summaryrefslogtreecommitdiff
path: root/tools/resolver-visualize/Resolver/Log.hs
blob: 2d8942c87e7f79427595a768f003b17e5a2136d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
-- | Routines for parsing and loading the log file.

module Resolver.Log(
                    LogFile(..),
                    ProcessingStep(..),
                    LinkChoice(..),
                    Successor(..),
                    Backpropagation(..),
                    ParentLink(..),
                    loadLogFile
                   )
    where

import Control.Exception
import Control.Monad.Reader
import Control.Monad.ST
import Data.Array
import Data.ByteString.Char8(ByteString)
import qualified Data.HashTable as HashTable
import Data.IORef
import Data.List(foldl')
import Data.Maybe(catMaybes, isJust, listToMaybe)
import Resolver.Parse
import Resolver.Types
import Resolver.Util(while)
import System.IO
import System.IO.Error
import Text.Parsec(runParser, getState, getPosition, setPosition, SourceName)
import Text.Parsec.ByteString()
import Text.Parsec.Pos(newPos)
import Text.Regex.Posix
import qualified Data.ByteString.Char8 as BS
import qualified Data.Map as Map
import qualified Data.Set as Set

type ProgressCallback = Integer -> Integer -> IO ()

data LogFile = LogFile { logFileH :: Handle,
                         -- ^ Get the file handle associated with this
                         -- log file.  Use this, for instance, to load
                         -- the text associated with a log entry.
                         logFilename :: String,
                         -- ^ Get the file name from which the log
                         -- file was loaded.
                         runs :: [[ProcessingStep]]
                         -- ^ Get the resolver runs contained in this
                         -- log, as sequences of processing steps, in
                         -- the order in which they were generated.
                       }

-- | Represents the choice associated with the link between two
-- processing steps, which might be unknown if not enough information
-- is available in the log file. (isomorphic to Maybe right now)
data LinkChoice = LinkChoice Choice
                | Unknown
                  deriving(Show, Ord, Eq)

-- | Represents the link from a parent solution to a child solution.
data ParentLink = ParentLink { parentLinkAction :: LinkChoice,
                               parentLinkForced :: Bool,
                               parentLinkParent :: ProcessingStep }

-- | A successor link either goes to a processing step, or it says
-- that a solution was generated as a successor but never processed.
data Successor = Successor { successorStep   :: ProcessingStep,
                             successorChoice :: LinkChoice,
                             successorForced :: Bool }
               | Unprocessed { successorSolution :: Solution,
                               successorChoice   :: LinkChoice,
                               successorForced   :: Bool }

-- | Represents backpropagating promotions up the search tree.
--
-- The step; the promotion is the new
-- promotion that was generated by this propagation.
data Backpropagation = Backpropagation { backpropagationStep :: ProcessingStep,
                                         backpropagationPromotion :: Promotion }

data ProcessingStep = ProcessingStep { -- | How we got here; Nothing
                                       -- if this is the root node or
                                       -- if we didn't see an
                                       -- indication of how this was
                                       -- generated.
                                       stepPredecessor :: Maybe ParentLink,
                                       -- | The search node generated by this step.
                                       stepSol :: Solution,
                                       -- | The order in which this
                                       -- step was performed.
                                       stepOrder :: Integer,
                                       -- | The successors of this
                                       -- step.
                                       stepSuccessors :: [Successor],
                                       -- | Promotions generated at
                                       -- this step.  Includes
                                       -- promotions propagated
                                       -- backwards from successor
                                       -- steps.
                                       stepPromotions :: Set.Set Promotion,
                                       -- | Backpropagations performed
                                       -- | at this step.
                                       stepBackpropagations :: [Backpropagation],
                                       -- | The first position in the
                                       -- log file of the log text for
                                       -- this step.
                                       stepTextStart :: Integer,
                                       -- | The length in the log file
                                       -- of the log text for this
                                       -- step.
                                       stepTextLength :: Integer,
                                       -- | The tree depth of this
                                       -- step (the longest chain to a
                                       -- leaf).
                                       stepDepth :: Integer,
                                       -- | The total size of the
                                       -- branch represented by this
                                       -- step.
                                       --
                                       -- Equal to the sum of the
                                       -- sizes of its children, plus
                                       -- one.
                                       stepBranchSize :: Integer
    }

