1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
|
############################################################################
#
# File: solit.icn
#
# Subject: Program to play solitaire
#
# Author: Jerry Nowlin
#
# Date: November 25, 1996
#
############################################################################
#
# This file is in the public domain.
#
############################################################################
#
# Contributors: Phillip L. Thomas and Ralph E. Griswold
#
############################################################################
#
# This program was inspired by a solitaire game that was written
# by Allyn Wade and copyrighted by him in 1985. His game was
# designed for the IBM PC/XT/PCjr with a color or monochrome moni-
# tor.
#
# I didn't follow his design exactly because I didn't want to
# restrict myself to a specific machine. This program has the
# correct escape sequences programmed into it to handle several
# common terminals and PC's. It's commented well enough that most
# people can modify the source to work for their hardware.
#
# These variables must be defined with the correct escape
# sequences to:
#
# CLEAR - clear the screen
# CLREOL - clear to the end of line
# NORMAL - turn on normal video for foreground characters
# RED - make the foreground color for characters red
# BLACK - make the foreground color for characters black
#
# If there is no way to use red and black, the escape sequences
# should at least make RED and BLACK have different video attri-
# butes; for example red could have inverse video while black has
# normal video.
#
# There are two other places where the code is device dependent.
# One is in the face() procedure. The characters used to display
# the suites of cards can be modified there. For example, the IBM
# PC can display actual card face characters while all other
# machines currently use HDSC for hearts, diamonds, spades and
# clubs respectively.
#
# The last, and probably trickiest place is in the movecursor()
# procedure. This procedure must me modified to output the correct
# escape sequence to directly position the cursor on the screen.
# The comments and 3 examples already in the procedure will help.
#
# So as not to cast dispersions on Allyn Wade's program, I
# incorporated the commands that will let you cheat. They didn't
# exist in his program. I also incorporated the auto pilot command
# that will let the game take over from you at your request and try
# to win. I've run some tests, and the auto pilot can win about
# 10% of the games it's started from scratch. Not great but not
# too bad. I can't do much better myself without cheating. This
# program is about as totally commented as you can get so the logic
# behind the auto pilot is fairly easy to understand and modify.
# It's up to you to make the auto pilot smarter.
#
############################################################################
#
# Note:
#
# The command-line argument, which defaults to support for the VT100,
# determines the screen driver. For MS-DOS computers, the ANSI.SYS driver
# is needed.
#
############################################################################
#
# Requires: keyboard functions
#
############################################################################
global VERSION, CLEAR, CLREOL, NORMAL, RED, BLACK
global whitespace, amode, seed, deck, over, hidden, run, ace
procedure main(args)
local a, p, c, r, s, cnt, cheat, cmd, act, from, dest
VERSION := (!args == ("Atari ST" | "hp2621" | "IBM PC" | "vt100"))
# if keyboard functions are not available, disable ability to
# get out of auto mode.
if not(&features == "keyboard functions") then
stop("*** requires keyboard functions")
case VERSION of {
"Atari ST": {
CLEAR := "\eE"
CLREOL := "\eK"
NORMAL := "\eb3"
RED := "\eb1"
BLACK := "\eb2"
}
"hp2621": {
CLEAR := "\eH\eJ"
CLREOL := "\eK"
NORMAL := "\e&d@"
RED := "\e&dJ"
BLACK := "\e&d@"
}
"IBM PC" | "vt100": {
CLEAR := "\e[H\e[2J"
CLREOL := "\e[0K"
NORMAL := "\e[0m"
RED := "\e[0;31;47m"
BLACK := "\e[1;30;47m"
}
default: { # same as IBM PC and vt100
CLEAR := "\e[H\e[2J"
CLREOL := "\e[0K"
NORMAL := "\e[0m"
RED := "\e[0;31;47m"
BLACK := "\e[1;30;47m"
}
}
# white space is blanks or tabs
whitespace := ' \t'
# clear the auto pilot mode flag
amode := 0
# if a command line argument started with "seed" use the rest of
# the argument for the random number generator seed value
if (a := !args)[1:5] == "seed" then seed := integer(a[5:0])
# initialize the data structures
deck := shuffle()
over := []
hidden := [[],[],[],[],[],[],[]]
run := [[],[],[],[],[],[],[]]
ace := [[],[],[],[]]
# lay down the 7 piles of cards
every p := 1 to 7 do every c := p to 7 do put(hidden[c],get(deck))
# turn over the top of each pile to start a run
every r := 1 to 7 do put(run[r],get(hidden[r]))
# check for aces in the runs and move them to the ace piles
every r := 1 to 7 do while getvalue(run[r][1]) = 1 do {
s := getsuite(!run[r])
push(ace[s],get(run[r]))
put(run[r],get(hidden[r]))
}
# initialize the command and cheat counts
cnt := cheat := 0
# clear the screen and display the initial layout
writes(CLEAR)
display()
# if a command line argument was "auto" let the auto pilot take over
if !args == "auto" then autopilot(cheat)
# loop reading commands
repeat {
# increment the command count
cnt +:= 1
# prompt for a command
movecursor(15,0)
writes("cmd:",cnt,"> ",CLREOL)
# scan the command line
(cmd := read() | exit()) ? {
# parse the one character action
tab(many(whitespace))
act := (move(1) | "")
tab(many(whitespace))
# switch on the action
case map(act) of {
# turn on the automatic pilot
"a": autopilot(cheat)
# move a card or run of cards
"m": {
if {from := move(1)
tab(many(whitespace))
dest := move(1)
} # Keep failure of parsing
then { # from movecard();
if not movecard(from,dest) then { # otherwise, program
whoops(cmd) # aborts.
