summaryrefslogtreecommitdiff
path: root/gdbstub.c
diff options
context:
space:
mode:
authorRobert Mustacchi <rm@joyent.com>2011-06-24 13:49:54 -0700
committerRobert Mustacchi <rm@joyent.com>2011-06-24 13:49:54 -0700
commit68396ea9c0fe4f75ce30b1eba2c44c43c13344bb (patch)
tree802587d411d9db461e6500c5b635043315f81c27 /gdbstub.c
downloadillumos-kvm-cmd-68396ea9c0fe4f75ce30b1eba2c44c43c13344bb.tar.gz
Initial commit of d32e8d0b8d9e0ef7cf7ab2e74548982972789dfc from qemu-kvm
Diffstat (limited to 'gdbstub.c')
-rw-r--r--gdbstub.c2695
1 files changed, 2695 insertions, 0 deletions
diff --git a/gdbstub.c b/gdbstub.c
new file mode 100644
index 0000000..14e8b9b
--- /dev/null
+++ b/gdbstub.c
@@ -0,0 +1,2695 @@
+/*
+ * gdb server stub
+ *
+ * Copyright (c) 2003-2005 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#include "config.h"
+#include "qemu-common.h"
+#ifdef CONFIG_USER_ONLY
+#include <stdlib.h>
+#include <stdio.h>
+#include <stdarg.h>
+#include <string.h>
+#include <errno.h>
+#include <unistd.h>
+#include <fcntl.h>
+
+#include "qemu.h"
+#else
+#include "monitor.h"
+#include "qemu-char.h"
+#include "sysemu.h"
+#include "gdbstub.h"
+#endif
+#include "qemu-kvm.h"
+
+#define MAX_PACKET_LENGTH 4096
+
+#include "exec-all.h"
+#include "qemu_socket.h"
+#include "kvm.h"
+
+
+enum {
+ GDB_SIGNAL_0 = 0,
+ GDB_SIGNAL_INT = 2,
+ GDB_SIGNAL_TRAP = 5,
+ GDB_SIGNAL_UNKNOWN = 143
+};
+
+#ifdef CONFIG_USER_ONLY
+
+/* Map target signal numbers to GDB protocol signal numbers and vice
+ * versa. For user emulation's currently supported systems, we can
+ * assume most signals are defined.
+ */
+
+static int gdb_signal_table[] = {
+ 0,
+ TARGET_SIGHUP,
+ TARGET_SIGINT,
+ TARGET_SIGQUIT,
+ TARGET_SIGILL,
+ TARGET_SIGTRAP,
+ TARGET_SIGABRT,
+ -1, /* SIGEMT */
+ TARGET_SIGFPE,
+ TARGET_SIGKILL,
+ TARGET_SIGBUS,
+ TARGET_SIGSEGV,
+ TARGET_SIGSYS,
+ TARGET_SIGPIPE,
+ TARGET_SIGALRM,
+ TARGET_SIGTERM,
+ TARGET_SIGURG,
+ TARGET_SIGSTOP,
+ TARGET_SIGTSTP,
+ TARGET_SIGCONT,
+ TARGET_SIGCHLD,
+ TARGET_SIGTTIN,
+ TARGET_SIGTTOU,
+ TARGET_SIGIO,
+ TARGET_SIGXCPU,
+ TARGET_SIGXFSZ,
+ TARGET_SIGVTALRM,
+ TARGET_SIGPROF,
+ TARGET_SIGWINCH,
+ -1, /* SIGLOST */
+ TARGET_SIGUSR1,
+ TARGET_SIGUSR2,
+#ifdef TARGET_SIGPWR
+ TARGET_SIGPWR,
+#else
+ -1,
+#endif
+ -1, /* SIGPOLL */
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+#ifdef __SIGRTMIN
+ __SIGRTMIN + 1,
+ __SIGRTMIN + 2,
+ __SIGRTMIN + 3,
+ __SIGRTMIN + 4,
+ __SIGRTMIN + 5,
+ __SIGRTMIN + 6,
+ __SIGRTMIN + 7,
+ __SIGRTMIN + 8,
+ __SIGRTMIN + 9,
+ __SIGRTMIN + 10,
+ __SIGRTMIN + 11,
+ __SIGRTMIN + 12,
+ __SIGRTMIN + 13,
+ __SIGRTMIN + 14,
+ __SIGRTMIN + 15,
+ __SIGRTMIN + 16,
+ __SIGRTMIN + 17,
+ __SIGRTMIN + 18,
+ __SIGRTMIN + 19,
+ __SIGRTMIN + 20,
+ __SIGRTMIN + 21,
+ __SIGRTMIN + 22,
+ __SIGRTMIN + 23,
+ __SIGRTMIN + 24,
+ __SIGRTMIN + 25,
+ __SIGRTMIN + 26,
+ __SIGRTMIN + 27,
+ __SIGRTMIN + 28,
+ __SIGRTMIN + 29,
+ __SIGRTMIN + 30,
+ __SIGRTMIN + 31,
+ -1, /* SIGCANCEL */
+ __SIGRTMIN,
+ __SIGRTMIN + 32,
+ __SIGRTMIN + 33,
+ __SIGRTMIN + 34,
+ __SIGRTMIN + 35,
+ __SIGRTMIN + 36,
+ __SIGRTMIN + 37,
+ __SIGRTMIN + 38,
+ __SIGRTMIN + 39,
+ __SIGRTMIN + 40,
+ __SIGRTMIN + 41,
+ __SIGRTMIN + 42,
+ __SIGRTMIN + 43,
+ __SIGRTMIN + 44,
+ __SIGRTMIN + 45,
+ __SIGRTMIN + 46,
+ __SIGRTMIN + 47,
+ __SIGRTMIN + 48,
+ __SIGRTMIN + 49,
+ __SIGRTMIN + 50,
+ __SIGRTMIN + 51,
+ __SIGRTMIN + 52,
+ __SIGRTMIN + 53,
+ __SIGRTMIN + 54,
+ __SIGRTMIN + 55,
+ __SIGRTMIN + 56,
+ __SIGRTMIN + 57,
+ __SIGRTMIN + 58,
+ __SIGRTMIN + 59,
+ __SIGRTMIN + 60,
+ __SIGRTMIN + 61,
+ __SIGRTMIN + 62,
+ __SIGRTMIN + 63,
+ __SIGRTMIN + 64,
+ __SIGRTMIN + 65,
+ __SIGRTMIN + 66,
+ __SIGRTMIN + 67,
+ __SIGRTMIN + 68,
+ __SIGRTMIN + 69,
+ __SIGRTMIN + 70,
+ __SIGRTMIN + 71,
+ __SIGRTMIN + 72,
+ __SIGRTMIN + 73,
+ __SIGRTMIN + 74,
+ __SIGRTMIN + 75,
+ __SIGRTMIN + 76,
+ __SIGRTMIN + 77,
+ __SIGRTMIN + 78,
+ __SIGRTMIN + 79,
+ __SIGRTMIN + 80,
+ __SIGRTMIN + 81,
+ __SIGRTMIN + 82,
+ __SIGRTMIN + 83,
+ __SIGRTMIN + 84,
+ __SIGRTMIN + 85,
+ __SIGRTMIN + 86,
+ __SIGRTMIN + 87,
+ __SIGRTMIN + 88,
+ __SIGRTMIN + 89,
+ __SIGRTMIN + 90,
+ __SIGRTMIN + 91,
+ __SIGRTMIN + 92,
+ __SIGRTMIN + 93,
+ __SIGRTMIN + 94,
+ __SIGRTMIN + 95,
+ -1, /* SIGINFO */
+ -1, /* UNKNOWN */
+ -1, /* DEFAULT */
+ -1,
+ -1,
+ -1,
+ -1,
+ -1,
+ -1
+#endif
+};
+#else
+/* In system mode we only need SIGINT and SIGTRAP; other signals
+ are not yet supported. */
+
+enum {
+ TARGET_SIGINT = 2,
+ TARGET_SIGTRAP = 5
+};
+
+static int gdb_signal_table[] = {
+ -1,
+ -1,
+ TARGET_SIGINT,
+ -1,
+ -1,
+ TARGET_SIGTRAP
+};
+#endif
+
+#ifdef CONFIG_USER_ONLY
+static int target_signal_to_gdb (int sig)
+{
+ int i;
+ for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
+ if (gdb_signal_table[i] == sig)
+ return i;
+ return GDB_SIGNAL_UNKNOWN;
+}
+#endif
+
+static int gdb_signal_to_target (int sig)
+{
+ if (sig < ARRAY_SIZE (gdb_signal_table))
+ return gdb_signal_table[sig];
+ else
+ return -1;
+}
+
+//#define DEBUG_GDB
+
+typedef struct GDBRegisterState {
+ int base_reg;
+ int num_regs;
+ gdb_reg_cb get_reg;
+ gdb_reg_cb set_reg;
+ const char *xml;
+ struct GDBRegisterState *next;
+} GDBRegisterState;
+
+enum RSState {
+ RS_INACTIVE,
+ RS_IDLE,
+ RS_GETLINE,
+ RS_CHKSUM1,
+ RS_CHKSUM2,
+ RS_SYSCALL,
+};
+typedef struct GDBState {
+ CPUState *c_cpu; /* current CPU for step/continue ops */
+ CPUState *g_cpu; /* current CPU for other ops */
+ CPUState *query_cpu; /* for q{f|s}ThreadInfo */
+ enum RSState state; /* parsing state */
+ char line_buf[MAX_PACKET_LENGTH];
+ int line_buf_index;
+ int line_csum;
+ uint8_t last_packet[MAX_PACKET_LENGTH + 4];
+ int last_packet_len;
+ int signal;
+#ifdef CONFIG_USER_ONLY
+ int fd;
+ int running_state;
+#else
+ CharDriverState *chr;
+ CharDriverState *mon_chr;
+#endif
+} GDBState;
+
+/* By default use no IRQs and no timers while single stepping so as to
+ * make single stepping like an ICE HW step.
