1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
|
############################################################################
#
# File: color.icn
#
# Subject: Procedures dealing with colors
#
# Author: Gregg M. Townsend
#
# Date: April 1, 1997
#
############################################################################
#
# This file is in the public domain.
#
############################################################################
#
# These procedures deal with colors in various ways.
#
# ScaleGamma(v, g) scales a number with gamma correction.
#
# Blend(k1, k2, ...) generates a sequence of colors.
#
# Contrast(win, k) returns "white" or "black" contrasting with k.
#
# Shade(win, k) sets Fg(), with dithering on a bilevel screen.
#
# RandomColor(W, p) returns a randomly chosen color from a palette.
#
# PaletteGrays(W, p) returns the gray entries of a palette.
#
# RGBKey(W, p, r, g, b) returns the palette key closest to (r,g,b).
#
# HSVKey(W, p, h, s, v) returns the palette key closest to (h/s/v).
#
# HSV(k) returns the h/s/v interpretation of a color.
#
# HSVValue(hsv) returns the ColorValue() of an h/s/v string.
#
# HLS(k) returns the h:l:s interpretation of a color.
#
# HLSValue(hls) returns the ColorValue() of an h:l:s string.
#
############################################################################
#
# ScaleGamma(v, g) nonlinearly scales the number v (between 0.0 and 1.0)
# to an integer between 0 and 65535 using a gamma correction factor g.
# the default value of g is 2.5.
#
# Blend(color1, color2, color3,...) generates ColorValue(color1), then
# some intermediate shades, then ColorValue(color2), then some more
# intermediate shades, and so on, finally generating the color value of
# the last argument. An integer argument can be interpolated at any
# point to set the number of steps (the default is four) from one color
# to the next.
#
# Contrast(win, colr) returns either "white" or "black", depending
# on which provides the greater contrast with the specified color.
#
# Shade(win, colr) sets the foreground for an area filling operation.
# On a color screen, Shade() sets the foreground color and returns the
# window. On a bilevel monochrome screen, Shade() sets the foreground
# to a magic-square dithering pattern approximating the luminance of the
# color specified. If the environment variable XSHADE is set to "gray"
# (or "grey") then Shade simulates a multilevel grayscale monitor.
# If it is set to any other value, Shade simulates a bilevel monitor.
#
# RandomColor(win, palette) returns a randomly chosen color from the
# given image palette, excluding the "extra" grays of the palette, if
# any. (Colors are selected from a small finite palette, rather than
# from the entire color space, to avoid running out of colors if a
# large number of random choices are desired.) The default palette
# for this procedure is "c6".
#
# PaletteGrays([win,] palette) is like PaletteChars but it returns only
# the characters corresponding to shades of gray. The characters are
# ordered from black to white, and in all palettes the shades of gray
# are equally spaced.
#
# RGBKey([win,] palette, r, g, b) returns a palette key given the
# three color components as real number from 0.0 to 1.0.
# HSVKey([win,] palette, h, s, v) returns a palette key given a
# hue, saturation, and value as real numbers from 0.0 to 1.0.
#
# HSV() and HSVValue() convert between Icon color strings and strings
# containing slash-separated HSV values with maxima of "360/100/100".