next # Exit from wrong
} # instruction.
else if cardsleft() = 0 then
finish(cheat)
else &null
}
else { # Exit from incomplete
whoops(cmd) # command.
next
}
}
# thumb the deck
"t" | "": thumb()
# print some help
"h" | "?": disphelp()
# print the rules of the game
"r": disprules()
# give up without winning
"q": break
# shuffle the deck (cheat!)
"s": {
deck |||:= over
over := []
deck := shuffle(deck)
display(["deck"])
cheat +:= 1
}
# put hidden cards in the deck (cheat!)
"p": {
from := move(1) | whoops(cmd)
if integer(from) &
from >= 2 & from <= 7 &
*hidden[from] > 0 then {
deck |||:= hidden[from]
hidden[from] := []
display(["hide","deck"])
cheat +:= 1
} else {
whoops(cmd)
}
}
# print the contents of the deck (cheat!)
"d": {
movecursor(17,0)
write(*deck + *over," card", plural(*deck + *over),
" in deck:")
every writes(face(deck[*deck to 1 by -1])," ")
every writes(face(!over)," ")
writes("\nHit RETURN")
read()
movecursor(17,0)
every 1 to 4 do write(CLREOL)
cheat +:= 1
}
# print the contents of a hidden pile (cheat!)
"2" | "3" | "4" | "5" | "6" | "7": {
movecursor(17,0)
write(*hidden[act]," cards hidden under run ",
act)
every writes(face(!hidden[act])," ")
writes("\nHit RETURN")
read()
movecursor(17,0)
every 1 to 4 do write(CLREOL)
cheat +:= 1
}
# they gave an invalid command
default: whoops(cmd)
} # end of action case
} # end of scan line
} # end of command loop
# a quit command breaks the loop
movecursor(16,0)
writes(CLREOL,"I see you gave up")
if cheat > 0 then
write("...even after you cheated ",cheat," time", plural(cheat), "!")
else
write("...but at least you didn't cheat...congratulations!")
exit(1)
end
# this procedure moves cards from one place to another
procedure movecard(from,dest,limitmove)
# if from and dest are the same fail
if from == dest then fail
# move a card from the deck
if from == "d" then {
# to one of the aces piles
if dest == "a" then {
return deck2ace()
# to one of the 7 run piles
} else if integer(dest) & dest >= 1 & dest <= 7 then {
return deck2run(dest)
}
# from one of the 7 run piles
} else if integer(from) & from >= 1 & from <= 7 then {
# to one of the aces piles
if dest == "a" then {
return run2ace(from)
# to another of the 7 run piles
} else if integer(dest) & dest >= 1 & dest <= 7 then {
return run2run(from,dest,limitmove)
}
}
# if none of the correct move combinations were found fail
fail
end
procedure deck2run(dest)
local fcard, dcard, s
# set fcard to the top of the overturned pile or fail
fcard := (over[1] | fail)
# set dcard to the low card of the run or to null if there are no
# cards in the run
dcard := (run[dest][-1] | &null)
# check to see if the move is legal
if chk2run(fcard,dcard) then {
# move the card and update the display
put(run[dest],get(over))
display(["deck",dest])
# while there are aces on the top of the overturned pile
# move them to the aces piles
while getvalue(over[1]) = 1 do {
s := getsuite(over[1])
push(ace[s],get(over))
display(["deck","ace"])
}
return
}
end
procedure deck2ace()
local fcard, a, s
# set fcard to the top of the overturned pile or fail
fcard := (over[1] | fail)
# for every ace pile
every a := !ace do {
# if the top of the ace pile is one less than the from card
# they are in the same suit and in sequence
if a[-1] + 1 = fcard then {
# move the card and update the display
put(a,get(over))
display(["deck","ace"])
# while there are aces on the top of the overturned
# pile move them to the aces piles
while getvalue(over[1]) = 1 do {
