1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
############################################################################
#
# File: fract.icn
#
# Subject: Program to approximate real number as a fraction
#
# Author: Ralph E. Griswold
#
# Date: October 26, 1999
#
############################################################################
#
# This file is in the public domain.
#
############################################################################
#
# This program produces successive rational approximations to a real
# number.
#
# The options supported are:
#
# -n r real number to be approximated, default .6180339887498948482
# (see below)
#
# -l i limit on number of approximations, default 100 (unlikely to
# be reached).
#
############################################################################
#
# This program was translated from a C program by Gregg Townsend. His
# documentation includes the following remarks.
#
# rational mode based on a calculator algorithm posted by:
#
# Joseph D. Rudmin (duke!dukempd!jdr)
# Duke University Physics Dept.
# Aug 19, 1987
#
# n.b. for an interesting sequence try "fract .6180339887498948482".
# Do you know why? (Hint: "Leonardo of Pisa").
#
############################################################################
#
# Links: options
#
############################################################################
link options
$define Epsilon 1.e-16 # maximum precision (more risks overflow)
procedure main(args)
local v, t, x, y, a, d, i, j, ops, opts, limit
opts := options(args, "n.l+")
v := \opts["n"] | .6180339887498948482
limit := \opts["l"] | 100
x := list(limit + 2)
y := list(limit + 2)
t := v
every i := 1 to limit do {
x[i + 1] := integer(t)
y[i + 1] := 1
y[i + 2] := 0
every j := i - 1 to 0 by -1 do
y[j + 1] := x[j + 2] * y[j + 2] + y[j + 3]
a := real(integer(y[1])) / integer(y[2])
if a < 0 then exit()
write(integer(y[1]), " / ", integer(y[2]), " \t", a)
if abs(a - v) < Epsilon then exit()
d := t - integer(t)
if d < Epsilon then exit()
t := 1.0 / d
}
end
|