summaryrefslogtreecommitdiff
path: root/target-alpha/op_helper.c
diff options
context:
space:
mode:
authorRobert Mustacchi <rm@joyent.com>2011-06-24 13:49:54 -0700
committerRobert Mustacchi <rm@joyent.com>2011-06-24 13:49:54 -0700
commit68396ea9c0fe4f75ce30b1eba2c44c43c13344bb (patch)
tree802587d411d9db461e6500c5b635043315f81c27 /target-alpha/op_helper.c
downloadillumos-kvm-cmd-68396ea9c0fe4f75ce30b1eba2c44c43c13344bb.tar.gz
Initial commit of d32e8d0b8d9e0ef7cf7ab2e74548982972789dfc from qemu-kvm
Diffstat (limited to 'target-alpha/op_helper.c')
-rw-r--r--target-alpha/op_helper.c1385
1 files changed, 1385 insertions, 0 deletions
diff --git a/target-alpha/op_helper.c b/target-alpha/op_helper.c
new file mode 100644
index 0000000..6c2ae20
--- /dev/null
+++ b/target-alpha/op_helper.c
@@ -0,0 +1,1385 @@
+/*
+ * Alpha emulation cpu micro-operations helpers for qemu.
+ *
+ * Copyright (c) 2007 Jocelyn Mayer
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "exec.h"
+#include "host-utils.h"
+#include "softfloat.h"
+#include "helper.h"
+#include "qemu-timer.h"
+
+/*****************************************************************************/
+/* Exceptions processing helpers */
+void QEMU_NORETURN helper_excp (int excp, int error)
+{
+ env->exception_index = excp;
+ env->error_code = error;
+ cpu_loop_exit();
+}
+
+uint64_t helper_load_pcc (void)
+{
+ /* ??? This isn't a timer for which we have any rate info. */
+ return (uint32_t)cpu_get_real_ticks();
+}
+
+uint64_t helper_load_fpcr (void)
+{
+ return cpu_alpha_load_fpcr (env);
+}
+
+void helper_store_fpcr (uint64_t val)
+{
+ cpu_alpha_store_fpcr (env, val);
+}
+
+uint64_t helper_addqv (uint64_t op1, uint64_t op2)
+{
+ uint64_t tmp = op1;
+ op1 += op2;
+ if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) {
+ helper_excp(EXCP_ARITH, EXC_M_IOV);
+ }
+ return op1;
+}
+
+uint64_t helper_addlv (uint64_t op1, uint64_t op2)
+{
+ uint64_t tmp = op1;
+ op1 = (uint32_t)(op1 + op2);
+ if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) {
+ helper_excp(EXCP_ARITH, EXC_M_IOV);
+ }
+ return op1;
+}
+
+uint64_t helper_subqv (uint64_t op1, uint64_t op2)
+{
+ uint64_t res;
+ res = op1 - op2;
+ if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) {
+ helper_excp(EXCP_ARITH, EXC_M_IOV);
+ }
+ return res;
+}
+
+uint64_t helper_sublv (uint64_t op1, uint64_t op2)
+{
+ uint32_t res;
+ res = op1 - op2;
+ if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) {
+ helper_excp(EXCP_ARITH, EXC_M_IOV);
+ }
+ return res;
+}
+
+uint64_t helper_mullv (uint64_t op1, uint64_t op2)
+{
+ int64_t res = (int64_t)op1 * (int64_t)op2;
+
+ if (unlikely((int32_t)res != res)) {
+ helper_excp(EXCP_ARITH, EXC_M_IOV);
+ }
+ return (int64_t)((int32_t)res);
+}
+
+uint64_t helper_mulqv (uint64_t op1, uint64_t op2)
+{
+ uint64_t tl, th;
+
+ muls64(&tl, &th, op1, op2);
+ /* If th != 0 && th != -1, then we had an overflow */
+ if (unlikely((th + 1) > 1)) {
+ helper_excp(EXCP_ARITH, EXC_M_IOV);
+ }
+ return tl;
+}
+