+ */
+static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
+
+static GDBState *gdbserver_state;
+
+/* This is an ugly hack to cope with both new and old gdb.
+ If gdb sends qXfer:features:read then assume we're talking to a newish
+ gdb that understands target descriptions. */
+static int gdb_has_xml;
+
+#ifdef CONFIG_USER_ONLY
+/* XXX: This is not thread safe. Do we care? */
+static int gdbserver_fd = -1;
+
+static int get_char(GDBState *s)
+{
+ uint8_t ch;
+ int ret;
+
+ for(;;) {
+ ret = recv(s->fd, &ch, 1, 0);
+ if (ret < 0) {
+ if (errno == ECONNRESET)
+ s->fd = -1;
+ if (errno != EINTR && errno != EAGAIN)
+ return -1;
+ } else if (ret == 0) {
+ close(s->fd);
+ s->fd = -1;
+ return -1;
+ } else {
+ break;
+ }
+ }
+ return ch;
+}
+#endif
+
+static gdb_syscall_complete_cb gdb_current_syscall_cb;
+
+static enum {
+ GDB_SYS_UNKNOWN,
+ GDB_SYS_ENABLED,
+ GDB_SYS_DISABLED,
+} gdb_syscall_mode;
+
+/* If gdb is connected when the first semihosting syscall occurs then use
+ remote gdb syscalls. Otherwise use native file IO. */
+int use_gdb_syscalls(void)
+{
+ if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
+ gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
+ : GDB_SYS_DISABLED);
+ }
+ return gdb_syscall_mode == GDB_SYS_ENABLED;
+}
+
+/* Resume execution. */
+static inline void gdb_continue(GDBState *s)
+{
+#ifdef CONFIG_USER_ONLY
+ s->running_state = 1;
+#else
+ vm_start();
+#endif
+}
+
+static void put_buffer(GDBState *s, const uint8_t *buf, int len)
+{
+#ifdef CONFIG_USER_ONLY
+ int ret;
+
+ while (len > 0) {
+ ret = send(s->fd, buf, len, 0);
+ if (ret < 0) {
+ if (errno != EINTR && errno != EAGAIN)
+ return;
+ } else {
+ buf += ret;
+ len -= ret;
+ }
+ }
+#else
+ qemu_chr_write(s->chr, buf, len);
+#endif
+}
+
+static inline int fromhex(int v)
+{
+ if (v >= '0' && v <= '9')
+ return v - '0';
+ else if (v >= 'A' && v <= 'F')
+ return v - 'A' + 10;
+ else if (v >= 'a' && v <= 'f')
+ return v - 'a' + 10;
+ else
+ return 0;
+}
+
+static inline int tohex(int v)
+{
+ if (v < 10)
+ return v + '0';
+ else
+ return v - 10 + 'a';
+}
+
+static void memtohex(char *buf, const uint8_t *mem, int len)
+{
+ int i, c;
+ char *q;
+ q = buf;
+ for(i = 0; i < len; i++) {
+ c = mem[i];
+ *q++ = tohex(c >> 4);
+ *q++ = tohex(c & 0xf);
+ }
+ *q = '\0';
+}
+
+static void hextomem(uint8_t *mem, const char *buf, int len)
+{
+ int i;
+
+ for(i = 0; i < len; i++) {
+ mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
+ buf += 2;
+ }
+}
+
+/* return -1 if error, 0 if OK */
+static int put_packet_binary(GDBState *s, const char *buf, int len)
+{
+ int csum, i;
+ uint8_t *p;
+
+ for(;;) {
+ p = s->last_packet;
+ *(p++) = '$';
+ memcpy(p, buf, len);
+ p += len;
+ csum = 0;
+ for(i = 0; i < len; i++) {
+ csum += buf[i];
+ }
+ *(p++) = '#';
+ *(p++) = tohex((csum >> 4) & 0xf);
+ *(p++) = tohex((csum) & 0xf);
+
+ s->last_packet_len = p - s->last_packet;
+ put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
+
+#ifdef CONFIG_USER_ONLY
+ i = get_char(s);
+ if (i < 0)
+ return -1;
+ if (i == '+')
+ break;
+#else
+ break;
+#endif
+ }
+ return 0;
+}
+
+/* return -1 if error, 0 if OK */
+static int put_packet(GDBState *s, const char *buf)
+{
+#ifdef DEBUG_GDB
+ printf("reply='%s'\n", buf);
+#endif
+
+ return put_packet_binary(s, buf, strlen(buf));
+}
+
+/* The GDB remote protocol transfers values in target byte order. This means
+ we can use the raw memory access routines to access the value buffer.
+ Conveniently, these also handle the case where the buffer is mis-aligned.
+ */
+#define GET_REG8(val) do { \
+ stb_p(mem_buf, val); \
+ return 1; \
+ } while(0)
+#define GET_REG16(val) do { \
+ stw_p(mem_buf, val); \
+ return 2; \
+ } while(0)
+#define GET_REG32(val) do { \
+ stl_p(mem_buf, val); \
+ return 4; \
+ } while(0)
+#define GET_REG64(val) do { \
+ stq_p(mem_buf, val); \
+ return 8; \
+ } while(0)
+
+#if TARGET_LONG_BITS == 64
+#define GET_REGL(val) GET_REG64(val)
+#define ldtul_p(addr) ldq_p(addr)
+#else
+#define GET_REGL(val) GET_REG32(val)
+#define ldtul_p(addr) ldl_p(addr)
+#endif
+
+#if defined(TARGET_I386)
+
+#ifdef TARGET_X86_64
+static const int gpr_map[16] = {
+ R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
+ 8, 9, 10, 11, 12, 13, 14, 15
+};
+#else
+#define gpr_map gpr_map32
+#endif
+static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
+
+#define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
+
+#define IDX_IP_REG CPU_NB_REGS
+#define IDX_FLAGS_REG (IDX_IP_REG + 1)
+#define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
+#define IDX_FP_REGS (IDX_SEG_REGS + 6)
+#define IDX_XMM_REGS (IDX_FP_REGS + 16)
+#define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
+
+static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ if (n < CPU_NB_REGS) {
+ if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
+ GET_REG64(env->regs[gpr_map[n]]);
+ } else if (n < CPU_NB_REGS32) {
+ GET_REG32(env->regs[gpr_map32[n]]);
+ }
+ } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
+#ifdef USE_X86LDOUBLE
+ /* FIXME: byteswap float values - after fixing fpregs layout. */
+ memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
+#else
+ memset(mem_buf, 0, 10);
+#endif
+ return 10;
+ } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
+ n -= IDX_XMM_REGS;
+ if (n < CPU_NB_REGS32 ||
+ (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
+ stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
+ stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
+ return 16;
+ }
+ } else {
+ switch (n) {
+ case IDX_IP_REG:
+ if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
+ GET_REG64(env->eip);
+ } else {
+ GET_REG32(env->eip);
+ }
+ case IDX_FLAGS_REG: GET_REG32(env->eflags);
+
+ case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
+ case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
+ case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
+ case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
+ case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
+ case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
+
+ case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
+ case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
+ (env->fpstt & 0x7) << 11);
+ case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
+ case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
+ case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
+ case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
+ case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
+ case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
+
+ case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
+ }
+ }
+ return 0;
+}
+
+static int cpu_x86_gdb_load_seg(CPUState *env, int sreg, uint8_t *mem_buf)
+{
+ uint16_t selector = ldl_p(mem_buf);
+
+ if (selector != env->segs[sreg].selector) {
+#if defined(CONFIG_USER_ONLY)
+ cpu_x86_load_seg(env, sreg, selector);
+#else
+ unsigned int limit, flags;
+ target_ulong base;
+
+ if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
+ base = selector << 4;
+ limit = 0xffff;
+ flags = 0;
+ } else {
+ if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
+ return 4;
+ }
+ cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
+#endif
+ }
+ return 4;
+}
+
+static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ uint32_t tmp;
+
+ if (n < CPU_NB_REGS) {
+ if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
