summaryrefslogtreecommitdiff
path: root/ipl/procs/curves.icn
blob: a3a3a2af2d889c9719600644b7f7b9a6be1ee986 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
############################################################################
#
#	File:     curves.icn
#
#	Subject:  Procedures to generate points on plain curves
#
#	Author:   Ralph E. Griswold
#
#	Date:     March 25, 2002
#
############################################################################
#
#   This file is in the public domain.
#
############################################################################
#
#  This file links procedure files that generate traces of points on various
#  plain curves.
#
#  The first two parameters determine the defining position of the
#  curve:
#
#	x	x coordinate
#	y	y coordinate
#
#  The meaning of "definition position" depends on the curve.  In some
#  cases it is the position at which plotting starts.  In others, it
#  is a "center" for the curve.
#
#  The next arguments vary and generally refer to parameters of the
#  curve.  There is no practical way to describe these here.  If they
#  are not obvious, the best reference is
#
#	A Catalog of Special Plane Curves, J. Dennis Lawrence,
#	Dover Publications, Inc., New York, 1972.
#
#  This book, which is in print at the time of this writing, is a
#  marvelous source of information about plane curves and is inexpensive
#  as well.
#
#  The trailing parameters give the number of steps and the end points
#  (generally in angles) of the curves:
#  
#	steps	number of points, default varies
#	lo	beginning of plotting range, default varies
#	hi	end of plotting range, default varies
#
#  Because of floating-point roundoff, the number of steps
#  may not be exactly the number specified.
#
#  Note:  Some of the curves may be "upside down" when plotted on
#  coordinate systems in which the y axis increases in a downward direction.
#
#  Caution:  Some of these procedures generate very large values
#  in portions of their ranges.  These may cause run-time errors when
#  used in versions of Icon prior to 8.10.  One work-around is to
#  turn on error conversion in such cases.
#
#  Warning:  The procedures that follow have not been tested thoroughly.
#  Corrections and additions are most welcome.
#
#  These  procedures are, in fact, probably most useful for the parametric
#  equations they contain.
#
############################################################################
#
#  Links:  gobject, math, step
#
############################################################################

link gobject
link math
link step

procedure bullet_nose(x, y, a, b, steps, lo, hi)
   local incr, theta

   /steps := 300
   lo := dtor(\lo) | -&pi
   hi := dtor(\hi) | &pi
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do
      suspend Point(
         x + a * cos(theta),
         y + b * tan(&pi / 2 - theta),
         0
         )

end

procedure cardioid(x, y, a, steps, lo, hi)
   local incr, theta, fact

   /steps := 300
   lo := dtor(\lo) | -&pi
   hi := dtor(\hi) | &pi
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do {
      fact := 2 * a * (1 + cos(theta))
      suspend Point(
         x + cos(theta) * fact,
         y + sin(theta) * fact,
         0
         )
      }

end

procedure cissoid_diocles(x, y, a, steps, lo, hi)
   local incr, theta, radius

   /steps := 300
   lo := dtor(\lo) | (-2 * &pi)
   hi := dtor(\hi) | (2 * &pi)
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do {
      radius := a * sin(theta) * cos(theta)
      suspend Point(
         x + radius * cos(theta),
         y + radius * sin(theta),
         0
         )
      }

end

procedure cross_curve(x, y, a, b, steps, lo, hi)
   local incr, theta

   /steps := 300
   lo := dtor(\lo) | -&pi
   hi := dtor(\hi) | &pi
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do
      suspend Point(
         x + a / cos(theta),
         y + b / sin(theta),
         0
         )

end

procedure cycloid(x, y, a, b, steps, lo, hi)
   local incr, theta

   /steps := 100
   lo := dtor(\lo) | 0
   hi := dtor(\hi) | (8 * &pi)
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do
      suspend Point(
         x + a * theta - b * sin(theta),
         y + a - b * cos(theta),
         0
         )

end

procedure deltoid(x, y, a, steps, lo, hi)
   local incr, theta

   /steps := 300
   lo := dtor(\lo) | -&pi
   hi := dtor(\hi) | &pi
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do
      suspend Point(
         x + a * (2 * cos(theta) + cos(2 * theta)),
         y + a * (2 * sin(theta) - sin(2 * theta)),
         0
         )

end

procedure ellipse(x, y, a, b, steps, lo, hi)
   local incr, theta

   /steps := 300
   lo := dtor(\lo) | -&pi
   hi := dtor(\hi) | &pi
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do
      suspend Point(
         x + a * cos(theta),
         y + b * sin(theta),
         0
         )

end

procedure ellipse_evolute(x, y, a, b, steps, lo, hi)
   local incr, theta

   /steps := 300
   lo := dtor(\lo) | -&pi
   hi := dtor(\hi) | &pi
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do
      suspend Point(
         x + a * cos(theta) ^ 3,
         y + b * sin(theta) ^ 3,
         0
         )

end

procedure epitrochoid(x, y, a, b, h, steps, lo, hi)
   local incr, theta, sum, fact