+uint64_t helper_umulh (uint64_t op1, uint64_t op2)
+{
+ uint64_t tl, th;
+
+ mulu64(&tl, &th, op1, op2);
+ return th;
+}
+
+uint64_t helper_ctpop (uint64_t arg)
+{
+ return ctpop64(arg);
+}
+
+uint64_t helper_ctlz (uint64_t arg)
+{
+ return clz64(arg);
+}
+
+uint64_t helper_cttz (uint64_t arg)
+{
+ return ctz64(arg);
+}
+
+static inline uint64_t byte_zap(uint64_t op, uint8_t mskb)
+{
+ uint64_t mask;
+
+ mask = 0;
+ mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
+ mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
+ mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
+ mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
+ mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
+ mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
+ mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
+ mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
+
+ return op & ~mask;
+}
+
+uint64_t helper_zap(uint64_t val, uint64_t mask)
+{
+ return byte_zap(val, mask);
+}
+
+uint64_t helper_zapnot(uint64_t val, uint64_t mask)
+{
+ return byte_zap(val, ~mask);
+}
+
+uint64_t helper_cmpbge (uint64_t op1, uint64_t op2)
+{
+ uint8_t opa, opb, res;
+ int i;
+
+ res = 0;
+ for (i = 0; i < 8; i++) {
+ opa = op1 >> (i * 8);
+ opb = op2 >> (i * 8);
+ if (opa >= opb)
+ res |= 1 << i;
+ }
+ return res;
+}
+
+uint64_t helper_minub8 (uint64_t op1, uint64_t op2)
+{
+ uint64_t res = 0;
+ uint8_t opa, opb, opr;
+ int i;
+
+ for (i = 0; i < 8; ++i) {
+ opa = op1 >> (i * 8);
+ opb = op2 >> (i * 8);
+ opr = opa < opb ? opa : opb;
+ res |= (uint64_t)opr << (i * 8);
+ }
+ return res;
+}
+
+uint64_t helper_minsb8 (uint64_t op1, uint64_t op2)
+{
+ uint64_t res = 0;
+ int8_t opa, opb;
+ uint8_t opr;
+ int i;
+
+ for (i = 0; i < 8; ++i) {
+ opa = op1 >> (i * 8);
+ opb = op2 >> (i * 8);
+ opr = opa < opb ? opa : opb;
+ res |= (uint64_t)opr << (i * 8);
+ }
+ return res;
+}
+
+uint64_t helper_minuw4 (uint64_t op1, uint64_t op2)
+{
+ uint64_t res = 0;
+ uint16_t opa, opb, opr;
+ int i;
+
+ for (i = 0; i < 4; ++i) {
+ opa = op1 >> (i * 16);
+ opb = op2 >> (i * 16);
+ opr = opa < opb ? opa : opb;
+ res |= (uint64_t)opr << (i * 16);
+ }
+ return res;
+}
+
+uint64_t helper_minsw4 (uint64_t op1, uint64_t op2)
+{
+ uint64_t res = 0;
+ int16_t opa, opb;
+ uint16_t opr;
+ int i;
+
+ for (i = 0; i < 4; ++i) {
+ opa = op1 >> (i * 16);
+ opb = op2 >> (i * 16);
+ opr = opa < opb ? opa : opb;
+ res |= (uint64_t)opr << (i * 16);
+ }
+ return res;
+}
+
+uint64_t helper_maxub8 (uint64_t op1, uint64_t op2)
+{
+ uint64_t res = 0;
+ uint8_t opa, opb, opr;
+ int i;
+
+ for (i = 0; i < 8; ++i) {
+ opa = op1 >> (i * 8);
+ opb = op2 >> (i * 8);
+ opr = opa > opb ? opa : opb;
+ res |= (uint64_t)opr << (i * 8);
+ }
+ return res;
+}
+
+uint64_t helper_maxsb8 (uint64_t op1, uint64_t op2)
+{
+ uint64_t res = 0;
+ int8_t opa, opb;
+ uint8_t opr;
+ int i;
+
+ for (i = 0; i < 8; ++i) {
+ opa = op1 >> (i * 8);
+ opb = op2 >> (i * 8);
+ opr = opa > opb ? opa : opb;
+ res |= (uint64_t)opr << (i * 8);