+ env->regs[gpr_map[n]] = ldtul_p(mem_buf);
+ return sizeof(target_ulong);
+ } else if (n < CPU_NB_REGS32) {
+ n = gpr_map32[n];
+ env->regs[n] &= ~0xffffffffUL;
+ env->regs[n] |= (uint32_t)ldl_p(mem_buf);
+ return 4;
+ }
+ } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
+#ifdef USE_X86LDOUBLE
+ /* FIXME: byteswap float values - after fixing fpregs layout. */
+ memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
+#endif
+ return 10;
+ } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
+ n -= IDX_XMM_REGS;
+ if (n < CPU_NB_REGS32 ||
+ (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
+ env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
+ env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
+ return 16;
+ }
+ } else {
+ switch (n) {
+ case IDX_IP_REG:
+ if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
+ env->eip = ldq_p(mem_buf);
+ return 8;
+ } else {
+ env->eip &= ~0xffffffffUL;
+ env->eip |= (uint32_t)ldl_p(mem_buf);
+ return 4;
+ }
+ case IDX_FLAGS_REG:
+ env->eflags = ldl_p(mem_buf);
+ return 4;
+
+ case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
+ case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
+ case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
+ case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
+ case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
+ case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
+
+ case IDX_FP_REGS + 8:
+ env->fpuc = ldl_p(mem_buf);
+ return 4;
+ case IDX_FP_REGS + 9:
+ tmp = ldl_p(mem_buf);
+ env->fpstt = (tmp >> 11) & 7;
+ env->fpus = tmp & ~0x3800;
+ return 4;
+ case IDX_FP_REGS + 10: /* ftag */ return 4;
+ case IDX_FP_REGS + 11: /* fiseg */ return 4;
+ case IDX_FP_REGS + 12: /* fioff */ return 4;
+ case IDX_FP_REGS + 13: /* foseg */ return 4;
+ case IDX_FP_REGS + 14: /* fooff */ return 4;
+ case IDX_FP_REGS + 15: /* fop */ return 4;
+
+ case IDX_MXCSR_REG:
+ env->mxcsr = ldl_p(mem_buf);
+ return 4;
+ }
+ }
+ /* Unrecognised register. */
+ return 0;
+}
+
+#elif defined (TARGET_PPC)
+
+/* Old gdb always expects FP registers. Newer (xml-aware) gdb only
+ expects whatever the target description contains. Due to a
+ historical mishap the FP registers appear in between core integer
+ regs and PC, MSR, CR, and so forth. We hack round this by giving the
+ FP regs zero size when talking to a newer gdb. */
+#define NUM_CORE_REGS 71
+#if defined (TARGET_PPC64)
+#define GDB_CORE_XML "power64-core.xml"
+#else
+#define GDB_CORE_XML "power-core.xml"
+#endif
+
+static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ if (n < 32) {
+ /* gprs */
+ GET_REGL(env->gpr[n]);
+ } else if (n < 64) {
+ /* fprs */
+ if (gdb_has_xml)
+ return 0;
+ stfq_p(mem_buf, env->fpr[n-32]);
+ return 8;
+ } else {
+ switch (n) {
+ case 64: GET_REGL(env->nip);
+ case 65: GET_REGL(env->msr);
+ case 66:
+ {
+ uint32_t cr = 0;
+ int i;
+ for (i = 0; i < 8; i++)
+ cr |= env->crf[i] << (32 - ((i + 1) * 4));
+ GET_REG32(cr);
+ }
+ case 67: GET_REGL(env->lr);
+ case 68: GET_REGL(env->ctr);
+ case 69: GET_REGL(env->xer);
+ case 70:
+ {
+ if (gdb_has_xml)
+ return 0;
+ GET_REG32(0); /* fpscr */
+ }
+ }
+ }
+ return 0;
+}
+
+static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ if (n < 32) {
+ /* gprs */
+ env->gpr[n] = ldtul_p(mem_buf);
+ return sizeof(target_ulong);
+ } else if (n < 64) {
+ /* fprs */
+ if (gdb_has_xml)
+ return 0;
+ env->fpr[n-32] = ldfq_p(mem_buf);
+ return 8;
+ } else {
+ switch (n) {
+ case 64:
+ env->nip = ldtul_p(mem_buf);
+ return sizeof(target_ulong);
+ case 65:
+ ppc_store_msr(env, ldtul_p(mem_buf));
+ return sizeof(target_ulong);
+ case 66:
+ {
+ uint32_t cr = ldl_p(mem_buf);
+ int i;
+ for (i = 0; i < 8; i++)
+ env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
+ return 4;
+ }
+ case 67:
+ env->lr = ldtul_p(mem_buf);
+ return sizeof(target_ulong);
+ case 68:
+ env->ctr = ldtul_p(mem_buf);
+ return sizeof(target_ulong);
+ case 69:
+ env->xer = ldtul_p(mem_buf);
+ return sizeof(target_ulong);
+ case 70:
+ /* fpscr */
+ if (gdb_has_xml)
+ return 0;
+ return 4;
+ }
+ }
+ return 0;
+}
+
+#elif defined (TARGET_SPARC)
+
+#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
+#define NUM_CORE_REGS 86
+#else
+#define NUM_CORE_REGS 72
+#endif
+
+#ifdef TARGET_ABI32
+#define GET_REGA(val) GET_REG32(val)
+#else
+#define GET_REGA(val) GET_REGL(val)
+#endif
+
+static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ if (n < 8) {
+ /* g0..g7 */
+ GET_REGA(env->gregs[n]);
+ }
+ if (n < 32) {
+ /* register window */
+ GET_REGA(env->regwptr[n - 8]);
+ }
+#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
+ if (n < 64) {
+ /* fprs */
+ GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
+ }
+ /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
+ switch (n) {
+ case 64: GET_REGA(env->y);
+ case 65: GET_REGA(cpu_get_psr(env));
+ case 66: GET_REGA(env->wim);
+ case 67: GET_REGA(env->tbr);
+ case 68: GET_REGA(env->pc);
+ case 69: GET_REGA(env->npc);
+ case 70: GET_REGA(env->fsr);
+ case 71: GET_REGA(0); /* csr */
+ default: GET_REGA(0);
+ }
+#else
+ if (n < 64) {
+ /* f0-f31 */
+ GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
+ }
+ if (n < 80) {
+ /* f32-f62 (double width, even numbers only) */
+ uint64_t val;
+
+ val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
+ val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
+ GET_REG64(val);
+ }
+ switch (n) {
+ case 80: GET_REGL(env->pc);
+ case 81: GET_REGL(env->npc);
+ case 82: GET_REGL((cpu_get_ccr(env) << 32) |
+ ((env->asi & 0xff) << 24) |
+ ((env->pstate & 0xfff) << 8) |
+ cpu_get_cwp64(env));
+ case 83: GET_REGL(env->fsr);
+ case 84: GET_REGL(env->fprs);
+ case 85: GET_REGL(env->y);
+ }
+#endif
+ return 0;
+}
+
+static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+#if defined(TARGET_ABI32)
+ abi_ulong tmp;
+
+ tmp = ldl_p(mem_buf);
+#else
+ target_ulong tmp;
+
+ tmp = ldtul_p(mem_buf);
+#endif
+
+ if (n < 8) {
+ /* g0..g7 */
+ env->gregs[n] = tmp;
+ } else if (n < 32) {
+ /* register window */
+ env->regwptr[n - 8] = tmp;
+ }
+#if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
+ else if (n < 64) {
+ /* fprs */
+ *((uint32_t *)&env->fpr[n - 32]) = tmp;
+ } else {
+ /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
+ switch (n) {
+ case 64: env->y = tmp; break;
+ case 65: cpu_put_psr(env, tmp); break;
+ case 66: env->wim = tmp; break;
+ case 67: env->tbr = tmp; break;
+ case 68: env->pc = tmp; break;
+ case 69: env->npc = tmp; break;
+ case 70: env->fsr = tmp; break;
+ default: return 0;
+ }
+ }
+ return 4;
+#else
+ else if (n < 64) {
+ /* f0-f31 */
+ env->fpr[n] = ldfl_p(mem_buf);
+ return 4;
+ } else if (n < 80) {
+ /* f32-f62 (double width, even numbers only) */
+ *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
+ *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
+ } else {
+ switch (n) {
+ case 80: env->pc = tmp; break;
+ case 81: env->npc = tmp; break;
+ case 82:
+ cpu_put_ccr(env, tmp >> 32);
+ env->asi = (tmp >> 24) & 0xff;
+ env->pstate = (tmp >> 8) & 0xfff;
+ cpu_put_cwp64(env, tmp & 0xff);
+ break;
+ case 83: env->fsr = tmp; break;
+ case 84: env->fprs = tmp; break;
+ case 85: env->y = tmp; break;
+ default: return 0;
+ }
+ }
+ return 8;
+#endif
+}
+#elif defined (TARGET_ARM)
+
+/* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
+ whatever the target description contains. Due to a historical mishap
+ the FPA registers appear in between core integer regs and the CPSR.