s := getsuite(!over)
push(ace[s],get(over))
display(["deck","ace"])
}
return
}
}
end
procedure run2ace(from)
local fcard, a, s
# set fcard to the low card of the run or fail if there are no
# cards in the run
fcard := (run[from][-1] | fail)
# for every ace pile
every a := !ace do {
# if the top of the ace pile is one less than the from card
# they are in the same suit and in sequence
if a[-1] + 1 = fcard then {
# move the card and update the display
put(a,pull(run[from]))
display([from,"ace"])
# if the from run is now empty and there are hidden
# cards to expose
if *run[from] = 0 & *hidden[from] > 0 then {
# while there are aces on the top of the
# hidden pile move them to the aces piles
while getvalue(hidden[from][1]) = 1 do {
s := getsuite(hidden[from][1])
push(ace[s],get(hidden[from]))
display(["ace"])
}
# put the top hidden card in the empty run
# and display the hidden counts
put(run[from],get(hidden[from]))
display(["hide"])
}
# update the from run display
display([from])
return
}
}
end
procedure run2run(from,dest,limitmove)
local fcard, dcard, s
# set fcard to the high card of the run or fail if there are no
# cards in the run
fcard := (run[from][1] | fail)
# set dcard to the low card of the run or null if there are no
# cards in the run
dcard := (run[dest][-1] | &null)
# avoid king thrashing in automatic mode (there's no point in
# moving a king high run to an empty run if there are no hidden
# cards under the king high run to be exposed)
if amode > 0 & /dcard & getvalue(fcard) = 13 & *hidden[from] = 0 then
fail
# avoid wasted movement if the limit move parameter was passed
# (there's no point in moving a pile if there are no hidden cards
# under it unless you have a king in the deck)
if amode > 0 & \limitmove & *hidden[from] = 0 then fail
# check to see if the move is legal
if chk2run(fcard,dcard) then {
# add the from run to the dest run
run[dest] |||:= run[from]
# empty the from run
run[from] := []
# display the updated runs
display([from,dest])
# if there are hidden cards to expose
if *hidden[from] > 0 then {
# while there are aces on the top of the hidden
# pile move them to the aces piles
while getvalue(hidden[from][1]) = 1 do {
s := getsuite(hidden[from][1])
push(ace[s],get(hidden[from]))
display(["ace"])
}
# put the top hidden card in the empty run and
# display the hidden counts
put(run[from],get(hidden[from]))
display(["hide"])
}
# update the from run display
display([from])
return
}
end
procedure chk2run(fcard,dcard)
# if dcard is null the from card must be a king or
if ( /dcard & (getvalue(fcard) = 13 | fail) ) |
# if the value of dcard is one more than fcard and
( getvalue(dcard) - 1 = getvalue(fcard) &
# their colors are different they can be moved
getcolor(dcard) ~= getcolor(fcard) ) then return
end
# this procedure finishes a game where there are no hidden cards left and the
# deck is empty
procedure finish(cheat)
movecursor(16,0)
writes("\007I'll finish for you now...\007")
# finish moving the runs to the aces piles
while movecard(!"7654321","a")
movecursor(16,0)
writes(CLREOL,"\007You WIN\007")
if cheat > 0 then
write("...but you cheated ", cheat, " time", plural(cheat), "!")
else
write("...and without cheating...congratulations!")
exit(0)
end
# this procedure takes over and plays the game for you
procedure autopilot(cheat)
local tseq, totdeck
movecursor(16,0)
writes("Going into automatic mode...")
if proc(kbhit) then writes( " [Press any key to return.]")