+ }
+ return res;
+}
+
+uint64_t helper_maxuw4 (uint64_t op1, uint64_t op2)
+{
+ uint64_t res = 0;
+ uint16_t opa, opb, opr;
+ int i;
+
+ for (i = 0; i < 4; ++i) {
+ opa = op1 >> (i * 16);
+ opb = op2 >> (i * 16);
+ opr = opa > opb ? opa : opb;
+ res |= (uint64_t)opr << (i * 16);
+ }
+ return res;
+}
+
+uint64_t helper_maxsw4 (uint64_t op1, uint64_t op2)
+{
+ uint64_t res = 0;
+ int16_t opa, opb;
+ uint16_t opr;
+ int i;
+
+ for (i = 0; i < 4; ++i) {
+ opa = op1 >> (i * 16);
+ opb = op2 >> (i * 16);
+ opr = opa > opb ? opa : opb;
+ res |= (uint64_t)opr << (i * 16);
+ }
+ return res;
+}
+
+uint64_t helper_perr (uint64_t op1, uint64_t op2)
+{
+ uint64_t res = 0;
+ uint8_t opa, opb, opr;
+ int i;
+
+ for (i = 0; i < 8; ++i) {
+ opa = op1 >> (i * 8);
+ opb = op2 >> (i * 8);
+ if (opa >= opb)
+ opr = opa - opb;
+ else
+ opr = opb - opa;
+ res += opr;
+ }
+ return res;
+}
+
+uint64_t helper_pklb (uint64_t op1)
+{
+ return (op1 & 0xff) | ((op1 >> 24) & 0xff00);
+}
+
+uint64_t helper_pkwb (uint64_t op1)
+{
+ return ((op1 & 0xff)
+ | ((op1 >> 8) & 0xff00)
+ | ((op1 >> 16) & 0xff0000)
+ | ((op1 >> 24) & 0xff000000));
+}
+
+uint64_t helper_unpkbl (uint64_t op1)
+{
+ return (op1 & 0xff) | ((op1 & 0xff00) << 24);
+}
+
+uint64_t helper_unpkbw (uint64_t op1)
+{
+ return ((op1 & 0xff)
+ | ((op1 & 0xff00) << 8)
+ | ((op1 & 0xff0000) << 16)
+ | ((op1 & 0xff000000) << 24));
+}
+
+/* Floating point helpers */
+
+void helper_setroundmode (uint32_t val)
+{
+ set_float_rounding_mode(val, &FP_STATUS);
+}
+
+void helper_setflushzero (uint32_t val)
+{
+ set_flush_to_zero(val, &FP_STATUS);
+}
+
+void helper_fp_exc_clear (void)
+{
+ set_float_exception_flags(0, &FP_STATUS);
+}
+
+uint32_t helper_fp_exc_get (void)
+{
+ return get_float_exception_flags(&FP_STATUS);
+}
+
+/* Raise exceptions for ieee fp insns without software completion.
+ In that case there are no exceptions that don't trap; the mask
+ doesn't apply. */
+void helper_fp_exc_raise(uint32_t exc, uint32_t regno)
+{
+ if (exc) {
+ uint32_t hw_exc = 0;
+
+ env->ipr[IPR_EXC_MASK] |= 1ull << regno;
+
+ if (exc & float_flag_invalid) {
+ hw_exc |= EXC_M_INV;
+ }
+ if (exc & float_flag_divbyzero) {
+ hw_exc |= EXC_M_DZE;
+ }
+ if (exc & float_flag_overflow) {
+ hw_exc |= EXC_M_FOV;
+ }
+ if (exc & float_flag_underflow) {
+ hw_exc |= EXC_M_UNF;
+ }
+ if (exc & float_flag_inexact) {
+ hw_exc |= EXC_M_INE;
+ }
+ helper_excp(EXCP_ARITH, hw_exc);
+ }
+}
+
+/* Raise exceptions for ieee fp insns with software completion. */
+void helper_fp_exc_raise_s(uint32_t exc, uint32_t regno)
+{
+ if (exc) {
+ env->fpcr_exc_status |= exc;
+
+ exc &= ~env->fpcr_exc_mask;
+ if (exc) {
+ helper_fp_exc_raise(exc, regno);
+ }
+ }
+}
+
+/* Input remapping without software completion. Handle denormal-map-to-zero
+ and trap for all other non-finite numbers. */
+uint64_t helper_ieee_input(uint64_t val)
+{
+ uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
+ uint64_t frac = val & 0xfffffffffffffull;
+
