverse> solution;
typedef generic_choice<PackageUniverse> choice;
typedef generic_choice_set<PackageUniverse> choice_set;
typedef generic_promotion<PackageUniverse> promotion;
typedef generic_promotion_set<PackageUniverse> promotion_set;
typedef generic_compare_choices_by_effects<PackageUniverse> compare_choices_by_effects;
// Structures that store the search graph.
//
// This information is used to backpropagate promotions/conflicts.
// If all the children of a step ended up in a conflict, we can use
// that information to infer a conflict for the step itself. But
// since aptitude has a flexible search order, the children might be
// run after we've "finished" processing the parent step. So it's
// necessary to somehow store all the steps with children that are
// pending evaluation.
//
// Actually, *all* steps are stored, not just ones with pending
// children: this lets us handle situations where promotions are
// generated more than once for the same step (for instance, if a
// step eventually ends up at tier 40,000 but has one child that
// passes through tier 30,000, it will first be promoted to tier
// 30,000, then later to tier 40,000).
//
// The lifetime of a step is as follows:
// (1) Created with no children, an initial intrinsic promotion,
// and maybe a parent link.
// (2) Children added, along with successor constraints.
// (3) When each of its children has registered a promotion,
// the step's promotion is set and its parent is examined
// to see if it should get a promotion now.
//
// Regarding (3), what we do is this: whenever a new promotion is
// computed for a step, it goes into the set of promotions for that
// step and onto the list of promotions if it was really new. Then,
// we add the parent to a set of nodes that should be examined for
// promotion propagation. After the step finishes, the nodes in
// this set are processed for propagation from their children.
//
// To save space and keep things compact, the tree is represented as
// an array (actually a deque), with parent and child links stored
// as indices into the array. This made more sense when it had just
// a few members; maybe now it should be allocated on the heap and
// reference-counted?
public:
struct step
{
// The index of this step; mainly useful when generating debug
// output.
int step_num;
// If true, this is the last child in its parent's child list.
// Meaningless if parent is -1 (meaning there is no parent node).
bool is_last_child : 1;
// If true, this step is a "blessed" solution. The tier of a
// blessed solution cannot be increased above the deferral tier
// (hence it will not be discarded). Blessed solutions are
// solutions that have been moved into the pending future
// solutions queue and are just waiting for the future solution
// "counter" to be exhausted.
//
// \todo One subtlety here: it would be nice if we could throw out
// already-visited solutions if we found another solution that was
// a strict subset. However, that's rather unlikely and I don't
// want to introduce lots of mechanism (e.g., a whole new matching
// mode for promotions) just to accomplish it. I could instead
// just filter out promotions that are exactly the size of a
// blessed solution -- but that could easily run into problems
// with generalized promotions built from the already-generated
// promotion ... better to just say "if we've processed it, it's
// safe".
bool is_blessed_solution : 1;
// Index of the parent step, or -1 if there is no parent.
int parent;
// Index of the first child step, or -1 if there are no children.
// This is always -1 to start with, and is updated when the step's
// successors are generated.
int first_child;
/** \brief The tail of the promotion queue at the time that this
* step was created or synchronized with the active promotion
* set.
*/
boost::shared_ptr<generic_promotion_queue_entry<PackageUniverse> > promotion_queue_location;
/** \brief Members used while searching promotions in existing
* steps.
*/
// @{
/** \brief The index of the last promotion search.
*
* Initially zero; the promotion searcher uses this to determine
* whether the hit counts need to be reset to zero.
*/
unsigned int last_promotion_search;
/** \brief The number of times that the choice set was hit by a
* promotion.
*
* Initially zero.
*/
unsigned int choice_set_hit_count;
/** \brief The number of times that the solver set was hit by a
* promotion.
*
* Initially zero.
*/
unsigned int solver_set_hit_count;
/** \brief The first solver that was found to hit a promotion.
*
* Only meaningful if solver_set_hit_count > 0.
*/
choice first_solver_hit;
// @}
/** \brief Members related to generating a step's
* successor.
*/
// @{
typedef generic_solver_information<PackageUniverse> solver_information;
typedef generic_dep_solvers<PackageUniverse> dep_solvers;
typedef boost::flyweight<dep_solvers> flyweight_dep_solvers;
/** \brief The actions performed by this step. */
choice_set actions;
/** \brief The score of this step. */
int score;
/** \brief The combined score due to choices that were made and
* distance from the root -- "score" is calculated by adding the
* broken-dependency count to this.
*/
int action_score;
/** \brief The true tier of this step.
*
* This is the tier *before* any forward-looking operations are
* applied to it.
*/
tier base_step_tier;
/** \brief The cumulative effect of all forward-looking operations
* applied to this step.