+ We hack round this by giving the FPA regs zero size when talking to a
+ newer gdb. */
+#define NUM_CORE_REGS 26
+#define GDB_CORE_XML "arm-core.xml"
+
+static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ if (n < 16) {
+ /* Core integer register. */
+ GET_REG32(env->regs[n]);
+ }
+ if (n < 24) {
+ /* FPA registers. */
+ if (gdb_has_xml)
+ return 0;
+ memset(mem_buf, 0, 12);
+ return 12;
+ }
+ switch (n) {
+ case 24:
+ /* FPA status register. */
+ if (gdb_has_xml)
+ return 0;
+ GET_REG32(0);
+ case 25:
+ /* CPSR */
+ GET_REG32(cpsr_read(env));
+ }
+ /* Unknown register. */
+ return 0;
+}
+
+static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ uint32_t tmp;
+
+ tmp = ldl_p(mem_buf);
+
+ /* Mask out low bit of PC to workaround gdb bugs. This will probably
+ cause problems if we ever implement the Jazelle DBX extensions. */
+ if (n == 15)
+ tmp &= ~1;
+
+ if (n < 16) {
+ /* Core integer register. */
+ env->regs[n] = tmp;
+ return 4;
+ }
+ if (n < 24) { /* 16-23 */
+ /* FPA registers (ignored). */
+ if (gdb_has_xml)
+ return 0;
+ return 12;
+ }
+ switch (n) {
+ case 24:
+ /* FPA status register (ignored). */
+ if (gdb_has_xml)
+ return 0;
+ return 4;
+ case 25:
+ /* CPSR */
+ cpsr_write (env, tmp, 0xffffffff);
+ return 4;
+ }
+ /* Unknown register. */
+ return 0;
+}
+
+#elif defined (TARGET_M68K)
+
+#define NUM_CORE_REGS 18
+
+#define GDB_CORE_XML "cf-core.xml"
+
+static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ if (n < 8) {
+ /* D0-D7 */
+ GET_REG32(env->dregs[n]);
+ } else if (n < 16) {
+ /* A0-A7 */
+ GET_REG32(env->aregs[n - 8]);
+ } else {
+ switch (n) {
+ case 16: GET_REG32(env->sr);
+ case 17: GET_REG32(env->pc);
+ }
+ }
+ /* FP registers not included here because they vary between
+ ColdFire and m68k. Use XML bits for these. */
+ return 0;
+}
+
+static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ uint32_t tmp;
+
+ tmp = ldl_p(mem_buf);
+
+ if (n < 8) {
+ /* D0-D7 */
+ env->dregs[n] = tmp;
+ } else if (n < 16) {
+ /* A0-A7 */
+ env->aregs[n - 8] = tmp;
+ } else {
+ switch (n) {
+ case 16: env->sr = tmp; break;
+ case 17: env->pc = tmp; break;
+ default: return 0;
+ }
+ }
+ return 4;
+}
+#elif defined (TARGET_MIPS)
+
+#define NUM_CORE_REGS 73
+
+static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ if (n < 32) {
+ GET_REGL(env->active_tc.gpr[n]);
+ }
+ if (env->CP0_Config1 & (1 << CP0C1_FP)) {
+ if (n >= 38 && n < 70) {
+ if (env->CP0_Status & (1 << CP0St_FR))
+ GET_REGL(env->active_fpu.fpr[n - 38].d);
+ else
+ GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
+ }
+ switch (n) {
+ case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
+ case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
+ }
+ }
+ switch (n) {
+ case 32: GET_REGL((int32_t)env->CP0_Status);
+ case 33: GET_REGL(env->active_tc.LO[0]);
+ case 34: GET_REGL(env->active_tc.HI[0]);
+ case 35: GET_REGL(env->CP0_BadVAddr);
+ case 36: GET_REGL((int32_t)env->CP0_Cause);
+ case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
+ case 72: GET_REGL(0); /* fp */
+ case 89: GET_REGL((int32_t)env->CP0_PRid);
+ }
+ if (n >= 73 && n <= 88) {
+ /* 16 embedded regs. */
+ GET_REGL(0);
+ }
+
+ return 0;
+}
+
+/* convert MIPS rounding mode in FCR31 to IEEE library */
+static unsigned int ieee_rm[] =
+ {
+ float_round_nearest_even,
+ float_round_to_zero,
+ float_round_up,
+ float_round_down
+ };
+#define RESTORE_ROUNDING_MODE \
+ set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
+
+static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ target_ulong tmp;
+
+ tmp = ldtul_p(mem_buf);
+
+ if (n < 32) {
+ env->active_tc.gpr[n] = tmp;
+ return sizeof(target_ulong);
+ }
+ if (env->CP0_Config1 & (1 << CP0C1_FP)
+ && n >= 38 && n < 73) {
+ if (n < 70) {
+ if (env->CP0_Status & (1 << CP0St_FR))
+ env->active_fpu.fpr[n - 38].d = tmp;
+ else
+ env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
+ }
+ switch (n) {
+ case 70:
+ env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
+ /* set rounding mode */
+ RESTORE_ROUNDING_MODE;
+#ifndef CONFIG_SOFTFLOAT
+ /* no floating point exception for native float */
+ SET_FP_ENABLE(env->active_fpu.fcr31, 0);
+#endif
+ break;
+ case 71: env->active_fpu.fcr0 = tmp; break;
+ }
+ return sizeof(target_ulong);
+ }
+ switch (n) {
+ case 32: env->CP0_Status = tmp; break;
+ case 33: env->active_tc.LO[0] = tmp; break;
+ case 34: env->active_tc.HI[0] = tmp; break;
+ case 35: env->CP0_BadVAddr = tmp; break;
+ case 36: env->CP0_Cause = tmp; break;
+ case 37:
+ env->active_tc.PC = tmp & ~(target_ulong)1;
+ if (tmp & 1) {
+ env->hflags |= MIPS_HFLAG_M16;
+ } else {
+ env->hflags &= ~(MIPS_HFLAG_M16);
+ }
+ break;
+ case 72: /* fp, ignored */ break;
+ default:
+ if (n > 89)
+ return 0;
+ /* Other registers are readonly. Ignore writes. */
+ break;
+ }
+
+ return sizeof(target_ulong);
+}
+#elif defined (TARGET_SH4)
+
+/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
+/* FIXME: We should use XML for this. */
+
+#define NUM_CORE_REGS 59
+
+static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ if (n < 8) {
+ if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
+ GET_REGL(env->gregs[n + 16]);
+ } else {
+ GET_REGL(env->gregs[n]);
+ }
+ } else if (n < 16) {
+ GET_REGL(env->gregs[n]);
+ } else if (n >= 25 && n < 41) {
+ GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
+ } else if (n >= 43 && n < 51) {
+ GET_REGL(env->gregs[n - 43]);
+ } else if (n >= 51 && n < 59) {
+ GET_REGL(env->gregs[n - (51 - 16)]);
+ }
+ switch (n) {
+ case 16: GET_REGL(env->pc);
+ case 17: GET_REGL(env->pr);
+ case 18: GET_REGL(env->gbr);
+ case 19: GET_REGL(env->vbr);
+ case 20: GET_REGL(env->mach);
+ case 21: GET_REGL(env->macl);
+ case 22: GET_REGL(env->sr);
+ case 23: GET_REGL(env->fpul);
+ case 24: GET_REGL(env->fpscr);
+ case 41: GET_REGL(env->ssr);
+ case 42: GET_REGL(env->spc);
+ }
+
+ return 0;
+}
+
+static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ uint32_t tmp;
+
+ tmp = ldl_p(mem_buf);
+
+ if (n < 8) {
+ if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
+ env->gregs[n + 16] = tmp;
+ } else {
+ env->gregs[n] = tmp;
+ }
+ return 4;
+ } else if (n < 16) {
+ env->gregs[n] = tmp;
+ return 4;
+ } else if (n >= 25 && n < 41) {
+ env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
+ return 4;
+ } else if (n >= 43 && n < 51) {
+ env->gregs[n - 43] = tmp;
+ return 4;
+ } else if (n >= 51 && n < 59) {
+ env->gregs[n - (51 - 16)] = tmp;
+ return 4;
+ }
+ switch (n) {
+ case 16: env->pc = tmp; break;
+ case 17: env->pr = tmp; break;
+ case 18: env->gbr = tmp; break;
+ case 19: env->vbr = tmp; break;
+ case 20: env->mach = tmp; break;
+ case 21: env->macl = tmp; break;
+ case 22: env->sr = tmp; break;
+ case 23: env->fpul = tmp; break;
+ case 24: env->fpscr = tmp; break;
+ case 41: env->ssr = tmp; break;
+ case 42: env->spc = tmp; break;
+ default: return 0;
+ }
+
+ return 4;
+}
+#elif defined (TARGET_MICROBLAZE)
+
+#define NUM_CORE_REGS (32 + 5)
+
+static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ if (n < 32) {
+ GET_REG32(env->regs[n]);
+ } else {
+ GET_REG32(env->sregs[n - 32]);
+ }
+ return 0;
+}
+
+static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ uint32_t tmp;
+
+ if (n > NUM_CORE_REGS)
+ return 0;
+
+ tmp = ldl_p(mem_buf);