+ if (exp == 0) {
+ if (frac != 0) {
+ /* If DNZ is set flush denormals to zero on input. */
+ if (env->fpcr_dnz) {
+ val &= 1ull << 63;
+ } else {
+ helper_excp(EXCP_ARITH, EXC_M_UNF);
+ }
+ }
+ } else if (exp == 0x7ff) {
+ /* Infinity or NaN. */
+ /* ??? I'm not sure these exception bit flags are correct. I do
+ know that the Linux kernel, at least, doesn't rely on them and
+ just emulates the insn to figure out what exception to use. */
+ helper_excp(EXCP_ARITH, frac ? EXC_M_INV : EXC_M_FOV);
+ }
+ return val;
+}
+
+/* Similar, but does not trap for infinities. Used for comparisons. */
+uint64_t helper_ieee_input_cmp(uint64_t val)
+{
+ uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
+ uint64_t frac = val & 0xfffffffffffffull;
+
+ if (exp == 0) {
+ if (frac != 0) {
+ /* If DNZ is set flush denormals to zero on input. */
+ if (env->fpcr_dnz) {
+ val &= 1ull << 63;
+ } else {
+ helper_excp(EXCP_ARITH, EXC_M_UNF);
+ }
+ }
+ } else if (exp == 0x7ff && frac) {
+ /* NaN. */
+ helper_excp(EXCP_ARITH, EXC_M_INV);
+ }
+ return val;
+}
+
+/* Input remapping with software completion enabled. All we have to do
+ is handle denormal-map-to-zero; all other inputs get exceptions as
+ needed from the actual operation. */
+uint64_t helper_ieee_input_s(uint64_t val)
+{
+ if (env->fpcr_dnz) {
+ uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
+ if (exp == 0) {
+ val &= 1ull << 63;
+ }
+ }
+ return val;
+}
+
+/* F floating (VAX) */
+static inline uint64_t float32_to_f(float32 fa)
+{
+ uint64_t r, exp, mant, sig;
+ CPU_FloatU a;
+
+ a.f = fa;
+ sig = ((uint64_t)a.l & 0x80000000) << 32;
+ exp = (a.l >> 23) & 0xff;
+ mant = ((uint64_t)a.l & 0x007fffff) << 29;
+
+ if (exp == 255) {
+ /* NaN or infinity */
+ r = 1; /* VAX dirty zero */
+ } else if (exp == 0) {
+ if (mant == 0) {
+ /* Zero */
+ r = 0;
+ } else {
+ /* Denormalized */
+ r = sig | ((exp + 1) << 52) | mant;
+ }
+ } else {
+ if (exp >= 253) {
+ /* Overflow */
+ r = 1; /* VAX dirty zero */
+ } else {
+ r = sig | ((exp + 2) << 52);
+ }
+ }
+
+ return r;
+}
+
+static inline float32 f_to_float32(uint64_t a)
+{
+ uint32_t exp, mant_sig;
+ CPU_FloatU r;
+
+ exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
+ mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
+
+ if (unlikely(!exp && mant_sig)) {
+ /* Reserved operands / Dirty zero */
+ helper_excp(EXCP_OPCDEC, 0);
+ }
+
+ if (exp < 3) {
+ /* Underflow */
+ r.l = 0;
+ } else {
+ r.l = ((exp - 2) << 23) | mant_sig;
+ }
+
+ return r.f;
+}
+
+uint32_t helper_f_to_memory (uint64_t a)
+{
+ uint32_t r;
+ r = (a & 0x00001fffe0000000ull) >> 13;
+ r |= (a & 0x07ffe00000000000ull) >> 45;
+ r |= (a & 0xc000000000000000ull) >> 48;
+ return r;
+}
+
+uint64_t helper_memory_to_f (uint32_t a)
+{
+ uint64_t r;
+ r = ((uint64_t)(a & 0x0000c000)) << 48;
+ r |= ((uint64_t)(a & 0x003fffff)) << 45;
+ r |= ((uint64_t)(a & 0xffff0000)) << 13;
+ if (!(a & 0x00004000))
+ r |= 0x7ll << 59;
+ return r;
+}
+
+/* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong. We should