*
* Unlike base_step_tier, this can decrease from step to step
* (which is why it's separated; it needs to be recomputed for
* each step). This could be computed incrementally, but the
* natural way of doing that would require making a frequent
* operation (increasing this value) expensive to make an
* infrequent operation (creating a new step) less expensive.
*/
tier_operation effective_step_tier_op;
/** \brief The effective tier of this step.
*
* This tier is step_tier combined with any inferred tier
* operations, and is used to sort the step in the search queue.
*/
tier effective_step_tier;
/** \brief A side-effecting expression that fires when the most
* recently added action becomes deferred or un-deferred.
*
* This is stored here merely to ensure that the corresponding
* listeners stay alive. The other choices in this step are kept
* alive by its parents.
*/
cwidget::util::ref_ptr<expression<bool> > is_deferred_listener;
/** \brief The dependencies that are unresolved in this step; each
* one maps to the reasons that any of its solvers were
* dropped.
*/
imm::map<dep, flyweight_dep_solvers> unresolved_deps;
/** \brief The unresolved dependencies, sorted by the number of
* solvers each one has.
*
* This is a "poor man's heap".
*/
imm::set<std::pair<int, dep> > unresolved_deps_by_num_solvers;
/** \brief Maps choices to lists of the dependencies that they
* solve.
*
* Every unresolved dependency is represented here, but some
* dependencies in each list might already be resolved. We defer
* dropping them to save time and memory (no need to make copies
* of (part of) the list just to throw entries away).
*/
generic_choice_indexed_map<PackageUniverse, imm::list<dep> > deps_solved_by_choice;
/** \brief Versions that are structurally forbidden and the reason
* each one is forbidden.
*/
imm::map<version, choice> forbidden_versions;
// @}
/** \brief Members related to backpropagating promotions. */
// @{
// A set listing all the clones of this step (steps that have the
// same solution). If this is non-empty, this step is the
// canonical copy of its clones. What that means is that the
// "promotions" set of the canonical copy is used whenever the set
// of promotions is needed; same for the "promotions" list (but
// the index of the last promotion propagated to the parent is
// different in each clone!).
std::set<int> clones;
// The canonical copy of this step, or -1 if none.
int canonical_clone;
// The choice associated with this step (meaningless if parent ==
// -1). Set when the step is created, and used when
// backpropagating promotions: when the parent is computing its
// promotion, it removes each child's reason from that child's
// promotion's choice set.
choice reason;
// The choices that constrained the successors to this node. This
// is used, along with information from the successors, to compute
// the promotion associated with this node (if any).
//
// This contains versions that either structurally knocked out
// possible resolutions to the dependency that was selected for
// expansion, *or* that caused a resolution to hit a conflict /
// already-generated promotion. NOTE: the entries in this set
// might not be represented in every promotion at this step; some
// promotions could be generated from dependencies that weren't
// actually expanded. This is used when accumulating this node's
// sub-promotions and filling in new promotions; the parent
// shouldn't examine it.
//
// This only has a meaningful value if first_child is not -1.
choice_set successor_constraints;
// All the promotions associated with this step; each promotion is
// universally valid but was discovered in the context of this
// step. No attempt is made to eliminate redundant promotions at
// the moment.
//
// If this is a cloned step, this variable will never be used (the
// canonical clone's version will be used -- but since this is
// only used when adding new promotions and new promotions are
// added to the canonical clone, the promotions set isn't used).
std::set<promotion> promotions;
// The same, but in the order that they were added; used to
// quickly partition the list into "new" and "old" promotions.
//
// If this is a cloned step, the vector in the canonical clone
// will be used instead.
//
// TODO: should be a list of const_iterators referencing the above
// set.
std::vector<promotion> promotions_list;
// The first index in the promotions list that represents a "new"
// promotion. This is always used even in cloned steps (each step
// could have a different number of promotions that haven't been
// propagated to its particular parent).
typename std::vector<promotion>::size_type promotions_list_first_new_promotion;
// @}
/** \brief Default step constructor; only exists for use
* by STL containers.
*/
step()
: is_last_child(true),
is_blessed_solution(false),
parent(-1), first_child(-1),
last_promotion_search(0),
choice_set_hit_count(0),
solver_set_hit_count(0),
first_solver_hit(),
is_deferred_listener(),
canonical_clone(-1),
reason(),
successor_constraints(), promotions(),
promotions_list(),
promotions_list_first_new_promotion(0)
{
}
/** \brief Make a step suitable for use at the root.
*
* The step has no parent, children, promotion, or successor
* constraints.
