summaryrefslogtreecommitdiff
path: root/src/runtime/oarith.r
blob: b3ca88c3d8e7285f7c53f3502a6016031123326b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
/*
 * File: oarith.r
 *  Contents: arithmetic operators + - * / % ^.  Auxiliary routines
 *   iipow, ripow.
 *
 * The arithmetic operators all follow a canonical conversion
 * protocol encapsulated in the macro ArithOp.
 */

int over_flow = 0;

#begdef ArithOp(icon_op, func_name, c_int_op, c_real_op)

   operator{1} icon_op func_name(x, y)
      declare {
#ifdef LargeInts
         tended struct descrip lx, ly;
#endif					/* LargeInts */
	 C_integer irslt;
         }
     arith_case (x, y) of {
         C_integer: {
            abstract {
               return integer
               }
            inline {
               extern int over_flow;
               c_int_op(x,y);
               }
            }
         integer: { /* large integers only */
            abstract {
               return integer
               }
            inline {
               big_ ## c_int_op(x,y);
               }
            }
         C_double: {
            abstract {
               return real
               }
            inline {
               c_real_op(x, y);
               }
            }
         }
end

#enddef

/*
 * x / y
 */

#begdef big_Divide(x,y)
{
   if ( ( Type ( y ) == T_Integer ) && ( IntVal ( y ) == 0 ) )
      runerr(201);  /* Divide fix */

   if (bigdiv(&x,&y,&result) == Error) /* alcbignum failed */
      runerr(0);
   return result;
}
#enddef
#begdef Divide(x,y)
{
   if ( y == 0 )
      runerr(201);  /* divide fix */

   irslt = div3(x,y);
   if (over_flow) {
#ifdef LargeInts
      MakeInt(x,&lx);
      MakeInt(y,&ly);
      if (bigdiv(&lx,&ly,&result) == Error) /* alcbignum failed */
	 runerr(0);
      return result;
#else					/* LargeInts */
      runerr(203);
#endif					/* LargeInts */
      }
   else return C_integer irslt;
}
#enddef
#begdef RealDivide(x,y)
{
   double z;

   if (y == 0.0)
      runerr(204);
   z = x / y;
   return C_double z;
}
#enddef


ArithOp( / , divide , Divide , RealDivide)

/*
 * x - y
 */

#begdef big_Sub(x,y)
{
   if (bigsub(&x,&y,&result) == Error) /* alcbignum failed */
      runerr(0);
   return result;
}
#enddef

#begdef Sub(x,y)
   irslt = sub(x,y);
   if (over_flow) {
#ifdef LargeInts
      MakeInt(x,&lx);
      MakeInt(y,&ly);
      if (bigsub(&lx,&ly,&result) == Error) /* alcbignum failed */
         runerr(0);
      return result;
#else					/* LargeInts */
      runerr(203);
#endif					/* LargeInts */
      }
   else return C_integer irslt;
#enddef

#define RealSub(x,y) return C_double (x - y);

ArithOp( - , minus , Sub , RealSub)


/*
 * x % y
 */
#define Abs(x) ((x) > 0 ? (x) : -(x))

#begdef big_IntMod(x,y)
{
   if ( ( Type ( y ) == T_Integer ) && ( IntVal ( y ) == 0 ) ) {
      irunerr(202,0);
      errorfail;
      }
   if (bigmod(&x,&y,&result) == Error)
      runerr(0);
   return result;
}
#enddef

#begdef IntMod(x,y)
{
   irslt = mod3(x,y);
   if (over_flow) {
      irunerr(202,y);
      errorfail;
      }
   return C_integer irslt;
}
#enddef

#begdef RealMod(x,y)
{
   double d;

   if (y == 0.0)
      runerr(204);

   d = fmod(x, y);
   /* d must have the same sign as x */
   if (x < 0.0) {
      if (d > 0.0) {
         d -= Abs(y);
         }
      }
   else if (d < 0.0) {
      d += Abs(y);
      }
   return C_double d;
}
#enddef

ArithOp( % , mod , IntMod , RealMod)

/*
 * x * y
 */

#begdef big_Mpy(x,y)
{
   if (bigmul(&x,&y,&result) == Error)
      runerr(0);
   return result;
}
#enddef

#begdef Mpy(x,y)
   irslt = mul(x,y);
   if (over_flow) {
#ifdef LargeInts
      MakeInt(x,&lx);
      MakeInt(y,&ly);
      if (bigmul(&lx,&ly,&result) == Error) /* alcbignum failed */
         runerr(0);
      return result;
#else					/* LargeInts */
      runerr(203);
#endif					/* LargeInts */
      }
   else return C_integer irslt;
#enddef


#define RealMpy(x,y) return C_double (x * y);

ArithOp( * , mult , Mpy , RealMpy)


"-x - negate x."

operator{1} - neg(x)
   if cnv:(exact)C_integer(x) then {
      abstract {
         return integer
         }
      inline {
	    C_integer i;
	    extern int over_flow;

	    i = neg(x);
	    if (over_flow) {
#ifdef LargeInts
	       struct descrip tmp;
	       MakeInt(x,&tmp);
	       if (bigneg(&tmp, &result) == Error)  /* alcbignum failed */
	          runerr(0);
               return result;
#else					/* LargeInts */
	       irunerr(203,x);
               errorfail;
#endif					/* LargeInts */
               }
         return C_integer i;
         }
      }
#ifdef LargeInts
   else if cnv:(exact) integer(x) then {
      abstract {
         return integer
         }
      inline {
	 if (bigneg(&x, &result) == Error)  /* alcbignum failed */
	    runerr(0);
	 return result;
         }
      }
#endif					/* LargeInts */
   else {
      if !cnv:C_double(x) then
         runerr(102, x)
      abstract {
         return real
         }
      inline {
         double drslt;
	 drslt = -x;
         return C_double drslt;
         }
      }
end