+ either implement VAX arithmetic properly or just signal invalid opcode. */
+
+uint64_t helper_addf (uint64_t a, uint64_t b)
+{
+ float32 fa, fb, fr;
+
+ fa = f_to_float32(a);
+ fb = f_to_float32(b);
+ fr = float32_add(fa, fb, &FP_STATUS);
+ return float32_to_f(fr);
+}
+
+uint64_t helper_subf (uint64_t a, uint64_t b)
+{
+ float32 fa, fb, fr;
+
+ fa = f_to_float32(a);
+ fb = f_to_float32(b);
+ fr = float32_sub(fa, fb, &FP_STATUS);
+ return float32_to_f(fr);
+}
+
+uint64_t helper_mulf (uint64_t a, uint64_t b)
+{
+ float32 fa, fb, fr;
+
+ fa = f_to_float32(a);
+ fb = f_to_float32(b);
+ fr = float32_mul(fa, fb, &FP_STATUS);
+ return float32_to_f(fr);
+}
+
+uint64_t helper_divf (uint64_t a, uint64_t b)
+{
+ float32 fa, fb, fr;
+
+ fa = f_to_float32(a);
+ fb = f_to_float32(b);
+ fr = float32_div(fa, fb, &FP_STATUS);
+ return float32_to_f(fr);
+}
+
+uint64_t helper_sqrtf (uint64_t t)
+{
+ float32 ft, fr;
+
+ ft = f_to_float32(t);
+ fr = float32_sqrt(ft, &FP_STATUS);
+ return float32_to_f(fr);
+}
+
+
+/* G floating (VAX) */
+static inline uint64_t float64_to_g(float64 fa)
+{
+ uint64_t r, exp, mant, sig;
+ CPU_DoubleU a;
+
+ a.d = fa;
+ sig = a.ll & 0x8000000000000000ull;
+ exp = (a.ll >> 52) & 0x7ff;
+ mant = a.ll & 0x000fffffffffffffull;
+
+ if (exp == 2047) {
+ /* NaN or infinity */
+ r = 1; /* VAX dirty zero */
+ } else if (exp == 0) {
+ if (mant == 0) {
+ /* Zero */
+ r = 0;
+ } else {
+ /* Denormalized */
+ r = sig | ((exp + 1) << 52) | mant;
+ }
+ } else {
+ if (exp >= 2045) {
+ /* Overflow */
+ r = 1; /* VAX dirty zero */
+ } else {
+ r = sig | ((exp + 2) << 52);
+ }
+ }
+
+ return r;
+}
+
+static inline float64 g_to_float64(uint64_t a)
+{
+ uint64_t exp, mant_sig;
+ CPU_DoubleU r;
+
+ exp = (a >> 52) & 0x7ff;
+ mant_sig = a & 0x800fffffffffffffull;
+
+ if (!exp && mant_sig) {
+ /* Reserved operands / Dirty zero */
+ helper_excp(EXCP_OPCDEC, 0);
+ }
+
+ if (exp < 3) {
+ /* Underflow */
+ r.ll = 0;
+ } else {
+ r.ll = ((exp - 2) << 52) | mant_sig;
+ }
+
+ return r.d;
+}
+
+uint64_t helper_g_to_memory (uint64_t a)
+{
+ uint64_t r;
+ r = (a & 0x000000000000ffffull) << 48;
+ r |= (a & 0x00000000ffff0000ull) << 16;
+ r |= (a & 0x0000ffff00000000ull) >> 16;
+ r |= (a & 0xffff000000000000ull) >> 48;
+ return r;
+}
+
+uint64_t helper_memory_to_g (uint64_t a)
+{
+ uint64_t r;
+ r = (a & 0x000000000000ffffull) << 48;
+ r |= (a & 0x00000000ffff0000ull) << 16;
+ r |= (a & 0x0000ffff00000000ull) >> 16;
+ r |= (a & 0xffff000000000000ull) >> 48;
+ return r;
+}
+
+uint64_t helper_addg (uint64_t a, uint64_t b)
+{
+ float64 fa, fb, fr;
+
+ fa = g_to_float64(a);
+ fb = g_to_float64(b);
+ fr = float64_add(fa, fb, &FP_STATUS);
+ return float64_to_g(fr);
+}
+
+uint64_t helper_subg (uint64_t a, uint64_t b)
+{
+ float64 fa, fb, fr;
+
+ fa = g_to_float64(a);
+ fb = g_to_float64(b);
+ fr = float64_sub(fa, fb, &FP_STATUS);
+ return float64_to_g(fr);
+}
+
+uint64_t helper_mulg (uint64_t a, uint64_t b)
+{
+ float64 fa, fb, fr;