writes(CLREOL)
# set auto pilot mode
amode := 1
# while there are cards that aren't in runs or the aces piles
while (cardsleft()) > 0 do {
# try to make any run to run plays that will uncover
# hidden cards
while movecard(!"7654321",!"1234567","hidden")
# try for a move that will leave an empty spot
if movecard(!"7654321",!"1234567") then next
# if there's no overturned card thumb the deck
if *over = 0 then thumb()
# initialize the thumbed sequence set
tseq := set()
# try thumbing the deck for a play
totdeck := *deck + *over
every 1 to totdeck do {
if movecard("d",!"1234567a") then break
if kbhit() then {
movecursor(16,0)
write("Now in manual mode ...", CLREOL)
amode := 0
return
}
insert(tseq,over[1])
thumb()
}
# if we made a deck to somewhere move continue
if totdeck > *deck + *over then next
# try for a run to ace play
if movecard(!"7654321","a") then next
# if we got this far and couldn't play give up
break
}
# position the cursor for the news
movecursor(16,30)
# if all the cards are in runs or the aces piles
if cardsleft() = 0 then {
writes("\007YEA...\007", CLREOL)
# finish moving the runs to the aces piles
while movecard(!"7654321","a")
movecursor(16,37)
write("I won!!!!!")
if cheat > 0 then write("But you cheated ", cheat, " time",
plural(cheat), ".")
exit(0)
} else {
writes("I couldn't win this time.", CLREOL)
if cheat > 0 then writes(" But you cheated ", cheat, " time",
plural(cheat), ".")
# print the information needed to verify that the
# program couldn't win
movecursor(17,0)
writes(*deck + *over," card", plural(*deck + *over),
" in deck.")
if *tseq > 0 then {
write(" Final thumbing sequence:")
every writes(" ",face(!tseq))
}
write()
exit(1)
}
end
# this procedure updates the display
procedure display(parts)
local r, a, h, c, part, l
static long # a list with the length of each run
initial {
long := [1,1,1,1,1,1,1]
}
# if the argument list is empty or contains "all" update all parts
# of the screen
if /parts | !parts == "all" then {
long := [1,1,1,1,1,1,1]
parts := [ "label","hide","ace","deck",
"1","2","3","4","5","6","7" ]
}
# for every part in the argument list
every part := !parts do case part of {
# display the run number, aces and deck labels
"label" : {
every r := 1 to 7 do {
movecursor(1,7+(r-1)*5)
writes(r)
}
movecursor(1,56)
writes("ACES")
movecursor(6,56)
writes("DECK")
}
# display the hidden card counts
"hide" : {
every r := 1 to 7 do {
movecursor(1,9+(r-1)*5)
writes(0 < *hidden[r] | " ")
}
}
# display the aces piles
"ace" : {
movecursor(3,49)
every a := 1 to 4 do
writes(face(ace[a][-1]) | "---"," ")
}
# display the deck and overturned piles
"deck" : {
movecursor(8,54)
writes((*deck > 0 , " # ") | " "," ")
writes(face(!over) | " "," ")
}
# display the runs piles
"1" | "2" | "3" | "4" | "5" | "6" | "7" : {
l := ((long[part] > *run[part]) | long[part])
h := ((long[part] < *run[part]) | long[part])
l <:= 1
every c := l to h do {
movecursor(c+1,7+(part-1)*5)
writes(face(run[part][c]) | " ")
}
long[part] := *run[part]
}
}
return
end
# A correction to my corrections for solit.icn.
# The zero case never happens in solit.icn, but this
# procedure is more general. From Phillip L. Thomas:
# Return "s" for values equal to 0 or greater than 1, e.g.,
# 0 horses, 1 horse, 2 horses.
procedure plural(n)
/n := 0 # Handle &null values.
if n = 1 then return ""
else return "s"
end
# this procedure thumbs the deck 3 cards at a time
procedure thumb()
local s
# if the deck is all thumbed
if *deck = 0 then {
# if there are no cards in the overturned pile either return
if *over = 0 then return
# turn the overturned pile back over
while put(deck,pull(over))
}
# turn over 3 cards or at least what's left
every 1 to 3 do if *deck > 0 then push(over,get(deck))
display(["deck"])
# while there are aces on top of the overturned pile move them to
# the aces pile
while getvalue(over[1]) = 1 do {
s := getsuite(over[1])
push(ace[s],get(over))
display(["deck","ace"])
}
# if the overturned pile is empty again and there are still cards
# in the deck thumb again (this will only happen if the top three
# cards in the deck were aces...not likely but)
if *over = 0 & *deck > 0 then thumb()
return
end
# this procedure shuffles a deck of cards
procedure shuffle(cards)
static fulldeck # the default shuffle is a full deck of cards
initial {
# set up a full deck of cards
fulldeck := []
every put(fulldeck,1 to 52)
# if seed isn't already set use the time to set it
if /seed then seed := integer(&clock[1:3] ||
&clock[4:6] ||
&clock[7:0])
# seed the random number generator for the first time
&random := seed
}
# if no cards were passed use the full deck
/cards := fulldeck
# copy the cards (shuffling is destructive)
deck := copy(cards)
# shuffle the deck
every !deck :=: ?deck
return deck
end
procedure face(card)
static cstr, # the list of card color escape sequences
vstr, # the list of card value labels
sstr # the list of card suite labels
initial {
cstr := [RED,BLACK]
vstr := ["A",2,3,4,5,6,7,8,9,10,"J","Q","K"]
if \VERSION == "IBM PC" then
sstr := ["\003","\004","\005","\006"]
else
sstr := ["H","D","S","C"]