-- | The type of step emitted when reading the input file, to avoid
-- having to "tie the knot" until the whole file has been scanned.
--
-- The differences relative to the full step structure are:
--
--  1. The parent step link is not stored.
--  2. Instead of storing successors, we store the solutions
--     attached to the successors, and the choice that generated
--     each solution.
--
-- A few values are also stored in odd ways (e.g., in reverse order)
-- so that this can be used as a "scratchpad" as the file is being
-- read.
data PartialStep = PartialStep { -- | The search node generated by this step.
                                 pstepSol :: !Solution,
                                 -- | The successors of this
                                 -- step, in reverse order.
                                 pstepReverseSuccessors :: ![(Solution, LinkChoice, Bool)],
                                 -- | Backpropagations at this step, in reverse order.
                                 pstepReverseBackpropagations :: ![(Solution, Promotion)],
                                 -- | Promotions generated at
                                 -- this step.
                                 pstepPromotions :: ![Promotion],
                                 -- | The first position in the
                                 -- log file of the log text for
                                 -- this step.
                                 pstepTextStart :: !Integer,
                                 -- | The length in the log file of
                                 -- the log text for this step, if
                                 -- known (if this is Nothing, we're
                                 -- still building the step).
                                 pstepTextLength :: !(Maybe Integer) }
                   deriving(Show, Ord, Eq)


-- | Make a new partial step storing the initial state of a step.
newPartialStep :: Solution -> Integer -> PartialStep
newPartialStep sol startPos =
    PartialStep {
  pstepSol = sol,
  pstepReverseSuccessors = [],
  pstepReverseBackpropagations = [],
  pstepPromotions = [],
  pstepTextStart = startPos,
  pstepTextLength = Nothing
}

-- | A synonym for makeRegex, specialized to the types we care about.
--
-- See lineParsers below for a list of which function processes each
-- line.
compile :: String -> Regex
compile = makeRegex

processingStepStart = compile "Processing (step [0-9]*: )?(.*)$"
newPromotion        = compile "Inserting new promotion: (.*)$"
-- Note: if we see a "forced" dependency and no "generated" line, we
-- magically know that the next "Processing" line will be for its
-- successor (and we use that to ensure that they get linked up).
successorsStart     = compile "(Generating successors for( step [0-9]* and dep)?|(Forced resolution )(\\(step [0-9]*\\) )?of) (.*)$"
madeSuccessor       = compile "Generated successor( \\(step [0-9]*\\))?: (.*)$"
tryingResolution    = compile "Trying to resolve (.*) by installing (.*)(from the dependency source)?$"
tryingUnresolved    = compile "Trying to leave (.*) unresolved$"
enqueuing           = compile "Enqueuing (.*)$"
successorsEnd       = compile "Done generating successors\\."
-- Start generating backpropagations.
backpropagationsBegin = compile "Backpropagating promotions to step ([0-9]*): (.*)$"
backpropagationAdd  = compile "Created backpropagated promotion at step ([0-9]*): (.*)$"

-- | The log lines we know how to parse: the first regex that matches
-- causes the corresponding function to be invoked on the match
-- results.  (matchOnce is used) The ByteString is the line that's
-- being matched.
lineParsers :: [(Regex, ByteString -> MatchArray -> LogParse ())]
lineParsers = [
 (processingStepStart, processStepStartLine),
 (newPromotion, processNewPromotionLine),
 (successorsStart, processSuccessorsStartLine),
 (tryingResolution, processTryingResolutionLine),
 (tryingUnresolved, processTryingUnresolvedLine),
 (madeSuccessor, processGeneratedLine),
 (successorsEnd, processSuccessorsEndLine),
 (backpropagationsBegin, processBackpropagationsBegin),
 (backpropagationAdd, processBackpropagationAdd) ]

data GeneratingSuccessorsInfo =
    GeneratingSuccessorsInfo { generatingForced :: !Bool,
                               generatingDep    :: !Dep }
    deriving(Show)