"+x - convert x to a number."
/*
 *  Operational definition: generate runerr if x is not numeric.
 */
operator{1} + number(x)
   if cnv:(exact)C_integer(x) then {
       abstract {
          return integer
          }
       inline {
          return C_integer x;
          }
      }
#ifdef LargeInts
   else if cnv:(exact) integer(x) then {
       abstract {
          return integer
          }
       inline {
          return x;
          }
      }
#endif					/* LargeInts */
   else if cnv:C_double(x) then {
       abstract {
          return real
          }
       inline {
          return C_double x;
          }
      }
   else
      runerr(102, x)
end

/*
 * x + y
 */

#begdef big_Add(x,y)
{
   if (bigadd(&x,&y,&result) == Error)
      runerr(0);
   return result;
}
#enddef

#begdef Add(x,y)
   irslt = add(x,y);
   if (over_flow) {
#ifdef LargeInts
      MakeInt(x,&lx);
      MakeInt(y,&ly);
      if (bigadd(&lx, &ly, &result) == Error)  /* alcbignum failed */
	 runerr(0);
      return result;
#else					/* LargeInts */
      runerr(203);
#endif					/* LargeInts */
      }
   else return C_integer irslt;
#enddef

#define RealAdd(x,y) return C_double (x + y);

ArithOp( + , plus , Add , RealAdd)


"x ^ y - raise x to the y power."

operator{1} ^ powr(x, y)
   if cnv:(exact)C_integer(y) then {
      if cnv:(exact)integer(x) then {
	 abstract {
	    return integer
	    }
	 inline {
#ifdef LargeInts
	    tended struct descrip ly;
	    MakeInt ( y, &ly );
	    if (bigpow(&x, &ly, &result) == Error)  /* alcbignum failed */
	       runerr(0);
	    return result;
#else
	    extern int over_flow;
	    C_integer r = iipow(IntVal(x), y);
	    if (over_flow)
	       runerr(203);
	    return C_integer r;
#endif
	   }
	 }
      else {
	 if !cnv:C_double(x) then
	    runerr(102, x)
	 abstract {
	    return real
	    }
	 inline {
	    if (ripow( x, y, &result) ==  Error)
	       runerr(0);
	    return result;
	    }
	 }
      }
#ifdef LargeInts
   else if cnv:(exact)integer(y) then {
      if cnv:(exact)integer(x) then {
	 abstract {
	    return integer
	    }
	 inline {
	    if (bigpow(&x, &y, &result) == Error)  /* alcbignum failed */
	       runerr(0);
	    return result;
	    }
	 }
      else {
	 if !cnv:C_double(x) then
	    runerr(102, x)
	 abstract {
	    return real
	    }
	 inline {
	    if ( bigpowri ( x, &y, &result ) == Error )
	       runerr(0);
	    return result;
	    }
	 }
      }
#endif					/* LargeInts */
   else {
      if !cnv:C_double(x) then
	 runerr(102, x)
      if !cnv:C_double(y) then
	 runerr(102, y)
      abstract {
	 return real
	 }
      inline {
	 if (x == 0.0 && y < 0.0)
	     runerr(204);
	 if (x < 0.0)
	    runerr(206);
	 return C_double pow(x,y);
	 }
      }
end

#if COMPILER || !(defined LargeInts)
/*
 * iipow - raise an integer to an integral power.
 */
C_integer iipow(n1, n2)
C_integer n1, n2;
   {
   C_integer result;

   /* Handle some special cases first */
   over_flow = 0;
   switch ( n1 ) {
      case 1:
	 return 1;
      case -1:
	 /* Result depends on whether n2 is even or odd */
	 return ( n2 & 01 ) ? -1 : 1;
      case 0:
	 if ( n2 <= 0 )
	    over_flow = 1;
	 return 0;
      default:
	 if (n2 < 0)
	    return 0;
      }

   result = 1L;
   for ( ; ; ) {
      if (n2 & 01L)
	 {
	 result = mul(result, n1);
	 if (over_flow)
	    return 0;
	 }

      if ( ( n2 >>= 1 ) == 0 ) break;
      n1 = mul(n1, n1);
      if (over_flow)
	 return 0;
      }
   over_flow = 0;
   return result;
   }
#endif					/* COMPILER || !(defined LargeInts) */


/*
 * ripow - raise a real number to an integral power.
 */
int ripow(r, n, drslt)
double r;
C_integer n;
dptr drslt;
   {
   double retval;

   if (r == 0.0 && n <= 0)
      ReturnErrNum(204, Error);
   if (n < 0) {
      /*
       * r ^ n = ( 1/r ) * ( ( 1/r ) ^ ( -1 - n ) )
       *
       * (-1) - n never overflows, even when n == MinLong.
       */
      n = (-1) - n;
      r = 1.0 / r;
      retval = r;
      }
   else
      retval = 1.0;

   /* multiply retval by r ^ n */
   while (n > 0) {
      if (n & 01L)
	 retval *= r;
      r *= r;
      n >>= 1;
      }
   Protect(BlkLoc(*drslt) = (union block *)alcreal(retval), return Error);
   drslt->dword = D_Real;
   return Succeeded;
   }