+
+ fa = g_to_float64(a);
+ fb = g_to_float64(b);
+ fr = float64_mul(fa, fb, &FP_STATUS);
+ return float64_to_g(fr);
+}
+
+uint64_t helper_divg (uint64_t a, uint64_t b)
+{
+ float64 fa, fb, fr;
+
+ fa = g_to_float64(a);
+ fb = g_to_float64(b);
+ fr = float64_div(fa, fb, &FP_STATUS);
+ return float64_to_g(fr);
+}
+
+uint64_t helper_sqrtg (uint64_t a)
+{
+ float64 fa, fr;
+
+ fa = g_to_float64(a);
+ fr = float64_sqrt(fa, &FP_STATUS);
+ return float64_to_g(fr);
+}
+
+
+/* S floating (single) */
+
+/* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg. */
+static inline uint64_t float32_to_s_int(uint32_t fi)
+{
+ uint32_t frac = fi & 0x7fffff;
+ uint32_t sign = fi >> 31;
+ uint32_t exp_msb = (fi >> 30) & 1;
+ uint32_t exp_low = (fi >> 23) & 0x7f;
+ uint32_t exp;
+
+ exp = (exp_msb << 10) | exp_low;
+ if (exp_msb) {
+ if (exp_low == 0x7f)
+ exp = 0x7ff;
+ } else {
+ if (exp_low != 0x00)
+ exp |= 0x380;
+ }
+
+ return (((uint64_t)sign << 63)
+ | ((uint64_t)exp << 52)
+ | ((uint64_t)frac << 29));
+}
+
+static inline uint64_t float32_to_s(float32 fa)
+{
+ CPU_FloatU a;
+ a.f = fa;
+ return float32_to_s_int(a.l);
+}
+
+static inline uint32_t s_to_float32_int(uint64_t a)
+{
+ return ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
+}
+
+static inline float32 s_to_float32(uint64_t a)
+{
+ CPU_FloatU r;
+ r.l = s_to_float32_int(a);
+ return r.f;
+}
+
+uint32_t helper_s_to_memory (uint64_t a)
+{
+ return s_to_float32_int(a);
+}
+
+uint64_t helper_memory_to_s (uint32_t a)
+{
+ return float32_to_s_int(a);
+}
+
+uint64_t helper_adds (uint64_t a, uint64_t b)
+{
+ float32 fa, fb, fr;
+
+ fa = s_to_float32(a);
+ fb = s_to_float32(b);
+ fr = float32_add(fa, fb, &FP_STATUS);
+ return float32_to_s(fr);
+}
+
+uint64_t helper_subs (uint64_t a, uint64_t b)
+{
+ float32 fa, fb, fr;
+
+ fa = s_to_float32(a);
+ fb = s_to_float32(b);
+ fr = float32_sub(fa, fb, &FP_STATUS);
+ return float32_to_s(fr);
+}
+
+uint64_t helper_muls (uint64_t a, uint64_t b)
+{
+ float32 fa, fb, fr;
+
+ fa = s_to_float32(a);
+ fb = s_to_float32(b);
+ fr = float32_mul(fa, fb, &FP_STATUS);
+ return float32_to_s(fr);
+}
+
+uint64_t helper_divs (uint64_t a, uint64_t b)
+{
+ float32 fa, fb, fr;
+
+ fa = s_to_float32(a);
+ fb = s_to_float32(b);
+ fr = float32_div(fa, fb, &FP_STATUS);
+ return float32_to_s(fr);
+}
+
+uint64_t helper_sqrts (uint64_t a)
+{
+ float32 fa, fr;
+
+ fa = s_to_float32(a);
+ fr = float32_sqrt(fa, &FP_STATUS);
+ return float32_to_s(fr);
+}
+
+
+/* T floating (double) */
+static inline float64 t_to_float64(uint64_t a)
+{
+ /* Memory format is the same as float64 */
+ CPU_DoubleU r;
+ r.ll = a;
+ return r.d;
+}
+
+static inline uint64_t float64_to_t(float64 fa)
+{
+ /* Memory format is the same as float64 */
+ CPU_DoubleU r;
+ r.d = fa;
+ return r.ll;
+}
+
+uint64_t helper_addt (uint64_t a, uint64_t b)
+{
+ float64 fa, fb, fr;
+
+ fa = t_to_float64(a);
+ fb = t_to_float64(b);
+ fr = float64_add(fa, fb, &FP_STATUS);
+ return float64_to_t(fr);
+}
+