}
# return a string containing the correct color change escape sequence,
# the value and suite labels right justified in 3 characters,
# and the back to normal escape sequence
return cstr[getcolor(card)] ||
right(vstr[getvalue(card)] || sstr[getsuite(card)],3) ||
NORMAL
end
# a deck of cards is made up of 4 suites of 13 values; 1-13, 14-26, etc.
procedure getvalue(card)
return (card-1) % 13 + 1
end
# each suite of cards is made up of ace - king (1-13)
procedure getsuite(card)
return (card-1) / 13 + 1
end
# the first two suites are hearts and diamonds so all cards 1-26 are red
# and all cards 27-52 are black.
procedure getcolor(card)
return (card-1) / 26 + 1
end
# this procedure counts cards that aren't in runs or the aces piles
procedure cardsleft()
local totleft
# count the cards left in the deck and the overturned pile
totleft := *deck + *over
# add in the hidden cards
every totleft +:= *!hidden
return totleft
end
# this procedure implements a device dependent cursor positioning scheme
procedure movecursor(line,col)
if \VERSION == "Atari ST" then
writes("\eY",&ascii[33+line],&ascii[33+col])
else if \VERSION == "hp2621" then
writes("\e&a",col,"c",line,"Y")
else
writes("\e[",line,";",col,"H")
end
# all invalid commands call this procedure
procedure whoops(cmd)
local i, j
movecursor(15,0)
writes("\007Invalid Command: '",cmd,"'\007")
# this delay loop can be diddled for different machines
every i := 1 to 500 do j := i
movecursor(15,0)
writes("\007",CLREOL,"\007")
return
end
# display the help message
procedure disphelp()
static help
initial {
help := [
"Commands: t or RETURN : thumb the deck 3 cards at a time",
" m [d1-7] [1-7a] : move cards or runs",
" a : turn on the auto pilot (in case you get stuck)",
" s : shuffle the deck (cheat!)",
" p [2-7] : put a hidden pile into the deck (cheat!)",
" d : print the cards in the deck (cheat!)",
" [2-7] : print the cards in a hidden pile (cheat!)",
" h or ? : print this command summary",
" r : print the rules of the game",
" q : quit",
"",
"Moving: 1-7, 'd', or 'a' select the source and destination for a move. ",
" Valid moves are from a run to a run, from the deck to a run,",
" from a run to an ace pile, and from the deck to an ace pile.",
"",
"Cheating: Commands that allow cheating are available but they will count",
" against you in your next life!"
]
}
writes(CLEAR)
every write(!help)
writes("Hit RETURN")
read()
writes(CLEAR)
display()
return
end
# display the rules message
procedure disprules()
static rules
initial {
rules := [
"Object: The object of this game is to get all of the cards in each suit",
" in order on the proper ace pile.",
" ",
"Rules: Cards are played on the ace piles in ascending order: A,2,...,K. ",
" All aces are automatically placed in the correct aces pile as",
" they're found in the deck or in a pile of hidden cards. Once a",
" card is placed in an ace pile it can't be removed.",
"",
" Cards must be played in descending order: K,Q,..,2, on the seven",
" runs which are initially dealt. They must always be played on a",
" card of the opposite color. Runs must always be moved as a",
" whole, unless you're moving the lowest card on a run to the",
" correct ace pile.",
"",
" Whenever a whole run is moved, the top hidden card is turned",
" over, thus becoming the beginning of a new run. If there are no",
" hidden cards left, a space is created which can only be filled by",
" a king.",
"",
" The rest of the deck is thumbed 3 cards at a time, until you spot",
" a valid move. Whenever the bottom of the deck is reached, the",
" cards are turned over and you can continue thumbing."
]
}
writes(CLEAR)
every write(!rules)
writes("Hit RETURN")
read()
writes(CLEAR)
display()
return
end
|