*/
step(const choice_set &_actions,
int _score,
int _action_score)
: is_last_child(true),
is_blessed_solution(false),
parent(-1), first_child(-1),
last_promotion_search(0),
choice_set_hit_count(0),
solver_set_hit_count(0),
first_solver_hit(),
canonical_clone(-1),
actions(_actions),
score(_score),
action_score(_action_score),
is_deferred_listener(),
reason(),
successor_constraints(), promotions(),
promotions_list(), promotions_list_first_new_promotion(0)
{
}
/** \brief Make a step with the given parent.
*
* The step initially has no children or successor constraints.
*/
step(const choice_set &_actions,
int _score, int _action_score,
int _parent,
const choice &_reason, bool _is_last_child)
: is_last_child(_is_last_child),
is_blessed_solution(false),
parent(_parent),
first_child(-1),
last_promotion_search(0),
choice_set_hit_count(0),
solver_set_hit_count(0),
first_solver_hit(),
canonical_clone(-1),
actions(_actions),
score(_score),
action_score(_action_score),
reason(_reason),
successor_constraints(), promotions(),
promotions_list(), promotions_list_first_new_promotion(0)
{
}
};
/** \brief Describes how a choice occurs in a step. */
enum choice_mapping_type
{
/** \brief The choice is an action performed by the step. */
choice_mapping_action,
/** \brief The choice solves a dependency that is unresolved
* in the step.
*/
choice_mapping_solver
};
/** \brief Stores all steps where a choice occurs.
*
* Steps where the choice occurs as an action are indexed by the
* dependency that's solved. This allows us to easily pick the
* right solver to modify when a deferral is canceled.
*/
class choice_mapping_info
{
// The steps (if any) that introduced this choice as a solver or
// an action, grouped by the dependency that each one solves.
imm::map<dep, imm::set<int> > steps;
public:
choice_mapping_info()
{
}
choice_mapping_info(const imm::map<dep, imm::set<int> > &_steps)
: steps(_steps)
{
}
const imm::map<dep, imm::set<int> > &get_steps() const
{
return steps;
}
};
private:
/** \brief The maximum number of promotions to propagate
* through any one step.
*
* This avoids an exponential growth in the size of promotion sets.
* This is disabled for the moment: I was seeing aptitude
* allocating truly enormous amounts of memory for propagated
* promotions, and the benefits of backpropagation have been
* minimal in practice. If additional enhancements to the resolver
* framework are implemented, I expect that we might see
* backpropagation become cheaper and more useful, in which case it
* could be worth turning it on again (but beware of possible
* bitrot!).
*/
static const unsigned int max_propagated_promotions = 0;
log4cxx::LoggerPtr logger;
// We keep a reference to the promotions set so that we can stuff
// new promotions in during backpropagation.
promotion_set &promotions;
std::deque<step> steps;
// Steps whose children have pending propagation requests. Stored
// in reverse order, because we should handle later steps first
// (since they might be children of earlier steps and thus add new
// promotions to them).
std::set<int, std::greater<int> > steps_pending_promotion_propagation;
/** \brief The step numbers in which a choice was introduced as an
* action or a solver.
*
* This is used to efficiently update existing steps that are "hit"
* by a new promotion, and to efficiently un-defer steps when the
* set of user constraints changes.
*
* This map needs to be updated when a new step is added to the
* graph, and also when one of a version's successors is struck.
*/
generic_choice_indexed_map<PackageUniverse, choice_mapping_info> steps_related_to_choices;
/** \brief The index of the next promotion search.
*
* This is used as an alternative to maintaining costly structures
* to determine which steps we hit and/or to clear hit counts. Hit
* counts in a step are only valid if the step's
* last_promotion_search member is equal to the index of the
* current promotion search. Otherwise, they are presumed to be
* zero.
*/
int next_promotion_search_index;
public:
/** \brief Add an entry to the choice->step reverse index.
*
* \param c The choice to bind.
* \param step_num The step number in which c occurs.
* \param reason The dependency that this choice solves, if how
* is choice_mapping_solver.
*/
void bind_choice(const choice &c, int step_num, dep reason)
{
// \todo Write a proper operator<<.
LOG_TRACE(logger, "Marking the choice " << c
<< " as present in step "
<< step_num << " with dependency " << reason);
choice_mapping_info inf;
steps_related_to_choices.try_get(c, inf);
imm::map<dep, imm::set<int> >
new_steps(inf.get_steps());
imm::set<int>
new_dep_steps(new_steps.get(reason, imm::set<int>()));
new_dep_steps.insert(step_num);
new_steps.put(reason, new_dep_steps);
steps_related_to_choices.put(c, choice_mapping_info(new_steps));
}
/** \brief Remove an entry from the choice->step reverse index.
*
* This will remove the mapping associated with the top of a "tree"
* of occurrences.