+uint64_t helper_subt (uint64_t a, uint64_t b)
+{
+ float64 fa, fb, fr;
+
+ fa = t_to_float64(a);
+ fb = t_to_float64(b);
+ fr = float64_sub(fa, fb, &FP_STATUS);
+ return float64_to_t(fr);
+}
+
+uint64_t helper_mult (uint64_t a, uint64_t b)
+{
+ float64 fa, fb, fr;
+
+ fa = t_to_float64(a);
+ fb = t_to_float64(b);
+ fr = float64_mul(fa, fb, &FP_STATUS);
+ return float64_to_t(fr);
+}
+
+uint64_t helper_divt (uint64_t a, uint64_t b)
+{
+ float64 fa, fb, fr;
+
+ fa = t_to_float64(a);
+ fb = t_to_float64(b);
+ fr = float64_div(fa, fb, &FP_STATUS);
+ return float64_to_t(fr);
+}
+
+uint64_t helper_sqrtt (uint64_t a)
+{
+ float64 fa, fr;
+
+ fa = t_to_float64(a);
+ fr = float64_sqrt(fa, &FP_STATUS);
+ return float64_to_t(fr);
+}
+
+/* Comparisons */
+uint64_t helper_cmptun (uint64_t a, uint64_t b)
+{
+ float64 fa, fb;
+
+ fa = t_to_float64(a);
+ fb = t_to_float64(b);
+
+ if (float64_is_quiet_nan(fa) || float64_is_quiet_nan(fb))
+ return 0x4000000000000000ULL;
+ else
+ return 0;
+}
+
+uint64_t helper_cmpteq(uint64_t a, uint64_t b)
+{
+ float64 fa, fb;
+
+ fa = t_to_float64(a);
+ fb = t_to_float64(b);
+
+ if (float64_eq(fa, fb, &FP_STATUS))
+ return 0x4000000000000000ULL;
+ else
+ return 0;
+}
+
+uint64_t helper_cmptle(uint64_t a, uint64_t b)
+{
+ float64 fa, fb;
+
+ fa = t_to_float64(a);
+ fb = t_to_float64(b);
+
+ if (float64_le(fa, fb, &FP_STATUS))
+ return 0x4000000000000000ULL;
+ else
+ return 0;
+}
+
+uint64_t helper_cmptlt(uint64_t a, uint64_t b)
+{
+ float64 fa, fb;
+
+ fa = t_to_float64(a);
+ fb = t_to_float64(b);
+
+ if (float64_lt(fa, fb, &FP_STATUS))
+ return 0x4000000000000000ULL;
+ else
+ return 0;
+}
+
+uint64_t helper_cmpgeq(uint64_t a, uint64_t b)
+{
+ float64 fa, fb;
+
+ fa = g_to_float64(a);
+ fb = g_to_float64(b);
+
+ if (float64_eq(fa, fb, &FP_STATUS))
+ return 0x4000000000000000ULL;
+ else
+ return 0;
+}
+
+uint64_t helper_cmpgle(uint64_t a, uint64_t b)
+{
+ float64 fa, fb;
+
+ fa = g_to_float64(a);
+ fb = g_to_float64(b);
+
+ if (float64_le(fa, fb, &FP_STATUS))
+ return 0x4000000000000000ULL;
+ else
+ return 0;
+}
+
+uint64_t helper_cmpglt(uint64_t a, uint64_t b)
+{
+ float64 fa, fb;
+
+ fa = g_to_float64(a);
+ fb = g_to_float64(b);
+
+ if (float64_lt(fa, fb, &FP_STATUS))
+ return 0x4000000000000000ULL;
+ else
+ return 0;
+}
+
+/* Floating point format conversion */
+uint64_t helper_cvtts (uint64_t a)
+{
+ float64 fa;
+ float32 fr;
+
+ fa = t_to_float64(a);
+ fr = float64_to_float32(fa, &FP_STATUS);
+ return float32_to_s(fr);
+}
+
+uint64_t helper_cvtst (uint64_t a)
+{
+ float32 fa;
+ float64 fr;
+
+ fa = s_to_float32(a);
+ fr = float32_to_float64(fa, &FP_STATUS);
+ return float64_to_t(fr);
+}
+
+uint64_t helper_cvtqs (uint64_t a)
+{
+ float32 fr = int64_to_float32(a, &FP_STATUS);
+ return float32_to_s(fr);
+}
+
+/* Implement float64 to uint64 conversion without saturation -- we must
+ supply the truncated result. This behaviour is used by the compiler
+ to get unsigned conversion for free with the same instruction.