# HSV(k) returns the h/s/v interpretation of an Icon color specification;
# HSVValue(hsv) translates an h/s/v value into an Icon r,g,b value.
#
# HLS() and HLSValue() convert between Icon color strings and strings
# containing colon-separated HLS values with maxima of "360:100:100".
# HLS(k) returns the h:l:s interpretation of an Icon color specification;
# HLSValue(hls) translates an h:l:s value into an Icon r,g,b value.
#
############################################################################
#
# Requires: Version 9 graphics
#
############################################################################
# ScaleGamma(v, g) -- scale fraction to int with gamma correction.
procedure ScaleGamma(v, g) #: scale with gamma correction
/g := 2.5
return integer(65535 * v ^ (1.0 / g))
end
# Blend(color1, color2, ...) -- generate sequence of colors
procedure Blend(args[]) #: generate sequence of colors
local win, n, s, a, i, f1, f2, r1, g1, b1, r2, g2, b2, r3, g3, b3
static type
initial type := proc("type", 0) # protect attractive name
n := 4
if type(args[1]) == "window" then
win := get(args)
else
win := &window
while a := get(args) do
if integer(a) >= 0 then
n := integer(a)
else {
s := ColorValue(win, a) | fail
s ? {
r2 := tab(many(&digits)); move(1)
g2 := tab(many(&digits)); move(1)
b2 := tab(many(&digits))
}
if /r1 then
suspend s
else
every i := 1 to n do {
f2 := real(i) / real(n)
f1 := 1.0 - f2
r3 := integer(f1 * r1 + f2 * r2)
g3 := integer(f1 * g1 + f2 * g2)
b3 := integer(f1 * b1 + f2 * b2)
suspend r3 || "," || g3 || "," || b3
}
r1 := r2
g1 := g2
b1 := b2
}
end
# Contrast(win, color) -- return "white" or "black" to maximize contrast
procedure Contrast(win, color) #: choose contrasting color
static l, type
initial {
l := ["white", "black"]
type := proc("type", 0) # protect attractive name
}
if type(win) == "window" then
return l[1 + PaletteKey(win, "g2", color)]
else
return l[1 + PaletteKey("g2", win)]
end
# Shade(win, color) -- approximate a shade with a pattern if bilevel screen
procedure Shade(win, color) #: dither shade using pattern
local r, g, b
static dmat, env, type
initial {
env := ("" ~== map(getenv("XSHADE")))
type := proc("type", 0) # protect attractive name
}
if type(win) ~== "window" then {
color := win
win := &window
}
if WAttrib(win, "depth") ~== "1" & /env then {
Fg(win, color) | fail
return win
}
(ColorValue(win, color) | fail) ? {
r := tab(many(&digits)); move(1)
g := tab(many(&digits)); move(1)
b := tab(many(&digits))
}
g := integer(0.30 * r + 0.59 * g + 0.11 * b)
if \env == ("gray" | "grey") then {
Fg(win, g || "," || g || "," || g)
return win
}
/dmat := [
"4,15,15,15,15",
"4,15,15,13,15",
"4,11,15,13,15",
"4,10,15,13,15",
"4,10,15,5,15",
"4,10,7,5,15",
"4,10,7,5,14",
"4,10,7,5,10",
"4,10,5,5,10",
"4,10,5,5,2",
"4,10,4,5,2",
"4,10,0,5,2",
"4,10,0,5,0",
"4,8,0,5,0",
"4,8,0,1,0",
"4,8,0,0,0",
"4,0,0,0,0",
]
WAttrib(win, "fillstyle=textured")
g := g / 3856 + 1
Pattern(win, dmat[g])
return win
end
# RandomColor(win, palette) -- choose random color
procedure RandomColor(win, palette) #: choose random color
local s, n
static type
initial type := proc("type", 0) # protect attractive name
if type(win) ~== "window" then
palette:= win # window allowed but ignored
/palette := "c6"
s := PaletteChars(palette)
palette ?
if ="c" & any('23456') then {
n := integer(move(1))
s := s[1 +: n * n * n]
}
return PaletteColor(palette, ?s)