*
* \warning Correctness of this protocol relies on the fact that
* the structure of the resolver means that if a solver becomes
* irrelevant in a step, it will also be irrelevant in all children
* of that step. Proof: there are only two ways a solver can
* become irrelevant. It could be structurally excluded (in which
* case all children lack it by default), or it could be knocked
* out by a promotion. In the latter case, since children are
* supersets of their parents, each child will contain the same
* promotion, and hence the choice will be knocked out in every
* child that it occurs in.
*
* This also relies on the fact that promotions that knock out
* choices are never retracted (if they are, we'll have to be
* careful to only reinstate a choice in the top step it occurs in,
* but that is not likely in the near future).
*
* \param c The choice to unbind.
* \param step_num The step number in which c no longer occurs.
* \param reason The dependency that this choice solved, if how
* is choice_mapping_solver.
*/
void remove_choice(const choice &c, int step_num, const dep &reason)
{
// \todo Write a proper operator<<.
LOG_TRACE(logger, "Marking the choice " << c
<< " as not present in step "
<< step_num);
choice_mapping_info info;
if(steps_related_to_choices.try_get(c, info))
{
imm::map<dep, imm::set<int> >
new_steps(info.get_steps());
typename imm::map<dep, imm::set<int> >::node
found_solver(new_steps.lookup(reason));
if(found_solver.isValid())
{
imm::set<int>
new_dep_steps(found_solver.getVal().second);
new_dep_steps.erase(step_num);
if(new_dep_steps.empty())
new_steps.erase(reason);
else
new_steps.put(reason, new_dep_steps);
}
choice_mapping_info new_info(new_steps);
steps_related_to_choices.put(c, new_info);
}
}
private:
// Walks down a list of siblings, applying the given function to
// each of them, until either the function returns false or it runs
// out of siblings. If step_num is -1, nothing is visited.
template<typename F>
bool visit_siblings(int step_num,
F f) const
{
while(step_num != -1)
{
if(!f(step_num))
return false;
if(get_step(step_num).is_last_child)
step_num = -1;
else
++step_num;
}
return true;
}
template<typename F>
class visit_choice_mapping_steps
{
// The choice to pass to the sub-function.
const choice &c;
const generic_search_graph &graph;
F f;
// Could save some code by merging this with
// visit_choice_mapping_steps_for_dep() (using a virtual
// function?).
bool visit(const step &s, choice_mapping_type how) const
{
if(!f(c, how, s.step_num))
return false;
else
return graph.visit_siblings(s.first_child, *this);
}
public:
visit_choice_mapping_steps(const choice &_c,
const generic_search_graph &_graph, F _f)
: c(_c), graph(_graph), f(_f)
{
}
bool operator()(int step_num) const
{
const step &s(graph.get_step(step_num));
if(s.actions.contains(c))
return visit(s, choice_mapping_action);
else if(s.deps_solved_by_choice.contains_key(c))
return visit(s, choice_mapping_solver);
else
return true;
}
};
/** \brief Apply the given function object to (c', how, step_num)
* for each step in each dependency mapping passed to this object.
*/
template<typename F>
class visit_choice_dep_mapping
{
const choice &c;
const generic_search_graph &graph;
F f;
public:
visit_choice_dep_mapping(const choice &_c,
const generic_search_graph &_graph, F _f)
: c(_c), graph(_graph), f(_f)
{
}
bool operator()(const std::pair<dep, imm::set<int> > &mapping) const
{
return mapping.second.for_each(visit_choice_mapping_steps<F>(c, graph, f));
}
};
/** \brief Apply the given function object to (c', how, step_num)
* for each step in each mapping information structure visited.
*/
template<typename F>
class visit_choice_mapping
{
F f;
const generic_search_graph &graph;
public:
visit_choice_mapping(const generic_search_graph &_graph, F _f)
: f(_f), graph(_graph)
{
}
bool operator()(const choice &c, const choice_mapping_info &inf) const
{
const imm::map<dep, imm::set<int> > &steps(inf.get_steps());
return steps.for_each(visit_choice_dep_mapping<F>(c, graph, f));
}
};
public:
/** \brief Apply the given function object to (c', how, step_num)
* for each binding (c', step_num) in the choice->step reverse
* index such that c' is contained in c as indicated by how.