   /steps := 300
   lo := dtor(\lo) | -&pi
   hi := dtor(\hi) | &pi
   incr := (hi - lo) / steps

   sum := a + b
   fact := sum / b

   every theta := step(lo, hi, incr) do
      suspend Point(
         x + sum * cos(theta) - h * cos(fact * theta),
         y + sum * sin(theta) - h * sin(fact * theta),
         0
         )

end

procedure folium(x, y, a, b, steps, lo, hi)
   local incr, theta, radius

   /steps := 300
   lo := dtor(\lo) | -&pi
   hi := dtor(\hi) | &pi
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do {
      radius := (3 * a * sin(theta) * cos(theta)) /
         (sin(theta) ^ 2 + cos(theta) ^ 2)
      suspend Point(
         x + radius * cos(theta),
         y + radius * sin(theta),
         0
         )
      }

end

procedure hippopede(x, y, a, b, steps, lo, hi)
   local incr, theta, mul

   /steps := 300
   lo := dtor(\lo) | -&pi
   hi := dtor(\hi) | &pi
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do {
      mul := a * b - b ^ 2 * sin(theta) ^ 2
      if mul < 0 then next
      mul := 2 * sqrt(mul)
      suspend Point(
         x + mul *  cos(theta),
         y + mul *sin(theta),
         0
         )
      }

end

procedure kampyle_exodus(x, y, a, b, steps, lo, hi)
   local incr, theta, fact

   /steps := 300
   lo := dtor(\lo) | (-&pi / 2)
   hi := dtor(\hi) | (3 * &pi / 2)
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do {
      fact := a / cos(theta)
      suspend Point(
         x + fact,
         y + fact * tan(theta),
         0
         )
      }

end

procedure kappa(x, y, a, b, steps, lo, hi)
   local incr, theta, fact

   /steps := 300
   lo := dtor(\lo) | 0
   hi := dtor(\hi) | (2 * &pi)
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do {
      fact := a * cos(theta)
      suspend Point(
         x + fact / (0 ~= tan(theta)),
         y + fact,
         0
         )
      }

end

procedure lemniscate_bernoulli(x, y, a, steps, lo, hi)
   local incr, theta, fact

   /steps := 300
   lo := dtor(\lo) | -&pi
   hi := dtor(\hi) | &pi
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do {
      fact := a * cos(theta) / (1 + sin(theta) ^ 2)
      suspend Point(
         x + fact,
         y + fact * sin(theta),
         0
         )
      }

end

procedure lemniscate_gerono(x, y, a, b, steps, lo, hi)
   local incr, theta, fact

   /steps := 300
   lo := dtor(\lo) | -&pi
   hi := dtor(\hi) | &pi
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do {
      fact :=  a * cos(theta)
      suspend Point(
         x + fact,
         y + sin(theta) * fact,
         0
         )
      }

end

procedure limacon_pascal(x, y, a, b, steps, lo, hi)
   local incr, theta, fact

   /steps := 300
   lo := dtor(\lo) | -&pi
   hi := dtor(\hi) | &pi
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do {
      fact := b + 2 * a * cos(theta)
      suspend Point(
         x + fact * cos(theta),
         y + fact * sin(theta),
         0
         )
      }

end

procedure line(x, y, x1, y1, steps)
   local xincr, yincr

   /steps := 100

   xincr := (x1 - x)  / (steps - 1)
   yincr := (y1 - y) / (steps - 1)

   every 1 to steps do {
      suspend Point(x, y, 0)
      x +:= xincr
      y +:= yincr
      }

end

procedure lissajous(x, y, a, b, r, delta, steps, lo, hi)
   local incr, theta

   /steps := 300
   lo := dtor(\lo) | 0
   hi := dtor(\hi) | (16 * &pi)
   incr := (hi - lo) / steps

   r := dtor(r)

   every theta := step(lo, hi, incr) do
      suspend Point(
         x + a * sin(r * theta + delta),
         y + b * sin(theta),
         0
         )

end

procedure nephroid(x, y, a, steps, lo, hi)
   local incr, theta

   /steps := 300
   lo := dtor(\lo) | -&pi
   hi := dtor(\hi) | &pi
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do
      suspend Point(
         x + a * (3 * cos(theta) - cos(3 * theta)),
         y + a * (3 * sin(theta) - sin(3 * theta)),
         0
         )

end

#  Needs to be checked out

procedure parabola(x, y, a, steps, lo, hi)
   local incr, theta, denom, radius

   /steps := 300
   lo := dtor(\lo) | -&pi
   hi := dtor(\hi) | &pi
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do {
      denom := 1 - cos(theta)
      if denom = 0 then next
      radius := 2 * a / denom
      suspend Point(
         radius * cos(theta),
         radius * sin(theta),
         0
         )
      }

end

procedure piriform(x, y, a, b, steps, lo, hi)
   local incr, theta, fact

   /steps := 300
   lo := dtor(\lo) | (-&pi / 2)
   hi := dtor(\hi) | (3 * &pi / 2)
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do {
      fact := 1 + sin(theta)
      suspend Point(
         x + a * fact,
         y + b * cos(theta) * fact,
         0
         )
      }

end

procedure trisectrix_catalan(x, y, a, steps, lo, hi)
   local incr, theta, radius

   /steps := 300
   lo := dtor(\lo) | (-2 * &pi)
   hi := dtor(\hi) | (2 * &pi)
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do {
      radius := a / cos(theta / 3) ^ 3
      suspend Point(
         x + radius * cos(theta),
         y + radius * sin(theta),
         0
         )
      }

end

procedure trisectrix_maclaurin(x, y, a, b, steps, lo, hi)
   local incr, theta, fact

   /steps := 300
   lo := dtor(\lo) | (-&pi / 2)
   hi := dtor(\hi) | (&pi / 2)
   incr := (hi - lo) / steps

   every theta := step(lo, hi, incr) do {
      fact := a * (1 - 4 * cos(theta) ^ 2)
      suspend Point(
         x + fact,
         y + fact * tan(theta),
         0
         )
      }

end

procedure witch_agnesi(x, y, a, steps, lo, hi)
   local incr, theta, fact

   /steps := 300
   lo := dtor(\lo) | (-&pi /2)
   hi := dtor(\hi) | (&pi / 2)
   incr := (hi - lo) / steps

   fact := 2 * a

   every theta := step(lo, hi, incr) do
      suspend Point(
         x + fact * tan(theta),
         y - fact * cos(theta) ^ 2,
         0
         )

end