-- | The state used while loading the log file.
data LogParseState = LogParseState {
      -- | The state of the parser; we magically know that this
      -- contains intern sets that should be shared over all parse
      -- steps.
      logParseParseState :: !ParseState,
      -- | All the steps in the current run, in reverse order.  The
      -- first element in this list is the step currently being parsed
      -- (if any).
      logParseAllStepsReversed :: ![PartialStep],
      -- | All the runs in the file, in reverse order (but the runs
      -- are individually in order).
      logParseAllRunsReversed :: ![[PartialStep]],
      -- | The name of the file being parsed.  Read-only.
      logParseSourceName :: !String,
      -- | The current line.
      logParseCurrentLine :: !Int,
      -- | The file offset of the beginning of the current line.
      logParseCurrentLineStart :: !Integer,
      -- | Set to (Just dep) if we're between the beginning and end of
      -- generating successors for the dependency dep; otherwise
      -- Nothing.
      logParseGeneratingSuccessorsInfo :: !(Maybe GeneratingSuccessorsInfo),
      -- | All the promotions that have been seen so far.
      --
      -- Used to ensure that only new promotions are included in the
      -- promotions of a particular step.
      logParseSeenPromotions :: Maybe (HashTable.HashTable FastPromotion ()),
      -- | The last seen line indicating the resolver is examining a
      -- choice.
      --
      -- Could be "trying to resolve (dep) by installing (ver)", or
      -- "trying to leave (dep) unresolved".
      logParseLastSeenTryChoice :: !LinkChoice,
      -- | The solution, if any, that we are currently backpropagating
      -- promotions to.
      logParsePromotionBackpropagationState :: !(Maybe Solution)
    }

initialState sourceName =
    LogParseState { logParseParseState = initialParseState,
                    logParseAllStepsReversed = [],
                    logParseAllRunsReversed = [],
                    logParseSourceName = sourceName,
                    logParseCurrentLine = 0,
                    logParseCurrentLineStart = 0,
                    logParseGeneratingSuccessorsInfo = Nothing,
                    logParseSeenPromotions = Nothing,
                    logParseLastSeenTryChoice = Unknown,
                    logParsePromotionBackpropagationState = Nothing }

-- | The log parsing state monad.
type LogParse = ReaderT (IORef LogParseState) IO

get :: LogParse LogParseState
get = do ref <- ask
         lift $ readIORef ref

put :: LogParseState -> LogParse ()
put st = st `seq` do ref <- ask
                     liftIO $ writeIORef ref st

-- | Reset the parts of the state dealing with the current run and
-- insert the run into the list.
--
-- The argument is the file location that will be the "end" of the
-- run.
startNewRun :: Integer -> LogParse ()
startNewRun loc =
    do modifyLastStep (\lastStep -> lastStep { pstepTextLength = Just (loc - pstepTextStart lastStep) })
       st <- get
       let stepsRev = logParseAllStepsReversed st
           steps    = reverse stepsRev
           runsRev  = logParseAllRunsReversed st
           runsRev' = if null stepsRev then runsRev
                      else steps `seq` steps:runsRev
           st'      = runsRev' `seq`
                      st { logParseAllStepsReversed         = [],
                           logParseAllRunsReversed          = runsRev',
                           logParseGeneratingSuccessorsInfo = Nothing,
                           logParseSeenPromotions           = Nothing,
                           logParseLastSeenTryChoice        = Unknown }
       put st'

-- | Run a parser using the embedded state.
parse p sourceName source =
    do st <- get
       case runParser (do rval <- p
                          st'  <- getState
                          return (st', rval))
                      (logParseParseState st)
                      sourceName
                      source of
         Left err ->
             fail $ show err
         Right (parseState', rval) ->
             do put st { logParseParseState = parseState' }
                return rval

runLogParse :: String -> LogParse a -> IO a
runLogParse sourceName parser =
    do ref <- newIORef $ initialState sourceName
       runReaderT parser ref

-- Accessors.  We make the state strict in everything it contains.
getAllStepsReversed :: LogParse [PartialStep]
getAllStepsReversed = do st <- get
                         return $ logParseAllStepsReversed st