+
+ if (n < 32) {
+ env->regs[n] = tmp;
+ } else {
+ env->sregs[n - 32] = tmp;
+ }
+ return 4;
+}
+#elif defined (TARGET_CRIS)
+
+#define NUM_CORE_REGS 49
+
+static int
+read_register_crisv10(CPUState *env, uint8_t *mem_buf, int n)
+{
+ if (n < 15) {
+ GET_REG32(env->regs[n]);
+ }
+
+ if (n == 15) {
+ GET_REG32(env->pc);
+ }
+
+ if (n < 32) {
+ switch (n) {
+ case 16:
+ GET_REG8(env->pregs[n - 16]);
+ break;
+ case 17:
+ GET_REG8(env->pregs[n - 16]);
+ break;
+ case 20:
+ case 21:
+ GET_REG16(env->pregs[n - 16]);
+ break;
+ default:
+ if (n >= 23) {
+ GET_REG32(env->pregs[n - 16]);
+ }
+ break;
+ }
+ }
+ return 0;
+}
+
+static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ uint8_t srs;
+
+ if (env->pregs[PR_VR] < 32)
+ return read_register_crisv10(env, mem_buf, n);
+
+ srs = env->pregs[PR_SRS];
+ if (n < 16) {
+ GET_REG32(env->regs[n]);
+ }
+
+ if (n >= 21 && n < 32) {
+ GET_REG32(env->pregs[n - 16]);
+ }
+ if (n >= 33 && n < 49) {
+ GET_REG32(env->sregs[srs][n - 33]);
+ }
+ switch (n) {
+ case 16: GET_REG8(env->pregs[0]);
+ case 17: GET_REG8(env->pregs[1]);
+ case 18: GET_REG32(env->pregs[2]);
+ case 19: GET_REG8(srs);
+ case 20: GET_REG16(env->pregs[4]);
+ case 32: GET_REG32(env->pc);
+ }
+
+ return 0;
+}
+
+static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ uint32_t tmp;
+
+ if (n > 49)
+ return 0;
+
+ tmp = ldl_p(mem_buf);
+
+ if (n < 16) {
+ env->regs[n] = tmp;
+ }
+
+ if (n >= 21 && n < 32) {
+ env->pregs[n - 16] = tmp;
+ }
+
+ /* FIXME: Should support function regs be writable? */
+ switch (n) {
+ case 16: return 1;
+ case 17: return 1;
+ case 18: env->pregs[PR_PID] = tmp; break;
+ case 19: return 1;
+ case 20: return 2;
+ case 32: env->pc = tmp; break;
+ }
+
+ return 4;
+}
+#elif defined (TARGET_ALPHA)
+
+#define NUM_CORE_REGS 67
+
+static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ uint64_t val;
+ CPU_DoubleU d;
+
+ switch (n) {
+ case 0 ... 30:
+ val = env->ir[n];
+ break;
+ case 32 ... 62:
+ d.d = env->fir[n - 32];
+ val = d.ll;
+ break;
+ case 63:
+ val = cpu_alpha_load_fpcr(env);
+ break;
+ case 64:
+ val = env->pc;
+ break;
+ case 66:
+ val = env->unique;
+ break;
+ case 31:
+ case 65:
+ /* 31 really is the zero register; 65 is unassigned in the
+ gdb protocol, but is still required to occupy 8 bytes. */
+ val = 0;
+ break;
+ default:
+ return 0;
+ }
+ GET_REGL(val);
+}
+
+static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ target_ulong tmp = ldtul_p(mem_buf);
+ CPU_DoubleU d;
+
+ switch (n) {
+ case 0 ... 30:
+ env->ir[n] = tmp;
+ break;
+ case 32 ... 62:
+ d.ll = tmp;
+ env->fir[n - 32] = d.d;
+ break;
+ case 63:
+ cpu_alpha_store_fpcr(env, tmp);
+ break;
+ case 64:
+ env->pc = tmp;
+ break;
+ case 66:
+ env->unique = tmp;
+ break;
+ case 31:
+ case 65:
+ /* 31 really is the zero register; 65 is unassigned in the
+ gdb protocol, but is still required to occupy 8 bytes. */
+ break;
+ default:
+ return 0;
+ }
+ return 8;
+}
+#elif defined (TARGET_S390X)
+
+#define NUM_CORE_REGS S390_NUM_TOTAL_REGS
+
+static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ switch (n) {
+ case S390_PSWM_REGNUM: GET_REGL(env->psw.mask); break;
+ case S390_PSWA_REGNUM: GET_REGL(env->psw.addr); break;
+ case S390_R0_REGNUM ... S390_R15_REGNUM:
+ GET_REGL(env->regs[n-S390_R0_REGNUM]); break;
+ case S390_A0_REGNUM ... S390_A15_REGNUM:
+ GET_REG32(env->aregs[n-S390_A0_REGNUM]); break;
+ case S390_FPC_REGNUM: GET_REG32(env->fpc); break;
+ case S390_F0_REGNUM ... S390_F15_REGNUM:
+ /* XXX */
+ break;
+ case S390_PC_REGNUM: GET_REGL(env->psw.addr); break;
+ case S390_CC_REGNUM: GET_REG32(env->cc); break;
+ }
+
+ return 0;
+}
+
+static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ target_ulong tmpl;
+ uint32_t tmp32;
+ int r = 8;
+ tmpl = ldtul_p(mem_buf);
+ tmp32 = ldl_p(mem_buf);
+
+ switch (n) {
+ case S390_PSWM_REGNUM: env->psw.mask = tmpl; break;
+ case S390_PSWA_REGNUM: env->psw.addr = tmpl; break;
+ case S390_R0_REGNUM ... S390_R15_REGNUM:
+ env->regs[n-S390_R0_REGNUM] = tmpl; break;
+ case S390_A0_REGNUM ... S390_A15_REGNUM:
+ env->aregs[n-S390_A0_REGNUM] = tmp32; r=4; break;
+ case S390_FPC_REGNUM: env->fpc = tmp32; r=4; break;
+ case S390_F0_REGNUM ... S390_F15_REGNUM:
+ /* XXX */
+ break;
+ case S390_PC_REGNUM: env->psw.addr = tmpl; break;
+ case S390_CC_REGNUM: env->cc = tmp32; r=4; break;
+ }
+
+ return r;
+}
+#else
+
+#define NUM_CORE_REGS 0
+
+static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ return 0;
+}
+
+static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
+{
+ return 0;
+}
+
+#endif
+
+static int num_g_regs = NUM_CORE_REGS;
+
+#ifdef GDB_CORE_XML
+/* Encode data using the encoding for 'x' packets. */
+static int memtox(char *buf, const char *mem, int len)
+{
+ char *p = buf;
+ char c;
+
+ while (len--) {
+ c = *(mem++);
+ switch (c) {
+ case '#': case '$': case '*': case '}':
+ *(p++) = '}';
+ *(p++) = c ^ 0x20;
+ break;
+ default:
+ *(p++) = c;
+ break;
+ }
+ }
+ return p - buf;
+}
+
+static const char *get_feature_xml(const char *p, const char **newp)
+{
+ size_t len;
+ int i;
+ const char *name;
+ static char target_xml[1024];
+
+ len = 0;
+ while (p[len] && p[len] != ':')
+ len++;
+ *newp = p + len;
+
+ name = NULL;
+ if (strncmp(p, "target.xml", len) == 0) {
+ /* Generate the XML description for this CPU. */
+ if (!target_xml[0]) {
+ GDBRegisterState *r;
+
+ snprintf(target_xml, sizeof(target_xml),
+ "<?xml version=\"1.0\"?>"
+ "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
+ "<target>"
+ "<xi:include href=\"%s\"/>",
+ GDB_CORE_XML);
+
+ for (r = first_cpu->gdb_regs; r; r = r->next) {
+ pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
+ pstrcat(target_xml, sizeof(target_xml), r->xml);
+ pstrcat(target_xml, sizeof(target_xml), "\"/>");
+ }
+ pstrcat(target_xml, sizeof(target_xml), "</target>");
+ }
+ return target_xml;
+ }
+ for (i = 0; ; i++) {
+ name = xml_builtin[i][0];
+ if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
+ break;
+ }
+ return name ? xml_builtin[i][1] : NULL;
+}
+#endif
+
+static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
+{
+ GDBRegisterState *r;
+
+ if (reg < NUM_CORE_REGS)
+ return cpu_gdb_read_register(env, mem_buf, reg);
+
+ for (r = env->gdb_regs; r; r = r->next) {
+ if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
+ return r->get_reg(env, mem_buf, reg - r->base_reg);
+ }
+ }
+ return 0;
+}
+
+static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
+{
+ GDBRegisterState *r;
+
+ if (reg < NUM_CORE_REGS)
+ return cpu_gdb_write_register(env, mem_buf, reg);
+
+ for (r = env->gdb_regs; r; r = r->next) {
+ if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
+ return r->set_reg(env, mem_buf, reg - r->base_reg);
+ }
+ }
+ return 0;
+}
+
+/* Register a supplemental set of CPU registers. If g_pos is nonzero it
+ specifies the first register number and these registers are included in
+ a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
+ gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
+ */
+
+void gdb_register_coprocessor(CPUState * env,
+ gdb_reg_cb get_reg, gdb_reg_cb set_reg,
+ int num_regs, const char *xml, int g_pos)
+{
+ GDBRegisterState *s;
+ GDBRegisterState **p;
+ static int last_reg = NUM_CORE_REGS;
+
+ s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