end
# PaletteGrays(win, palette) -- return grayscale entries from palette.
procedure PaletteGrays(win, palette) #: grayscale entries from palette
static type
initial type := proc("type", 0) # protect attractive name
if (type(win) ~== "window") then
palette := win # window not needed
palette := string(palette) | runerr(103, palette)
if palette ? ="g" then
return PaletteChars(palette)
return case palette of {
"c1": "0123456"
"c2": "kxw"
"c3": "@abMcdZ"
"c4": "0$%&L*+-g/?@}"
"c5": "\0}~\177\200\37\201\202\203\204>\205\206\207\210]_
\211\212\213\214|"
"c6": "\0\330\331\332\333\334+\335\336\337\340\341V\342\343\344\345_
\346\201\347\350\351\352\353\254\354\355\356\357\360\327"
default: fail
}
end
# RGBKey(win, palette, r, g, b) -- find key given real-valued color
procedure RGBKey(win, palette, r, g, b) #: return palette key for color
static type
initial type := proc("type", 0) # protect attractive name
if type(win) ~== "window" then # allow unused window argument
win :=: palette :=: r :=: g :=: b
r := integer(r * 65535.99)
g := integer(g * 65535.99)
b := integer(b * 65535.99)
return PaletteKey(palette, r || "," || g || "," || b)
end
# HSVKey(win, palette, h, s, v) -- find nearest key from h,s,v in [0.0,1.0]
#
# HSV conversion based on Foley et al, 2/e, p.593
procedure HSVKey(win, palette, h, s, v) #: nearest key from HSV specification
local i, f, p, q, t, r, g, b
static type
initial type := proc("type", 0) # protect attractive name
if type(win) ~== "window" then # allow unused window argument
win :=: palette :=: h :=: s :=: v
if s = 0.0 then # achromatic case
return RGBKey(palette, v, v, v)
h *:= 6.0 # hue [0.0 - 6.0)
if h >= 6.0 then
h := 0.0
i := integer(h)
f := h - i
p := v * (1.0 - s)
q := v * (1.0 - f * s)
t := v * (1.0 - (1.0 - f) * s)
case i of {
0: { r := v; g := t; b := p } # red - yellow
1: { r := q; g := v; b := p } # yellow - green
2: { r := p; g := v; b := t } # green - cyan
3: { r := p; g := q; b := v } # cyan - blue
4: { r := t; g := p; b := v } # blue - magenta
5: { r := v; g := p; b := q } # magenta - red
}
return RGBKey(palette, r, g, b)
end
# HSV(k) -- return h/s/v interpretation of color spec.
#
# h is hue (0 <= h < 360)
# s is saturation (0 <= s <= 100)
# v is value (0 <= v <= 100)
#
# based on Foley et al, 2/e, p.592
procedure HSV(k) #: HSV interpretation of color
local r, g, b, h, s, v, min, max, d
(ColorValue(k) | fail) ? {
r := tab(many(&digits)) / 65535.0
move(1)
g := tab(many(&digits)) / 65535.0
move(1)
b := tab(many(&digits)) / 65535.0
}
min := r; min >:= g; min >:= b # minimum
max := r; max <:= g; max <:= b # maximum
d := max - min # difference
v := max # value is max of all values
if max > 0 then
s := d / max # saturation is (max-min)/max
else
s := 0.0
if s = 0 then
h := 0.0 # use hue 0 if unsaturated
else if g = max then
h := 2 + (b - r) / d # yellow through cyan
else if b = max then
h := 4 + (r - g) / d # cyan through magenta
else if g < b then
h := 6 + (g - b) / d # magenta through red
else
h := (g - b) / d # red through yellow
return integer(60 * h + 0.5) || "/" ||
integer(100 * s + 0.5) || "/" || integer(100 * v + 0.5)
end
# HSVValue(hsv) -- return ColorValue of h/s/v string
#
# h is hue (0 <= h <= 360)
# s is saturation (0 <= s <= 100)
# v is value (0 <= v <= 100)
#
# based on Foley et al, 2/e, p.593
procedure HSVValue(hsv) #: color value of HSV specification
local h, s, v, r, g, b, i, f, p, q, t
hsv ? {
h := tab(many(&digits)) / 360.0 | fail
="/" | fail
s := tab(many(&digits)) / 100.0 | fail
="/" | fail
v := tab(many(&digits)) / 100.0 | fail
pos(0) | fail
}
if (h | s | v) > 1 then fail
if s = 0.0 then { # achromatic case
v := integer(65535 * v + 0.499999)
return v || "," || v || "," || v
}
h *:= 6.0 # hue [0.0 - 6.0)
if h >= 6.0 then
h := 0.0
i := integer(h)
f := h - i
p := v * (1.0 - s)
q := v * (1.0 - f * s)
t := v * (1.0 - (1.0 - f) * s)
case i of {
0: { r := v; g := t; b := p } # red - yellow
1: { r := q; g := v; b := p } # yellow - green
2: { r := p; g := v; b := t } # green - cyan
3: { r := p; g := q; b := v } # cyan - blue
4: { r := t; g := p; b := v } # blue - magenta
5: { r := v; g := p; b := q } # magenta - red
}
return integer(65535 * r + 0.499999) || "," ||
integer(65535 * g + 0.499999) || "," || integer(65535 * b + 0.499999)