-- Backend; don't call (would mess up the strictness).
setAllStepsReversed :: [PartialStep] -> LogParse ()
setAllStepsReversed steps =
    steps `seq` do st <- get
                   put $ st { logParseAllStepsReversed = steps }

getAllRunsReversed :: LogParse [[PartialStep]]
getAllRunsReversed = do st <- get
                        return $ logParseAllRunsReversed st

getSourceName :: LogParse String
getSourceName = get >>= return . logParseSourceName

getCurrentLine :: LogParse Int
getCurrentLine = get >>= return . logParseCurrentLine

setCurrentLine :: Int -> LogParse ()
setCurrentLine n = n `seq` do st <- get
                              put $ st { logParseCurrentLine = n }

getCurrentLineStart :: LogParse Integer
getCurrentLineStart = get >>= return . logParseCurrentLineStart

setCurrentLineStart :: Integer -> LogParse ()
setCurrentLineStart n = n `seq` do st <- get
                                   put $ st { logParseCurrentLineStart = n }

getGeneratingSuccessorsInfo :: LogParse (Maybe GeneratingSuccessorsInfo)
getGeneratingSuccessorsInfo = get >>= return . logParseGeneratingSuccessorsInfo

promotionIsSeen :: Promotion -> LogParse Bool
promotionIsSeen p = do st <- get
                       (case logParseSeenPromotions st of
                          Nothing   -> return False
                          Just (ht) -> do found <- liftIO $ HashTable.lookup ht (makeFastPromotion p)
                                          return $ isJust found)

getOrMakeSeenPromotionsTable :: LogParse (HashTable.HashTable FastPromotion ())
getOrMakeSeenPromotionsTable =
    do st <- get
       case logParseSeenPromotions st of
         Just ht -> return ht
         Nothing -> do rval <- liftIO $ HashTable.new (==) fastPromotionHash
                       put st { logParseSeenPromotions = Just rval }
                       return rval

addSeenPromotion :: Promotion -> LogParse ()
addSeenPromotion p = do hashTable <- getOrMakeSeenPromotionsTable
                        liftIO $ HashTable.insert hashTable (makeFastPromotion p) ()

-- | Not strict in the contents of the Maybe.
setGeneratingSuccessorsInfo :: Maybe GeneratingSuccessorsInfo -> LogParse ()
setGeneratingSuccessorsInfo inf =
    inf `seq` do st <- get
                 put $ st { logParseGeneratingSuccessorsInfo = inf }

getLastSeenTryChoice :: LogParse LinkChoice
getLastSeenTryChoice = get >>= return . logParseLastSeenTryChoice

setLastSeenTryChoice :: LinkChoice -> LogParse ()
setLastSeenTryChoice c = c `seq` do st <- get
                                    put $ st { logParseLastSeenTryChoice = c }



incCurrentLine :: LogParse ()
incCurrentLine = do st <- get
                    put $ st { logParseCurrentLine = logParseCurrentLine st + 1 }

getLastStep :: LogParse (Maybe PartialStep)
getLastStep = do steps <- getAllStepsReversed
                 return $ listToMaybe steps

setLastStep :: PartialStep -> LogParse ()
setLastStep step' =
    do allSteps <- getAllStepsReversed
       case allSteps of
         [] -> error "No last step to modify."
         (step:steps) -> setAllStepsReversed (step':steps)

modifyLastStep :: (PartialStep -> PartialStep) -> LogParse ()
modifyLastStep f =
    do steps <- getAllStepsReversed
       unless (null steps)
              (let newFirstStep = f $ head steps in
               newFirstStep `seq`
               setAllStepsReversed $ (f $ head steps):(tail steps))

getPromotionBackpropagationState :: LogParse (Maybe Solution)
getPromotionBackpropagationState = get >>= return . logParsePromotionBackpropagationState

setPromotionBackpropagationState :: Maybe Solution -> LogParse ()
setPromotionBackpropagationState sol =
    do st <- get
       put $ st { logParsePromotionBackpropagationState = sol }

addBackpropagatedPromotionToCurrentStep :: Solution -> Promotion -> LogParse ()
addBackpropagatedPromotionToCurrentStep p sol =
    p `seq` sol `seq`
    modifyLastStep (\lastStep -> let pair   = (p, sol)
                                     props  = pstepReverseBackpropagations lastStep
                                     props' = pair:props in
                                 pair `seq` props `seq` props' `seq` lastStep {
                                   pstepReverseBackpropagations =
                                       (p, sol):(pstepReverseBackpropagations lastStep)
                                 })