+ s->base_reg = last_reg;
+ s->num_regs = num_regs;
+ s->get_reg = get_reg;
+ s->set_reg = set_reg;
+ s->xml = xml;
+ p = &env->gdb_regs;
+ while (*p) {
+ /* Check for duplicates. */
+ if (strcmp((*p)->xml, xml) == 0)
+ return;
+ p = &(*p)->next;
+ }
+ /* Add to end of list. */
+ last_reg += num_regs;
+ *p = s;
+ if (g_pos) {
+ if (g_pos != s->base_reg) {
+ fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
+ "Expected %d got %d\n", xml, g_pos, s->base_reg);
+ } else {
+ num_g_regs = last_reg;
+ }
+ }
+}
+
+#ifndef CONFIG_USER_ONLY
+static const int xlat_gdb_type[] = {
+ [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
+ [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
+ [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
+};
+#endif
+
+static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
+{
+ CPUState *env;
+ int err = 0;
+
+ if (kvm_enabled())
+ return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
+
+ switch (type) {
+ case GDB_BREAKPOINT_SW:
+ case GDB_BREAKPOINT_HW:
+ for (env = first_cpu; env != NULL; env = env->next_cpu) {
+ err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
+ if (err)
+ break;
+ }
+ return err;
+#ifndef CONFIG_USER_ONLY
+ case GDB_WATCHPOINT_WRITE:
+ case GDB_WATCHPOINT_READ:
+ case GDB_WATCHPOINT_ACCESS:
+ for (env = first_cpu; env != NULL; env = env->next_cpu) {
+ err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
+ NULL);
+ if (err)
+ break;
+ }
+ return err;
+#endif
+ default:
+ return -ENOSYS;
+ }
+}
+
+static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
+{
+ CPUState *env;
+ int err = 0;
+
+ if (kvm_enabled())
+ return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
+
+ switch (type) {
+ case GDB_BREAKPOINT_SW:
+ case GDB_BREAKPOINT_HW:
+ for (env = first_cpu; env != NULL; env = env->next_cpu) {
+ err = cpu_breakpoint_remove(env, addr, BP_GDB);
+ if (err)
+ break;
+ }
+ return err;
+#ifndef CONFIG_USER_ONLY
+ case GDB_WATCHPOINT_WRITE:
+ case GDB_WATCHPOINT_READ:
+ case GDB_WATCHPOINT_ACCESS:
+ for (env = first_cpu; env != NULL; env = env->next_cpu) {
+ err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
+ if (err)
+ break;
+ }
+ return err;
+#endif
+ default:
+ return -ENOSYS;
+ }
+}
+
+static void gdb_breakpoint_remove_all(void)
+{
+ CPUState *env;
+
+ if (kvm_enabled()) {
+ kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
+ return;
+ }
+
+ for (env = first_cpu; env != NULL; env = env->next_cpu) {
+ cpu_breakpoint_remove_all(env, BP_GDB);
+#ifndef CONFIG_USER_ONLY
+ cpu_watchpoint_remove_all(env, BP_GDB);
+#endif
+ }
+}
+
+static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
+{
+#if defined(TARGET_I386)
+ cpu_synchronize_state(s->c_cpu);
+ s->c_cpu->eip = pc;
+#elif defined (TARGET_PPC)
+ s->c_cpu->nip = pc;
+#elif defined (TARGET_SPARC)
+ s->c_cpu->pc = pc;
+ s->c_cpu->npc = pc + 4;
+#elif defined (TARGET_ARM)
+ s->c_cpu->regs[15] = pc;
+#elif defined (TARGET_SH4)
+ s->c_cpu->pc = pc;
+#elif defined (TARGET_MIPS)
+ s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
+ if (pc & 1) {
+ s->c_cpu->hflags |= MIPS_HFLAG_M16;
+ } else {
+ s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
+ }
+#elif defined (TARGET_MICROBLAZE)
+ s->c_cpu->sregs[SR_PC] = pc;
+#elif defined (TARGET_CRIS)
+ s->c_cpu->pc = pc;
+#elif defined (TARGET_ALPHA)
+ s->c_cpu->pc = pc;
+#elif defined (TARGET_S390X)
+ cpu_synchronize_state(s->c_cpu);
+ s->c_cpu->psw.addr = pc;
+#endif
+}
+
+static inline int gdb_id(CPUState *env)
+{
+#if defined(CONFIG_USER_ONLY) && defined(CONFIG_USE_NPTL)
+ return env->host_tid;
+#else
+ return env->cpu_index + 1;
+#endif
+}
+
+static CPUState *find_cpu(uint32_t thread_id)
+{
+ CPUState *env;
+
+ for (env = first_cpu; env != NULL; env = env->next_cpu) {
+ if (gdb_id(env) == thread_id) {
+ return env;
+ }
+ }
+
+ return NULL;
+}
+
+static int gdb_handle_packet(GDBState *s, const char *line_buf)
+{
+ CPUState *env;
+ const char *p;
+ uint32_t thread;
+ int ch, reg_size, type, res;
+ char buf[MAX_PACKET_LENGTH];
+ uint8_t mem_buf[MAX_PACKET_LENGTH];
+ uint8_t *registers;
+ target_ulong addr, len;
+
+#ifdef DEBUG_GDB
+ printf("command='%s'\n", line_buf);
+#endif
+ p = line_buf;
+ ch = *p++;
+ switch(ch) {
+ case '?':
+ /* TODO: Make this return the correct value for user-mode. */
+ snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
+ gdb_id(s->c_cpu));
+ put_packet(s, buf);
+ /* Remove all the breakpoints when this query is issued,
+ * because gdb is doing and initial connect and the state
+ * should be cleaned up.
+ */
+ gdb_breakpoint_remove_all();
+ break;
+ case 'c':
+ if (*p != '\0') {
+ addr = strtoull(p, (char **)&p, 16);
+ gdb_set_cpu_pc(s, addr);
+ }
+ s->signal = 0;
+ gdb_continue(s);
+ return RS_IDLE;
+ case 'C':
+ s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
+ if (s->signal == -1)
+ s->signal = 0;
+ gdb_continue(s);
+ return RS_IDLE;
+ case 'v':
+ if (strncmp(p, "Cont", 4) == 0) {
+ int res_signal, res_thread;
+
+ p += 4;
+ if (*p == '?') {
+ put_packet(s, "vCont;c;C;s;S");
+ break;
+ }
+ res = 0;
+ res_signal = 0;
+ res_thread = 0;
+ while (*p) {
+ int action, signal;
+
+ if (*p++ != ';') {
+ res = 0;
+ break;
+ }
+ action = *p++;
+ signal = 0;
+ if (action == 'C' || action == 'S') {
+ signal = strtoul(p, (char **)&p, 16);
+ } else if (action != 'c' && action != 's') {
+ res = 0;
+ break;
+ }
+ thread = 0;
+ if (*p == ':') {
+ thread = strtoull(p+1, (char **)&p, 16);
+ }
+ action = tolower(action);
+ if (res == 0 || (res == 'c' && action == 's')) {
+ res = action;
+ res_signal = signal;
+ res_thread = thread;
+ }
+ }
+ if (res) {
+ if (res_thread != -1 && res_thread != 0) {
+ env = find_cpu(res_thread);
+ if (env == NULL) {
+ put_packet(s, "E22");
+ break;
+ }
+ s->c_cpu = env;
+ }
+ if (res == 's') {
+ cpu_single_step(s->c_cpu, sstep_flags);
+ }
+ s->signal = res_signal;
+ gdb_continue(s);
+ return RS_IDLE;
+ }
+ break;
+ } else {
+ goto unknown_command;
+ }
+ case 'k':
+ /* Kill the target */
+ fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
+ exit(0);
+ case 'D':
+ /* Detach packet */
+ gdb_breakpoint_remove_all();
+ gdb_syscall_mode = GDB_SYS_DISABLED;
+ gdb_continue(s);
+ put_packet(s, "OK");
+ break;
+ case 's':
+ if (*p != '\0') {
+ addr = strtoull(p, (char **)&p, 16);
+ gdb_set_cpu_pc(s, addr);
+ }
+ cpu_single_step(s->c_cpu, sstep_flags);
+ gdb_continue(s);
+ return RS_IDLE;
+ case 'F':
+ {
+ target_ulong ret;
+ target_ulong err;
+
+ ret = strtoull(p, (char **)&p, 16);
+ if (*p == ',') {
+ p++;
+ err = strtoull(p, (char **)&p, 16);
+ } else {
+ err = 0;
+ }
+ if (*p == ',')
+ p++;
+ type = *p;
+ if (gdb_current_syscall_cb)
+ gdb_current_syscall_cb(s->c_cpu, ret, err);
+ if (type == 'C') {
+ put_packet(s, "T02");
+ } else {
+ gdb_continue(s);
+ }
+ }
+ break;
+ case 'g':
+ cpu_synchronize_state(s->g_cpu);
+ len = 0;
+ for (addr = 0; addr < num_g_regs; addr++) {
+ reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
+ len += reg_size;
+ }
+ memtohex(buf, mem_buf, len);
+ put_packet(s, buf);
+ break;
+ case 'G':
+ cpu_synchronize_state(s->g_cpu);
+ registers = mem_buf;
+ len = strlen(p) / 2;
+ hextomem((uint8_t *)registers, p, len);
+ for (addr = 0; addr < num_g_regs && len > 0; addr++) {