*/
template<typename F>
void for_each_step_related_to_choice(const choice &c, F f) const
{
visit_choice_mapping<F> visit_mappings_f(*this, f);
steps_related_to_choices.for_each_key_contained_in(c, visit_mappings_f);
}
private:
template<typename F>
class visit_choice_mapping_steps_solvers_of_dep
{
// The choice to pass to the sub-function. Can't be a reference
// since it's different from what the parent passes in.
const choice c;
// The dependency whose solvers are being visited.
const dep &d;
const generic_search_graph &graph;
F f;
bool visit(const step &s, choice_mapping_type how) const
{
if(!f(c, how, s.step_num))
return false;
else
return graph.visit_siblings(s.first_child, *this);
}
public:
visit_choice_mapping_steps_solvers_of_dep(const choice &_c,
const dep &_d,
const generic_search_graph &_graph, F _f)
// Note that it's necessary to modify the dependency stored in
// the choice: below, we'll do an exact lookup to try to find
// it, and that requires that the dependency is set properly.
// Setting it in the constructor avoids setting it every time
// the object is applied.
: c(_c.copy_and_set_dep(_d)), d(_d), graph(_graph), f(_f)
{
}
bool operator()(int step_num) const
{
const step &s(graph.get_step(step_num));
// Check if we have a solver in this step first -- if you think
// about it, it's more likely that this is true than that we
// have an action.
typename imm::map<dep, typename step::flyweight_dep_solvers>::node found =
s.unresolved_deps.lookup(d);
if(found.isValid() &&
found.getVal().second.get().lookup_solver_information(c) != NULL)
return visit(s, choice_mapping_solver);
else
{
choice step_choice(choice::make_install_version(version(), -1));
if(s.actions.get_choice_contained_by(c, step_choice) &&
step_choice.get_dep() == d)
return visit(s, choice_mapping_action);
else
return true;
}
}
};
template<typename F>
class visit_choice_mapping_solvers_of_dep
{
// The dependency to visit.
dep d;
const generic_search_graph &graph;
F f;
public:
visit_choice_mapping_solvers_of_dep(const dep &_d,
const generic_search_graph &_graph, F _f)
: d(_d), graph(_graph), f(_f)
{
}
bool operator()(const choice &c, const choice_mapping_info &info) const
{
typename imm::map<dep, imm::set<int> >::node
found(info.get_steps().lookup(d));
if(found.isValid())
{
visit_choice_mapping_steps_solvers_of_dep<F> visit_step_f(c, d, graph, f);
return found.getVal().second.for_each(visit_step_f);
}
else
return true;
}
};
public:
/** \brief Apply the given function to (c', how, step_num) for each
* binding (c', how, step_num) in the choice->step reverse index
* such that c' is contained in c and c' was added as a solver for
* the given dependency.
*/
template<typename F>
void for_each_step_related_to_choice_with_dep(const choice &c, const dep &d, F f) const
{
visit_choice_mapping_solvers_of_dep<F> visit_mappings_by_dep_f(d, *this, f);
steps_related_to_choices.for_each_key_contained_in(c, visit_mappings_by_dep_f);
}
/** \brief Create a search graph.
*
* \param _promotions The promotion set associated with this object.
* Backpropagated promotions will be inserted
* into this set.
*
* The given promotion set does not have to be initialized until
* another method is invoked on this object.
*/
generic_search_graph(promotion_set &_promotions)
: logger(aptitude::Loggers::getAptitudeResolverSearchGraph()),
promotions(_promotions),
next_promotion_search_index(0)
{
}
/** \brief Retrieve the nth step. */
step &get_step(int n)
{
eassert(n >= 0);
eassert((unsigned)n < steps.size());
return steps[n];
}
/** \brief Retrieve the nth step. */
const step &get_step(int n) const
{
eassert(n >= 0);
eassert((unsigned)n < steps.size());
return steps[n];
}
step &get_last_step()
{
eassert(!steps.empty());
return steps.back();
}
const step &get_last_step() const
{
eassert(!steps.empty());
return steps.back();
}
/** \brief Retrieve the number of steps. */
typename std::vector<step>::size_type get_num_steps() const
{
return steps.size();
}
/** \brief Retrieve the next promotion search index, incrementing it
* in the process.
*/
int get_and_increment_promotion_search_index()
{
const int rval = next_promotion_search_index;
++next_promotion_search_index;
return rval;
}
public:
step &add_step()
{
steps.push_back(step());
step &rval(steps.back());
rval.step_num = steps.size() - 1;
return rval;
}
/** \brief Throw away all step information. */
void clear()
{
steps.clear();
steps_pending_promotion_propagation.clear();
steps_related_to_choices.clear();
}
/** Retrieve the promotions list of the given step, returning the
* canonical copy if this step is a clone.
*/
std::vector<promotion> &get_promotions_list(step &s)
{
if(s.canonical_clone == -1)
return s.promotions_list;
else
return get_step(s.canonical_clone).promotions_list;
}
/** Retrieve the promotions list of the given step, returning the
* canonical copy if this step is a clone.