-- | Add a step at the end of the list of steps.
--
-- Strict in the new step.
addNewStep :: PartialStep -> LogParse ()
addNewStep step =
    step `seq`
         do allSteps <- getAllStepsReversed
            setAllStepsReversed (step:allSteps)

-- | Parses the given text from a regex match within a byte-string.
parseMatch :: Parser a
           -> ByteString
           -> (MatchOffset, MatchLength)
           -> LogParse a
parseMatch subParser source (start, length) =
    do when (start == (-1) || length == (-1))
            (fail "No match to parse.")
       sourceName <- getSourceName
       currentLine <- getCurrentLine
       let currentColumn = start
           pos = newPos sourceName currentLine currentColumn
           text = extract (start, length) source
       parse (setPosition pos >> subParser) sourceName text

-- | Close off the current step and start a new one, given the new
-- step's solution.
startNewStep :: Solution -> LogParse ()
startNewStep sol =
    do -- Close off the existing step.  The only thing
       -- that needs to be updated is its length.
      lineStart <- getCurrentLineStart
      modifyLastStep (\lastStep ->
                          let start = (pstepTextStart lastStep)
                              len   = lineStart - start in
                          len `seq` lastStep { pstepTextLength = Just len })
      -- Add the new step.
      sol `seq` addNewStep (newPartialStep sol lineStart)
      -- Reset state variables.
      setGeneratingSuccessorsInfo Nothing
      setLastSeenTryChoice Unknown
      setPromotionBackpropagationState Nothing

-- | Add a successor to a partial step.
--
-- The file-name and line number are taken as arguments in order to
-- produce a reasonable error if sanity-checking fails.
addSuccessor :: (Solution, LinkChoice, Bool) -> FilePath -> Int -> PartialStep -> PartialStep
addSuccessor succInf@(s, _, _) filename lineNum lastStep =
    -- Sanity-check to avoid circular deps:
    if pstepSol lastStep == s
    then if Set.null $ solBrokenDeps s
         -- If there are no broken dependencies, the runtime spits out
         -- a dummy "enqueuing" message for the full solution; we
         -- suppress this link to avoid cycles in the successor tree.
         then lastStep
         else error (filename ++ ":" ++ show lineNum ++ ": The solution " ++ show s ++ " is its own successor.")
    else
        let oldSuccessors = pstepReverseSuccessors lastStep
            newSuccessors = succInf:oldSuccessors in
        lastStep { pstepReverseSuccessors = newSuccessors }

-- | Process a line of the log file from a match array produced by
-- processingStepStart.
processStepStartLine :: ByteString -> MatchArray -> LogParse ()
processStepStartLine source matches =
    do sol <- parseMatch solution source (matches!2)
       loc <- getCurrentLineStart
       -- If the solution is empty, assume we're starting a new run.
       when (Map.null $ solChoices sol) (startNewRun loc)
       startNewStep sol

-- | Process a line of the log file if it looks like it produced a new
-- promotion.
processNewPromotionLine :: ByteString -> MatchArray -> LogParse ()
processNewPromotionLine source matches =
    do p <- parseMatch promotion source (matches!1)
       seen <- promotionIsSeen p
       unless seen $ do
         addSeenPromotion p
         -- Add the promotion to the current step.
         p `seq` modifyLastStep (\lastStep ->
                                     let oldPromotions = pstepPromotions lastStep
                                         newPromotions = (p:oldPromotions) in
                                     lastStep { pstepPromotions = newPromotions })

-- | Process a line of the log file that starts successor generation.
processSuccessorsStartLine :: ByteString -> MatchArray -> LogParse ()
processSuccessorsStartLine source matches =
    do d <- parseMatch dep source (matches!5)
       let forced = extract (matches!3) source == BS.pack "Forced resolution "
       d `seq` forced `seq` setGeneratingSuccessorsInfo $
         Just (GeneratingSuccessorsInfo { generatingForced = forced,
                                          generatingDep    = d })