+ reg_size = gdb_write_register(s->g_cpu, registers, addr);
+ len -= reg_size;
+ registers += reg_size;
+ }
+ put_packet(s, "OK");
+ break;
+ case 'm':
+ addr = strtoull(p, (char **)&p, 16);
+ if (*p == ',')
+ p++;
+ len = strtoull(p, NULL, 16);
+ if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
+ put_packet (s, "E14");
+ } else {
+ memtohex(buf, mem_buf, len);
+ put_packet(s, buf);
+ }
+ break;
+ case 'M':
+ addr = strtoull(p, (char **)&p, 16);
+ if (*p == ',')
+ p++;
+ len = strtoull(p, (char **)&p, 16);
+ if (*p == ':')
+ p++;
+ hextomem(mem_buf, p, len);
+ if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
+ put_packet(s, "E14");
+ else
+ put_packet(s, "OK");
+ break;
+ case 'p':
+ /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
+ This works, but can be very slow. Anything new enough to
+ understand XML also knows how to use this properly. */
+ if (!gdb_has_xml)
+ goto unknown_command;
+ addr = strtoull(p, (char **)&p, 16);
+ reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
+ if (reg_size) {
+ memtohex(buf, mem_buf, reg_size);
+ put_packet(s, buf);
+ } else {
+ put_packet(s, "E14");
+ }
+ break;
+ case 'P':
+ if (!gdb_has_xml)
+ goto unknown_command;
+ addr = strtoull(p, (char **)&p, 16);
+ if (*p == '=')
+ p++;
+ reg_size = strlen(p) / 2;
+ hextomem(mem_buf, p, reg_size);
+ gdb_write_register(s->g_cpu, mem_buf, addr);
+ put_packet(s, "OK");
+ break;
+ case 'Z':
+ case 'z':
+ type = strtoul(p, (char **)&p, 16);
+ if (*p == ',')
+ p++;
+ addr = strtoull(p, (char **)&p, 16);
+ if (*p == ',')
+ p++;
+ len = strtoull(p, (char **)&p, 16);
+ if (ch == 'Z')
+ res = gdb_breakpoint_insert(addr, len, type);
+ else
+ res = gdb_breakpoint_remove(addr, len, type);
+ if (res >= 0)
+ put_packet(s, "OK");
+ else if (res == -ENOSYS)
+ put_packet(s, "");
+ else
+ put_packet(s, "E22");
+ break;
+ case 'H':
+ type = *p++;
+ thread = strtoull(p, (char **)&p, 16);
+ if (thread == -1 || thread == 0) {
+ put_packet(s, "OK");
+ break;
+ }
+ env = find_cpu(thread);
+ if (env == NULL) {
+ put_packet(s, "E22");
+ break;
+ }
+ switch (type) {
+ case 'c':
+ s->c_cpu = env;
+ put_packet(s, "OK");
+ break;
+ case 'g':
+ s->g_cpu = env;
+ put_packet(s, "OK");
+ break;
+ default:
+ put_packet(s, "E22");
+ break;
+ }
+ break;
+ case 'T':
+ thread = strtoull(p, (char **)&p, 16);
+ env = find_cpu(thread);
+
+ if (env != NULL) {
+ put_packet(s, "OK");
+ } else {
+ put_packet(s, "E22");
+ }
+ break;
+ case 'q':
+ case 'Q':
+ /* parse any 'q' packets here */
+ if (!strcmp(p,"qemu.sstepbits")) {
+ /* Query Breakpoint bit definitions */
+ snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
+ SSTEP_ENABLE,
+ SSTEP_NOIRQ,
+ SSTEP_NOTIMER);
+ put_packet(s, buf);
+ break;
+ } else if (strncmp(p,"qemu.sstep",10) == 0) {
+ /* Display or change the sstep_flags */
+ p += 10;
+ if (*p != '=') {
+ /* Display current setting */
+ snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
+ put_packet(s, buf);
+ break;
+ }
+ p++;
+ type = strtoul(p, (char **)&p, 16);
+ sstep_flags = type;
+ put_packet(s, "OK");
+ break;
+ } else if (strcmp(p,"C") == 0) {
+ /* "Current thread" remains vague in the spec, so always return
+ * the first CPU (gdb returns the first thread). */
+ put_packet(s, "QC1");
+ break;
+ } else if (strcmp(p,"fThreadInfo") == 0) {
+ s->query_cpu = first_cpu;
+ goto report_cpuinfo;
+ } else if (strcmp(p,"sThreadInfo") == 0) {
+ report_cpuinfo:
+ if (s->query_cpu) {
+ snprintf(buf, sizeof(buf), "m%x", gdb_id(s->query_cpu));
+ put_packet(s, buf);
+ s->query_cpu = s->query_cpu->next_cpu;
+ } else
+ put_packet(s, "l");
+ break;
+ } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
+ thread = strtoull(p+16, (char **)&p, 16);
+ env = find_cpu(thread);
+ if (env != NULL) {
+ cpu_synchronize_state(env);
+ len = snprintf((char *)mem_buf, sizeof(mem_buf),
+ "CPU#%d [%s]", env->cpu_index,
+ env->halted ? "halted " : "running");
+ memtohex(buf, mem_buf, len);
+ put_packet(s, buf);
+ }
+ break;
+ }
+#ifdef CONFIG_USER_ONLY
+ else if (strncmp(p, "Offsets", 7) == 0) {
+ TaskState *ts = s->c_cpu->opaque;
+
+ snprintf(buf, sizeof(buf),
+ "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
+ ";Bss=" TARGET_ABI_FMT_lx,
+ ts->info->code_offset,
+ ts->info->data_offset,
+ ts->info->data_offset);
+ put_packet(s, buf);
+ break;
+ }
+#else /* !CONFIG_USER_ONLY */
+ else if (strncmp(p, "Rcmd,", 5) == 0) {
+ int len = strlen(p + 5);
+
+ if ((len % 2) != 0) {
+ put_packet(s, "E01");
+ break;
+ }
+ hextomem(mem_buf, p + 5, len);
+ len = len / 2;
+ mem_buf[len++] = 0;
+ qemu_chr_read(s->mon_chr, mem_buf, len);
+ put_packet(s, "OK");
+ break;
+ }
+#endif /* !CONFIG_USER_ONLY */
+ if (strncmp(p, "Supported", 9) == 0) {
+ snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
+#ifdef GDB_CORE_XML
+ pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
+#endif
+ put_packet(s, buf);
+ break;
+ }
+#ifdef GDB_CORE_XML
+ if (strncmp(p, "Xfer:features:read:", 19) == 0) {
+ const char *xml;
+ target_ulong total_len;
+
+ gdb_has_xml = 1;
+ p += 19;
+ xml = get_feature_xml(p, &p);
+ if (!xml) {
+ snprintf(buf, sizeof(buf), "E00");
+ put_packet(s, buf);
+ break;
+ }
+
+ if (*p == ':')
+ p++;
+ addr = strtoul(p, (char **)&p, 16);
+ if (*p == ',')
+ p++;
+ len = strtoul(p, (char **)&p, 16);
+
+ total_len = strlen(xml);
+ if (addr > total_len) {
+ snprintf(buf, sizeof(buf), "E00");
+ put_packet(s, buf);
+ break;
+ }
+ if (len > (MAX_PACKET_LENGTH - 5) / 2)
+ len = (MAX_PACKET_LENGTH - 5) / 2;
+ if (len < total_len - addr) {
+ buf[0] = 'm';
+ len = memtox(buf + 1, xml + addr, len);
+ } else {
+ buf[0] = 'l';
+ len = memtox(buf + 1, xml + addr, total_len - addr);
+ }
+ put_packet_binary(s, buf, len + 1);
+ break;
+ }
+#endif
+ /* Unrecognised 'q' command. */
+ goto unknown_command;
+
+ default:
+ unknown_command:
+ /* put empty packet */
+ buf[0] = '\0';
+ put_packet(s, buf);
+ break;
+ }
+ return RS_IDLE;
+}
+
+void gdb_set_stop_cpu(CPUState *env)
+{
+ gdbserver_state->c_cpu = env;
+ gdbserver_state->g_cpu = env;
+}
+
+#ifndef CONFIG_USER_ONLY
+static void gdb_vm_state_change(void *opaque, int running, int reason)
+{
+ GDBState *s = gdbserver_state;
+ CPUState *env = s->c_cpu;
+ char buf[256];
+ const char *type;
+ int ret;
+
+ if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
+ s->state == RS_INACTIVE || s->state == RS_SYSCALL)
+ return;
+
+ /* disable single step if it was enable */
+ cpu_single_step(env, 0);
+
+ if (reason == EXCP_DEBUG) {
+ if (env->watchpoint_hit) {
+ switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
+ case BP_MEM_READ:
+ type = "r";
+ break;
+ case BP_MEM_ACCESS:
+ type = "a";
+ break;
+ default:
+ type = "";
+ break;
+ }
+ snprintf(buf, sizeof(buf),
+ "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
+ GDB_SIGNAL_TRAP, gdb_id(env), type,
+ env->watchpoint_hit->vaddr);
+ put_packet(s, buf);
+ env->watchpoint_hit = NULL;
+ return;
+ }
+ tb_flush(env);
+ ret = GDB_SIGNAL_TRAP;
+ } else {
+ ret = GDB_SIGNAL_INT;
+ }
+ snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, gdb_id(env));
+ put_packet(s, buf);
+}
+#endif
+
+/* Send a gdb syscall request.
+ This accepts limited printf-style format specifiers, specifically:
+ %x - target_ulong argument printed in hex.
+ %lx - 64-bit argument printed in hex.