*/
const std::vector<promotion> &get_promotions_list(const step &s) const
{
if(s.canonical_clone == -1)
return s.promotions_list;
else
return get_step(s.canonical_clone).promotions_list;
}
private:
// Used to recursively build the set of all the promotions in the
// Cartesian product of the sub-promotions that include at least one
// promotion that's "new".
//
// Returns "true" if anything was generated. We care because we
// need to know whether to queue the parent of the parent for
// propagation.
//
// Here t_op is the operation we're currently building.
template<typename AddPromotion>
bool add_child_promotions(int parentNum, int childNum, bool has_new_promotion,
const choice_set &choices, const tier_operation &t_op,
const AddPromotion &addPromotion)
{
// Where to insert any promotions we run into.
const step &parent = get_step(parentNum);
int canonicalParentNum = (parent.canonical_clone == -1
? parentNum
: parent.canonical_clone);
const step &canonicalParent = get_step(canonicalParentNum);
const std::vector<promotion> &canonicalParentPromotionsList = get_promotions_list(canonicalParent);
if(canonicalParentNum == parentNum)
LOG_TRACE(logger, "Propagating promotions from the step " << childNum
<< " to its parent, step " << parentNum);
else
LOG_TRACE(logger, "Propagating promotions from the step " << childNum
<< " to its parent's canonical clone, step " << parentNum);
// Don't do anything if the parent has too many propagations
// already.
if(canonicalParentPromotionsList.size() >= max_propagated_promotions)
{
LOG_TRACE(logger, "Not creating a new promotion: the parent already has too many promotions.");
return false;
}
step &child = get_step(childNum);
const std::vector<promotion> &canonicalChildPromotionsList = get_promotions_list(child);
typename std::vector<promotion>::const_iterator begin, end = canonicalChildPromotionsList.end();
if(child.is_last_child && !has_new_promotion)
{
// Only process new promotions if we don't have one yet.
begin = canonicalChildPromotionsList.begin() + child.promotions_list_first_new_promotion;
if(begin == end)
LOG_TRACE(logger, "No new promotions to process (step " << childNum << ")");
}
else
{
begin = canonicalChildPromotionsList.begin();
if(begin == end)
LOG_TRACE(logger, "No promotions to process (step " << childNum << ")");
}
bool rval = false;
for(typename std::vector<promotion>::const_iterator it = begin;
it != end && canonicalParentPromotionsList.size() < max_propagated_promotions; ++it)
{
bool current_is_new_promotion =
(it - canonicalChildPromotionsList.begin()) >= (signed)child.promotions_list_first_new_promotion;
choice_set new_choices(choices);
const promotion &p(*it);
choice_set p_choices(p.get_choices());
LOG_TRACE(logger, "Using the successor link of step " << childNum
<< ", " << child.reason
<< ", to backpropagate the promotion " << p
<< " and add it to the current choice set " << choices);
// Strip out the child's link before merging with the existing
// choice set.
p_choices.remove_overlaps(child.reason);
const tier_operation &p_tier_op(p.get_tier_op());
// Augment the choice set with these new choices. Narrowing
// is appropriate: anything matching the promotion should
// match all the choices we found.
new_choices.insert_or_narrow(p_choices);
const tier_operation new_tier_op =
(t_op.is_above_or_equal(p_tier_op)
? t_op
: tier_operation::least_upper_bound(p_tier_op, t_op));
// TODO: We used to throw out promotions that were below their
// parent's tier. In the new system this *might* correspond
// to having a tier operation less than or equal to the
// parent's amalgamated tier operation. I'm not 100% sure of
// this, and it would require having access to the amalgamated
// operation, something I'm not going to code up since this
// routine is currently dead.
if(child.is_last_child)
{
promotion new_promotion(new_choices, new_tier_op);
// Emit a new promotion.
addPromotion(canonicalParentNum, new_promotion);
// Actually output a new promotion in the canonical
// parent.
LOG_TRACE(logger, "New backpropagated promotion at step "
<< canonicalParentNum << ": " << new_promotion);
rval = true;
}
else
{
bool new_has_new_promotion = has_new_promotion || current_is_new_promotion;
// Recur.
bool generated_anything =
add_child_promotions(parentNum, childNum + 1,
new_has_new_promotion,
new_choices, new_tier_op,
addPromotion);
rval = rval || generated_anything;
}
}
child.promotions_list_first_new_promotion = canonicalChildPromotionsList.size();
return rval;
}
// TODO: log when we first fail to add a promotion because we hit
// the maximum number -- that's actually not trivial to do without
// complicating the code.