-- | Process a line of the log file that ends successor generation.
processSuccessorsEndLine :: ByteString -> MatchArray -> LogParse ()
processSuccessorsEndLine source matches =
    do setGeneratingSuccessorsInfo Nothing
       setLastSeenTryChoice Unknown

-- | Process a line of the log file that starts backpropagations for
-- the current step.
--
-- This currently just assumes that backpropagations happen only once
-- per step.
processBackpropagationsBegin :: ByteString -> MatchArray -> LogParse ()
processBackpropagationsBegin source matches =
    do sol <- parseMatch solution source (matches!2)
       let newState = Just sol
       sol `seq` newState `seq` setPromotionBackpropagationState newState

-- | Process a line of the log file that indicates that a new
-- backpropagation was emitted.
processBackpropagationAdd :: ByteString -> MatchArray -> LogParse ()
processBackpropagationAdd source matches =
    do maybeSol <- getPromotionBackpropagationState
       (case maybeSol of
          Nothing  -> return ()
          Just sol ->
              do p <- parseMatch promotion source (matches!2)
                 seen <- promotionIsSeen p
                 unless seen $ do
                   addSeenPromotion p
                   p `seq` sol `seq` addBackpropagatedPromotionToCurrentStep sol p)

-- | Process a line of the log file that indicates that a particular
-- resolution was attempted.
--
-- This might not be a "real" resolution, but we remember it anyway
-- for future use. (I'd like to attach this information to *all* the
-- promotions that we generate, for instance)
processTryingResolutionLine :: ByteString -> MatchArray -> LogParse ()
processTryingResolutionLine source matches =
    do d <- parseMatch dep source (matches!1)
       v <- parseMatch version source (matches!2)
       let fromDep = (fst (matches!3) /= (-1))
           c = InstallVersion {
                 choiceVer = v,
                 choiceVerReason = (Just d),
                 choiceFromDepSource = (Just fromDep)
               }
           lc = LinkChoice c
       d `seq` v `seq` c `seq` lc `seq`
         setLastSeenTryChoice lc

processTryingUnresolvedLine :: ByteString -> MatchArray -> LogParse ()
processTryingUnresolvedLine source matches =
    do d <- parseMatch dep source (matches!1)
       let c = BreakSoftDep d
       let lc = LinkChoice c
       c `seq` lc `seq` d `seq` setLastSeenTryChoice lc

-- | Process a line of the log file that indicates that a new solution
-- is being inserted into the queue.
processGeneratedLine :: ByteString -> MatchArray -> LogParse ()
processGeneratedLine source matches =
    do s <- parseMatch solution source (matches!2)
       lastSeenChoice <- getLastSeenTryChoice
       fn <- getSourceName
       lineNum <- getCurrentLine
       succInf <- getGeneratingSuccessorsInfo
       forced <- (case succInf of
                    Just GeneratingSuccessorsInfo { generatingForced = forced' }
                        -> return forced'
                    Nothing
                        -> return False)

       -- If we see a "generated successor" line when the last
       -- successor was forced, then we forced two dependencies at
       -- once, and we should insert a new step for the previous one
       -- (otherwise it would look like both were children of the same
       -- parent, and one of them was never visited).  "generated
       -- successor" lines will insert into the successors list, so
       -- look there.
       maybeLastStep <- getLastStep
       (case maybeLastStep of
          (Just (PartialStep { pstepReverseSuccessors = (lastSol, _, True):_ })) ->
              startNewStep lastSol
          _ -> return ())

       -- NB: I assume here that the last-seen choice object was made
       -- strict when it was entered into the parse state.
       s `seq`
         modifyLastStep $ addSuccessor (s, lastSeenChoice, forced) fn lineNum