+ %s - string pointer (target_ulong) and length (int) pair. */
+void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
+{
+ va_list va;
+ char buf[256];
+ char *p;
+ target_ulong addr;
+ uint64_t i64;
+ GDBState *s;
+
+ s = gdbserver_state;
+ if (!s)
+ return;
+ gdb_current_syscall_cb = cb;
+ s->state = RS_SYSCALL;
+#ifndef CONFIG_USER_ONLY
+ vm_stop(EXCP_DEBUG);
+#endif
+ s->state = RS_IDLE;
+ va_start(va, fmt);
+ p = buf;
+ *(p++) = 'F';
+ while (*fmt) {
+ if (*fmt == '%') {
+ fmt++;
+ switch (*fmt++) {
+ case 'x':
+ addr = va_arg(va, target_ulong);
+ p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
+ break;
+ case 'l':
+ if (*(fmt++) != 'x')
+ goto bad_format;
+ i64 = va_arg(va, uint64_t);
+ p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
+ break;
+ case 's':
+ addr = va_arg(va, target_ulong);
+ p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
+ addr, va_arg(va, int));
+ break;
+ default:
+ bad_format:
+ fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
+ fmt - 1);
+ break;
+ }
+ } else {
+ *(p++) = *(fmt++);
+ }
+ }
+ *p = 0;
+ va_end(va);
+ put_packet(s, buf);
+#ifdef CONFIG_USER_ONLY
+ gdb_handlesig(s->c_cpu, 0);
+#else
+ cpu_exit(s->c_cpu);
+#endif
+}
+
+static void gdb_read_byte(GDBState *s, int ch)
+{
+ int i, csum;
+ uint8_t reply;
+
+#ifndef CONFIG_USER_ONLY
+ if (s->last_packet_len) {
+ /* Waiting for a response to the last packet. If we see the start
+ of a new command then abandon the previous response. */
+ if (ch == '-') {
+#ifdef DEBUG_GDB
+ printf("Got NACK, retransmitting\n");
+#endif
+ put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
+ }
+#ifdef DEBUG_GDB
+ else if (ch == '+')
+ printf("Got ACK\n");
+ else
+ printf("Got '%c' when expecting ACK/NACK\n", ch);
+#endif
+ if (ch == '+' || ch == '$')
+ s->last_packet_len = 0;
+ if (ch != '$')
+ return;
+ }
+ if (vm_running) {
+ /* when the CPU is running, we cannot do anything except stop
+ it when receiving a char */
+ vm_stop(EXCP_INTERRUPT);
+ } else
+#endif
+ {
+ switch(s->state) {
+ case RS_IDLE:
+ if (ch == '$') {
+ s->line_buf_index = 0;
+ s->state = RS_GETLINE;
+ }
+ break;
+ case RS_GETLINE:
+ if (ch == '#') {
+ s->state = RS_CHKSUM1;
+ } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
+ s->state = RS_IDLE;
+ } else {
+ s->line_buf[s->line_buf_index++] = ch;
+ }
+ break;
+ case RS_CHKSUM1:
+ s->line_buf[s->line_buf_index] = '\0';
+ s->line_csum = fromhex(ch) << 4;
+ s->state = RS_CHKSUM2;
+ break;
+ case RS_CHKSUM2:
+ s->line_csum |= fromhex(ch);
+ csum = 0;
+ for(i = 0; i < s->line_buf_index; i++) {
+ csum += s->line_buf[i];
+ }
+ if (s->line_csum != (csum & 0xff)) {
+ reply = '-';
+ put_buffer(s, &reply, 1);
+ s->state = RS_IDLE;
+ } else {
+ reply = '+';
+ put_buffer(s, &reply, 1);
+ s->state = gdb_handle_packet(s, s->line_buf);
+ }
+ break;
+ default:
+ abort();
+ }
+ }
+}
+
+/* Tell the remote gdb that the process has exited. */
+void gdb_exit(CPUState *env, int code)
+{
+ GDBState *s;
+ char buf[4];
+
+ s = gdbserver_state;
+ if (!s) {
+ return;
+ }
+#ifdef CONFIG_USER_ONLY
+ if (gdbserver_fd < 0 || s->fd < 0) {
+ return;
+ }
+#endif
+
+ snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
+ put_packet(s, buf);
+
+#ifndef CONFIG_USER_ONLY
+ if (s->chr) {
+ qemu_chr_close(s->chr);
+ }
+#endif
+}
+
+#ifdef CONFIG_USER_ONLY
+int
+gdb_queuesig (void)
+{
+ GDBState *s;
+
+ s = gdbserver_state;
+
+ if (gdbserver_fd < 0 || s->fd < 0)
+ return 0;
+ else
+ return 1;
+}
+
+int
+gdb_handlesig (CPUState *env, int sig)
+{
+ GDBState *s;
+ char buf[256];
+ int n;
+
+ s = gdbserver_state;
+ if (gdbserver_fd < 0 || s->fd < 0)
+ return sig;
+
+ /* disable single step if it was enabled */
+ cpu_single_step(env, 0);
+ tb_flush(env);
+
+ if (sig != 0)
+ {
+ snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
+ put_packet(s, buf);
+ }
+ /* put_packet() might have detected that the peer terminated the
+ connection. */
+ if (s->fd < 0)
+ return sig;
+
+ sig = 0;
+ s->state = RS_IDLE;
+ s->running_state = 0;
+ while (s->running_state == 0) {
+ n = read (s->fd, buf, 256);
+ if (n > 0)
+ {
+ int i;
+
+ for (i = 0; i < n; i++)
+ gdb_read_byte (s, buf[i]);
+ }
+ else if (n == 0 || errno != EAGAIN)
+ {
+ /* XXX: Connection closed. Should probably wait for annother
+ connection before continuing. */
+ return sig;
+ }
+ }
+ sig = s->signal;
+ s->signal = 0;
+ return sig;
+}
+
+/* Tell the remote gdb that the process has exited due to SIG. */
+void gdb_signalled(CPUState *env, int sig)
+{
+ GDBState *s;
+ char buf[4];
+
+ s = gdbserver_state;
+ if (gdbserver_fd < 0 || s->fd < 0)
+ return;
+
+ snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
+ put_packet(s, buf);
+}
+
+static void gdb_accept(void)
+{
+ GDBState *s;
+ struct sockaddr_in sockaddr;
+ socklen_t len;
+ int val, fd;
+
+ for(;;) {
+ len = sizeof(sockaddr);
+ fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
+ if (fd < 0 && errno != EINTR) {
+ perror("accept");
+ return;
+ } else if (fd >= 0) {
+#ifndef _WIN32
+ fcntl(fd, F_SETFD, FD_CLOEXEC);
+#endif
+ break;
+ }
+ }
+
+ /* set short latency */
+ val = 1;
+ setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
+
+ s = qemu_mallocz(sizeof(GDBState));
+ s->c_cpu = first_cpu;
+ s->g_cpu = first_cpu;
+ s->fd = fd;
+ gdb_has_xml = 0;
+
+ gdbserver_state = s;
+
+ fcntl(fd, F_SETFL, O_NONBLOCK);
+}
+
+static int gdbserver_open(int port)
+{
+ struct sockaddr_in sockaddr;
+ int fd, val, ret;
+
+ fd = socket(PF_INET, SOCK_STREAM, 0);
+ if (fd < 0) {
+ perror("socket");
+ return -1;
+ }
+#ifndef _WIN32
+ fcntl(fd, F_SETFD, FD_CLOEXEC);
+#endif
+
+ /* allow fast reuse */
+ val = 1;
+ setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
+
+ sockaddr.sin_family = AF_INET;
+ sockaddr.sin_port = htons(port);
+ sockaddr.sin_addr.s_addr = 0;
+ ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
+ if (ret < 0) {
+ perror("bind");
+ return -1;
+ }
+ ret = listen(fd, 0);
+ if (ret < 0) {
+ perror("listen");
+ return -1;
+ }
+ return fd;
+}
+
+int gdbserver_start(int port)
+{
+ gdbserver_fd = gdbserver_open(port);
+ if (gdbserver_fd < 0)
+ return -1;
+ /* accept connections */
+ gdb_accept();
+ return 0;
+}
+
+/* Disable gdb stub for child processes. */
+void gdbserver_fork(CPUState *env)
+{
+ GDBState *s = gdbserver_state;
+ if (gdbserver_fd < 0 || s->fd < 0)
+ return;
+ close(s->fd);
+ s->fd = -1;
+ cpu_breakpoint_remove_all(env, BP_GDB);
+ cpu_watchpoint_remove_all(env, BP_GDB);
+}
+#else
+static int gdb_chr_can_receive(void *opaque)
+{
+ /* We can handle an arbitrarily large amount of data.
+ Pick the maximum packet size, which is as good as anything. */
+ return MAX_PACKET_LENGTH;
+}
+
+static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
+{
+ int i;
+
+ for (i = 0; i < size; i++) {
+ gdb_read_byte(gdbserver_state, buf[i]);
+ }
+}
+
+static void gdb_chr_event(void *opaque, int event)
+{
+ switch (event) {
+ case CHR_EVENT_OPENED:
+ vm_stop(EXCP_INTERRUPT);
+ gdb_has_xml = 0;
+ break;
+ default:
+ break;
+ }
+}
+
+static void gdb_monitor_output(GDBState *s, const char *msg, int len)
+{
+ char buf[MAX_PACKET_LENGTH];
+
+ buf[0] = 'O';
+ if (len > (MAX_PACKET_LENGTH/2) - 1)
+ len = (MAX_PACKET_LENGTH/2) - 1;
+ memtohex(buf + 1, (uint8_t *)msg, len);
+ put_packet(s, buf);
+}
+
+static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
+{
+ const char *p = (const char *)buf;
+ int max_sz;
+
+ max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
+ for (;;) {
+ if (len <= max_sz) {
+ gdb_monitor_output(gdbserver_state, p, len);
+ break;
+ }
+ gdb_monitor_output(gdbserver_state, p, max_sz);
+ p += max_sz;
+ len -= max_sz;
+ }
+ return len;
+}
+
+#ifndef _WIN32
+static void gdb_sigterm_handler(int signal)
+{
+ if (vm_running)
+ vm_stop(EXCP_INTERRUPT);
+}
+#endif
+
+int gdbserver_start(const char *device)
+{
+ GDBState *s;
+ char gdbstub_device_name[128];
+ CharDriverState *chr = NULL;
+ CharDriverState *mon_chr;
+
+ if (!device)
+ return -1;
+ if (strcmp(device, "none") != 0) {
+ if (strstart(device, "tcp:", NULL)) {
+ /* enforce required TCP attributes */
+ snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
+ "%s,nowait,nodelay,server", device);
+ device = gdbstub_device_name;
+ }
+#ifndef _WIN32
+ else if (strcmp(device, "stdio") == 0) {
+ struct sigaction act;
+
+ memset(&act, 0, sizeof(act));
+ act.sa_handler = gdb_sigterm_handler;
+ sigaction(SIGINT, &act, NULL);
+ }
+#endif
+ chr = qemu_chr_open("gdb", device, NULL);
+ if (!chr)
+ return -1;
+
+ qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
+ gdb_chr_event, NULL);
+ }
+
+ s = gdbserver_state;
+ if (!s) {
+ s = qemu_mallocz(sizeof(GDBState));
+ gdbserver_state = s;
+
+ qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
+
+ /* Initialize a monitor terminal for gdb */
+ mon_chr = qemu_mallocz(sizeof(*mon_chr));
+ mon_chr->chr_write = gdb_monitor_write;
+ monitor_init(mon_chr, 0);
+ } else {
+ if (s->chr)
+ qemu_chr_close(s->chr);
+ mon_chr = s->mon_chr;
+ memset(s, 0, sizeof(GDBState));
+ }
+ s->c_cpu = first_cpu;
+ s->g_cpu = first_cpu;
+ s->chr = chr;
+ s->state = chr ? RS_IDLE : RS_INACTIVE;
+ s->mon_chr = mon_chr;
+
+ return 0;
+}
+#endif