end
# HLS(k) -- return h:l:s interpretation of color spec.
#
# h is hue (0 <= h < 360)
# l is lightness (0 <= l <= 100)
# s is saturation (0 <= s <= 100)
#
# based on Foley et al, 2/e, p.595
procedure HLS(k) #: HLS interpretation of color
local r, g, b, h, l, s, min, max, delta
(ColorValue(k) | fail) ? {
r := tab(many(&digits)) / 65535.0
move(1)
g := tab(many(&digits)) / 65535.0
move(1)
b := tab(many(&digits)) / 65535.0
}
min := r; min >:= g; min >:= b # minimum
max := r; max <:= g; max <:= b # maximum
delta := max - min # difference
l := (max + min) / 2 # lightness
if max = min then
h := s := 0 # achromatic
else {
if l <= 0.5 then
s := delta / (max + min) # saturation
else
s := delta / (2 - max - min)
if r = max then
h := (g - b) / delta # yellow through magenta
else if g = max then
h := 2 + (b - r) / delta # cyan through yellow
else # b = max
h := 4 + (r - g) / delta # magenta through cyan
if h < 0 then
h +:= 6 # ensure positive value
}
return integer(60 * h + 0.5) || ":" ||
integer(100 * l + 0.5) || ":" || integer(100 * s + 0.5)
end
# HLSValue(hls) -- return ColorValue of h:l:s string
#
# h is hue (0 <= h <= 360)
# l is lightness (0 <= l <= 100)
# s is saturation (0 <= s <= 100)
#
# based on Foley & Van Dam, 1/e, p.619
procedure HLSValue(hls) #: color value of HLS specification
local h, l, s, r, g, b, m1, m2
hls ? {
h := tab(many(&digits)) / 360.0 | fail
=":" | fail
l := tab(many(&digits)) / 100.0 | fail
=":" | fail
s := tab(many(&digits)) / 100.0 | fail
pos(0) | fail
}
if (h | l | s) > 1 then fail
if l <= 0.5 then
m2 := l * (1 + s)
else
m2 := l + s - (l * s)
m1 := 2 * l - m2
if s = 0.0 then
r := g := b := l # achromatic
else {
r := hls_rgb_val(m1, m2, h + 0.3333333)
g := hls_rgb_val(m1, m2, h)
b := hls_rgb_val(m1, m2, h - 0.3333333)
}
return integer(65535 * r + 0.499999) || "," ||
integer(65535 * g + 0.499999) || "," || integer(65535 * b + 0.499999)
end
procedure hls_rgb_val(n1, n2, hue) # helper function for HLSValue
hue *:= 6
if hue >= 6 then
hue -:= 6
else if hue < 0 then
hue +:= 6
if (hue < 1) then
return n1 + (n2 - n1) * hue
else if (hue < 3) then
return n2
else if (hue < 4) then
return n1 + (n2 - n1) * (4 - hue)
else
return n1
end
|