-- | Process a single line of the log file.
processLogLine :: ByteString -> LogParse ()
processLogLine line =
    -- Lazily test whether each regex matches this line, and apply the
    -- given function if it does.
    --
    -- I could say
    --
    --     fmap (const f) $ matchOnce regex line
    --
    -- but that has the downside that it's too clever by half.
    let matches = [case matchOnce regex line of
                     Just arr -> Just (f line arr)
                     Nothing  -> Nothing
                   | (regex, f) <- lineParsers] in
    -- Evaluate the first match, if there is one; otherwise do
    -- nothing.
    head (catMaybes matches ++ [return ()])

forEachLine :: Handle -> (ByteString -> LogParse ()) -> ProgressCallback -> LogParse ()
forEachLine h f progress = do total <- liftIO $ hFileSize h
                              while (liftIO (hIsEOF h) >>= return . not) (doLine total) ()
    where doLine :: Integer -> LogParse ()
          doLine total =
              do loc <- liftIO $ hTell h
                 liftIO $ progress loc total
                 setCurrentLineStart loc
                 nextLine <- liftIO $ BS.hGetLine h >>= return
                 f nextLine
                 incCurrentLine

-- Extract predecessor links in terms of solutions, in an arbitrary
-- order.
extractPredecessorLinks :: [PartialStep] -> [(Solution, (Solution, LinkChoice, Bool))]
extractPredecessorLinks [] = []
extractPredecessorLinks (step:steps) =
    [(childSolution, (pstepSol step, childChoice, forced))
     | (childSolution, childChoice, forced) <- pstepReverseSuccessors step]
    ++ extractPredecessorLinks steps

-- | Map a list of partial processing steps (in order) to a collection
-- of processing steps.
extractProcessingSteps :: [PartialStep] -> [ProcessingStep]
extractProcessingSteps partialSteps =
    -- Tricky: we need to "tie the knot".  We build a bunch of
    -- recursive auxiliary lookup tables in the "where" (lazily), and
    -- use "convert" (also in the "where") to build the output list
    -- using those.
    let rval = [convert step | step <- partialSteps] in
    rval `seqList` rval
    where
      convert :: PartialStep -> ProcessingStep
      convert pstep = stepMap Map.! (pstepSol pstep)
      -- A lazily generated map that gives the step object for each
      -- solution.
      stepMap :: Map.Map Solution ProcessingStep
      stepMap = Map.fromList [((pstepSol pstep), makeStep n pstep)
                              | (n, pstep) <- (zip [0..] partialSteps)]
      -- Another lazily generated map that gives the parent link (if
      -- any) of each solution.
      parentMap :: Map.Map Solution ParentLink
      parentMap = Map.fromList [(child, ParentLink { parentLinkAction = c,
                                                     parentLinkForced = forced,
                                                     parentLinkParent = (stepMap Map.! parent) })
                                | (child, (parent, c, forced)) <- extractPredecessorLinks partialSteps]
      -- Builds a successor link for the given solution.
      findSuccessor :: Solution -> Solution -> LinkChoice -> Bool -> Successor
      findSuccessor oldSol sol c forced =
          if oldSol == sol
          then error $ "How can " ++ (show sol) ++ " be its own successor?"
          else case Map.lookup sol stepMap of
                 Just step -> Successor step c forced
                 Nothing   -> Unprocessed sol c forced

      findBackpropagation :: (Solution, Promotion) -> Backpropagation
      findBackpropagation (sol, p) =
          case Map.lookup sol stepMap of
            Just step -> step `seq` p `seq` Backpropagation { backpropagationStep = step,
                                                              backpropagationPromotion = p }
            Nothing -> error $ "No match for the solution " ++ show sol ++ " when adding the backpropagated promotion " ++ show p