template<typename AddPromotion>
void maybe_collect_child_promotions(int stepNum, const AddPromotion &addPromotion)
{
step &parentStep(get_step(stepNum));
LOG_TRACE(logger, "Backpropagating promotions to step " << stepNum);
if(parentStep.first_child == -1)
{
LOG_ERROR(logger, "No children at step " << stepNum << ", so no promotions to backpropagate.");
return;
}
if(add_child_promotions(stepNum, parentStep.first_child,
false, parentStep.successor_constraints,
tier_limits::increase_to_maximum_op,
addPromotion))
{
if(parentStep.parent != -1)
{
LOG_TRACE(logger, "Scheduling step " << parentStep.parent
<< " for promotion propagation.");
steps_pending_promotion_propagation.insert(parentStep.parent);
}
}
else
LOG_TRACE(logger, "No new promotion at step " << stepNum);
}
public:
/** \brief Attach a promotion to the given step, and schedule it for
* propagation.
*/
void schedule_promotion_propagation(int stepNum,
const promotion &p)
{
step &targetStep(get_step(stepNum));
if(targetStep.canonical_clone != -1)
{
LOG_TRACE(logger, "Adding the promotion " << p
<< " to step " << targetStep.canonical_clone
<< " instead of to its clone, step "
<< stepNum << ".");
schedule_promotion_propagation(targetStep.canonical_clone, p);
return;
}
if(targetStep.promotions.size() == max_propagated_promotions)
{
LOG_TRACE(logger, "Not adding the promotion " << p
<< " to step " << stepNum
<< " since that step has the maximum number of promotions already.");
return;
}
// TODO: could do a slow check for redundant promotions here?
std::pair<typename std::set<promotion>::iterator, bool>
insert_info(targetStep.promotions.insert(p));
if(insert_info.second)
{
targetStep.promotions_list.push_back(p);
if(targetStep.parent != -1)
{
LOG_TRACE(logger, "Adding a promotion to step " << stepNum
<< " and scheduling its parent, step " << targetStep.parent << " for propagation: "
<< p);
steps_pending_promotion_propagation.insert(targetStep.parent);
}
else
LOG_TRACE(logger, "Adding a promotion to step " << stepNum
<< "; it has no parent, so not scheduling propagation: "
<< p);
}
if(!targetStep.clones.empty())
{
LOG_TRACE(logger, "Also scheduling the parents of the clones of step " << stepNum << " for propagation.");
for(std::set<int>::const_iterator it = targetStep.clones.begin();
it != targetStep.clones.end(); ++it)
{
int cloneNum = *it;
const step &clone(get_step(cloneNum));
if(clone.parent != -1)
{
LOG_TRACE(logger, "Scheduling the parent (step "
<< clone.parent << ") of a clone (step " << cloneNum
<< ") of step " << stepNum << " for propagation.");
steps_pending_promotion_propagation.insert(clone.parent);
}
else
// Should never happen, but be careful. (this would
// mean we had a clone of the root node! Madness!)
LOG_ERROR(logger, "Not scheduling the parent of a clone (step " << cloneNum
<< ") for propagation: it has no parent (something is very wrong!).");
}
LOG_TRACE(logger, "Done scheduling the clones of step " << stepNum << " for propagation.");
}
}
/** \brief Mark the second step as being a clone of the first step.
*
* \param canonicalNum The step number to use as the canonical copy.
* \param cloneNum The step number to mark as a clone.
*/
void add_clone(int canonicalNum, int cloneNum)
{
LOG_TRACE(logger, "Marking step " << cloneNum << " as a clone of step " << canonicalNum << ".");
step &canonicalStep(get_step(canonicalNum));
step &cloneStep(get_step(cloneNum));
if(cloneStep.canonical_clone == canonicalNum)
{
LOG_TRACE(logger, "Not marking step " << cloneNum
<< " as a clone of step " << canonicalNum
<< " since it is already listed as a clone.");
return;
}
// These cases should never come up, so assert against them
// instead of trying to write clever code to handle them.
eassert(canonicalNum != cloneNum);
eassert(cloneStep.canonical_clone == -1);
eassert(cloneStep.clones.empty());
canonicalStep.clones.insert(cloneNum);
cloneStep.canonical_clone = canonicalNum;
// NB: no need to do anything special with successor_constraints;
// it's only used to generate promotions and we take those from
// the canonical clone.
const int cloneParentNum = cloneStep.parent;
if(!canonicalStep.promotions.empty() &&
cloneParentNum != -1)
{
LOG_TRACE(logger, "The canonical step " << canonicalNum
<< " has some promotions, so scheduling the parent (step "
<< cloneParentNum << ") of the clone (step "
<< cloneNum << ") for backpropagation.");
steps_pending_promotion_propagation.insert(cloneParentNum);
}
}
/** \brief Execute any pending promotion propagations. */
template<typename AddPromotion>
void run_scheduled_promotion_propagations(const AddPromotion &addPromotion)
{
while(!steps_pending_promotion_propagation.empty())
{
// Make a temporary copy to iterate over.
std::set<int, std::greater<int> > tmp;
tmp.swap(steps_pending_promotion_propagation);
for(std::set<int, std::greater<int> >::const_iterator it = tmp.begin();
it != tmp.end(); ++it)
maybe_collect_child_promotions(*it, addPromotion);
}
}
private:
struct is_deferred
{
bool operator()(const promotion &p) const
{
const tier &p_tier(p.get_tier());
return
p_tier >= tier_limits::defer_tier &&
p_tier < tier_limits::already_generated_tier;
}
};
public:
/** \brief Remove any propagated promotions from the deferred
* tier.
*
* This should be invoked when the set of deferred solutions might
* have changed.
*
* \todo This is no longer right with the incremental resolver; we
* can remove exactly the right set of promotions if we want.
*/
void remove_deferred_propagations()
{
is_deferred is_deferred_f;
for(typename std::deque<step>::iterator step_it = steps.begin();
step_it != steps.end(); ++step_it)
{
step &curr_step(*step_it);
for(typename std::vector<promotion>::const_iterator p_it =
curr_step.promotions_list.begin();
p_it != curr_step.promotions_list.end(); ++p_it)
{
const promotion &p(*p_it);
if(is_deferred_f(p))
{
LOG_TRACE(logger, "Removing a promotion from the promotion set of step "
<< step_it - steps.begin()
<< ": " << p);
curr_step.promotions.erase(p);
}
}
// Drop the deferred entries from the list of promotions,
// updating the "new" pointer so that new promotions will be
// detected as being "new".
typename std::vector<promotion>::size_type write_loc = 0, read_loc = 0;
typename std::vector<promotion>::size_type num_old_promotions_deleted = 0;
while(read_loc < curr_step.promotions_list.size())
{
while(read_loc < curr_step.promotions_list.size() &&
is_deferred_f(curr_step.promotions_list[read_loc]))
{
LOG_TRACE(logger, "Removing a promotion from the promotion list of step "
<< step_it - steps.begin()
<< ": " << curr_step.promotions_list[read_loc]);
if(read_loc < curr_step.promotions_list_first_new_promotion)
++num_old_promotions_deleted;
++read_loc;
}
if(read_loc < curr_step.promotions_list.size())
{
if(write_loc != read_loc)
curr_step.promotions_list[write_loc] = curr_step.promotions_list[read_loc];
++write_loc;
++read_loc;
}
}
if(read_loc != write_loc)
curr_step.promotions_list.erase(curr_step.promotions_list.begin() + write_loc,
curr_step.promotions_list.end());
curr_step.promotions_list_first_new_promotion -= num_old_promotions_deleted;
}
}
/** \brief Dump a dot-format representation of this graph to the
* given stream.
*
* For debugging purposes.
*/
void write_graph(std::ostream &out)
{
out << "digraph {" << std::endl;
for(typename std::deque<step>::const_iterator it = steps.begin();
it != steps.end(); ++it)
{
out << it->step_num << " [label=\"Step " << it->step_num << "\\n"
<< it->actions.size() << " actions\", shape=box";
if(it->is_last_child)
out << ", style=filled, fillcolor=lightgray";
out << "];" << std::endl;
int i = it->first_child;
while(i != -1)
{
const step &child(steps[i]);
if(child.parent != it->step_num)
// It's a phantom link; graph accordingly.
out << it->step_num << " -> " << child.step_num << " [style=dashed];" << std::endl;
else
out << it->step_num << " -> " << child.step_num << " [label=\"" << child.reason << "\"];" << std::endl;
if(child.is_last_child)
i = -1;
else
++i;
}
}
out << "}" << std::endl;
}
};
template<typename PackageUniverse>
std::ostream &operator<<(std::ostream &out, const generic_solver_information<PackageUniverse> &info)
{
out << "(" << info.get_tier_op()
<< ":" << info.get_reasons();
if(info.get_tier_op_valid().valid())
{
out << "; V: ";
info.get_tier_op_valid()->dump(out);
}
if(info.get_is_deferred_listener().valid())
{
out << "; L: ";
info.get_is_deferred_listener()->dump(out);
}
out << ")";
return out;
}
template<typename PackageUniverse>
std::ostream &operator<<(std::ostream &out,
const generic_dep_solvers<PackageUniverse> &solvers)
{
return out << "("
<< solvers.structural_reasons
<< ": "
<< solvers.dump_solvers()
<< ")";
}
#endif
|