      -- How to build an output step from an input step.  This is
      -- where the knot gets tied, using stepMap.  It works because
      -- the key values in the map can be computed without having to
      -- resolve any recursive references (so the map structure is
      -- well-defined).
      makeStep :: Integer -> PartialStep -> ProcessingStep
      makeStep n pstep =
          let sol            = pstepSol pstep
              psuccessors    = reverse $ pstepReverseSuccessors pstep
              successors     = [findSuccessor sol sol' c forced
                                    | (sol', c, forced) <- psuccessors]
              pbackprops     = reverse $ pstepReverseBackpropagations pstep
              backprops      = map findBackpropagation pbackprops
              promotions     = Set.fromList $ pstepPromotions pstep
              succDepth succ = case succ of
                                 Successor { successorStep = step } -> stepDepth step
                                 Unprocessed {} -> 0
              depth          = maximum (0:(map succDepth successors)) + 1
              succSize succ  = case succ of
                                 Successor { successorStep = step } -> stepBranchSize step
                                 Unprocessed {} -> 1
              branchSize     = sum (map succSize successors) + 1
              start          = pstepTextStart pstep
              len            = case pstepTextLength pstep of
                                 Just len -> len
                                 Nothing -> error $ "Internal error: missing text length in step " ++ (show n) ++ "."
          in
          sol `seq` n `seq` depth `seq` branchSize `seq` promotions `seq` start `seq` len `seq` ProcessingStep {
        stepPredecessor = Map.lookup sol parentMap,
        stepSol = sol,
        stepOrder = n,
        stepSuccessors = successors,
        stepPromotions = promotions,
        stepBackpropagations = backprops,
        stepTextStart  = start,
        stepTextLength = len,
        stepDepth      = depth,
        stepBranchSize = branchSize
      }

-- Debugging stuff: a manual deepSeq-type of function that can be used
-- to selectively de-lazy the state (hence providing a way to track
-- down which state component is accumulating thunks and killing us).
forceMaybe :: (a -> b) -> Maybe a -> ()
forceMaybe f (Just v) = f v `seq` ()
forceMaybe f Nothing = ()

forceMap :: (a -> b) -> [a] -> ()
forceMap f xs = foldl' (flip seq) () (map f xs)

forceEverything :: LogParse a -> LogParse a
forceEverything a =
    do st <- get
       let forceSteps = () --forceMap forceStep $ logParseAllStepsReversed st
           forceSourceName = () -- forceMap id $ logParseSourceName st
           forceSuccessors = () -- forceMaybe forceDep $ logParseGeneratingSuccessorsInfo st
           forceTryChoice = () -- logParseLastSeenTryChoice st `seq` () -- forceMaybe forceChoice $ logParseLastSeenTryChoice st
       forceSteps `seq` forceSourceName `seq` forceSuccessors `seq` forceTryChoice `seq` a
    where
      forceStep pstep =
          --forceSol (pstepSol pstep) `seq`
          --forceMap (\(s, c) -> forceSol s `seq` forceChoice c `seq` ()) (pstepReverseSuccessors pstep) `seq`
          forceMap forcePromotion (pstepPromotions pstep) `seq`
          pstepTextStart pstep `seq`
          forceMaybe id (pstepTextLength pstep) `seq`
          ()
      forceSol sol = ()
      forcePromotion p = ()
      forceDep (Dep source solvers isSoft) = forceMap forceVersion solvers `seq` forceVersion source `seq` isSoft `seq` ()
      forceChoice (InstallVersion ver dep fromDepSource) =
          forceVersion ver `seq` forceMaybe forceDep dep `seq` forceMaybe id fromDepSource `seq` ()
      forceChoice (BreakSoftDep dep) =
          forceDep dep `seq` ()
      forceVersion (Version p name) =
          forcePkg p `seq` BS.length name `seq` ()
      forcePkg (Package name) =
          BS.length name `seq` ()


seqList :: [a] -> b -> b
seqList lst x = foldr seq x lst

processFile :: Handle -> ProgressCallback -> LogParse LogFile
processFile h progress =
    do sourceName <- getSourceName
       forEachLine h processLogLine progress
       --forEachLine h $ (\s -> forceEverything $ processLogLine s)
       -- The last step won't have a length because we update it when
       -- we add a new step; fix that.
       loc <- liftIO $ hTell h
       startNewRun loc -- Force the current run onto the runs list.
       runsReversed <- getAllRunsReversed
       let runs     = reverse runsReversed
           outRuns  = map extractProcessingSteps runs
       (map seqList outRuns) `seqList` return $ LogFile h sourceName outRuns

-- | Load a log file from a handle.
--
-- The callback is invoked with the current file position and the file
-- size, in that order.
loadLogFile :: Handle -> String -> ProgressCallback -> IO LogFile
loadLogFile h sourceName progress =
    do runLogParse sourceName (processFile h progress)