+
+ The VI flag is set when overflow or inexact exceptions should be raised. */
+
+static inline uint64_t helper_cvttq_internal(uint64_t a, int roundmode, int VI)
+{
+ uint64_t frac, ret = 0;
+ uint32_t exp, sign, exc = 0;
+ int shift;
+
+ sign = (a >> 63);
+ exp = (uint32_t)(a >> 52) & 0x7ff;
+ frac = a & 0xfffffffffffffull;
+
+ if (exp == 0) {
+ if (unlikely(frac != 0)) {
+ goto do_underflow;
+ }
+ } else if (exp == 0x7ff) {
+ exc = (frac ? float_flag_invalid : VI ? float_flag_overflow : 0);
+ } else {
+ /* Restore implicit bit. */
+ frac |= 0x10000000000000ull;
+
+ shift = exp - 1023 - 52;
+ if (shift >= 0) {
+ /* In this case the number is so large that we must shift
+ the fraction left. There is no rounding to do. */
+ if (shift < 63) {
+ ret = frac << shift;
+ if (VI && (ret >> shift) != frac) {
+ exc = float_flag_overflow;
+ }
+ }
+ } else {
+ uint64_t round;
+
+ /* In this case the number is smaller than the fraction as
+ represented by the 52 bit number. Here we must think
+ about rounding the result. Handle this by shifting the
+ fractional part of the number into the high bits of ROUND.
+ This will let us efficiently handle round-to-nearest. */
+ shift = -shift;
+ if (shift < 63) {
+ ret = frac >> shift;
+ round = frac << (64 - shift);
+ } else {
+ /* The exponent is so small we shift out everything.
+ Leave a sticky bit for proper rounding below. */
+ do_underflow:
+ round = 1;
+ }
+
+ if (round) {
+ exc = (VI ? float_flag_inexact : 0);
+ switch (roundmode) {
+ case float_round_nearest_even:
+ if (round == (1ull << 63)) {
+ /* Fraction is exactly 0.5; round to even. */
+ ret += (ret & 1);
+ } else if (round > (1ull << 63)) {
+ ret += 1;
+ }
+ break;
+ case float_round_to_zero:
+ break;
+ case float_round_up:
+ ret += 1 - sign;
+ break;
+ case float_round_down:
+ ret += sign;
+ break;
+ }
+ }
+ }
+ if (sign) {
+ ret = -ret;
+ }
+ }
+ if (unlikely(exc)) {
+ float_raise(exc, &FP_STATUS);
+ }
+
+ return ret;
+}
+
+uint64_t helper_cvttq(uint64_t a)
+{
+ return helper_cvttq_internal(a, FP_STATUS.float_rounding_mode, 1);
+}
+
+uint64_t helper_cvttq_c(uint64_t a)
+{
+ return helper_cvttq_internal(a, float_round_to_zero, 0);
+}
+
+uint64_t helper_cvttq_svic(uint64_t a)
+{
+ return helper_cvttq_internal(a, float_round_to_zero, 1);
+}
+
+uint64_t helper_cvtqt (uint64_t a)
+{
+ float64 fr = int64_to_float64(a, &FP_STATUS);
+ return float64_to_t(fr);
+}
+
+uint64_t helper_cvtqf (uint64_t a)
+{
+ float32 fr = int64_to_float32(a, &FP_STATUS);
+ return float32_to_f(fr);
+}
+
+uint64_t helper_cvtgf (uint64_t a)
+{
+ float64 fa;
+ float32 fr;
+
+ fa = g_to_float64(a);
+ fr = float64_to_float32(fa, &FP_STATUS);
+ return float32_to_f(fr);
+}
+
+uint64_t helper_cvtgq (uint64_t a)
+{
+ float64 fa = g_to_float64(a);
+ return float64_to_int64_round_to_zero(fa, &FP_STATUS);
+}
+
+uint64_t helper_cvtqg (uint64_t a)
+{
+ float64 fr;
+ fr = int64_to_float64(a, &FP_STATUS);
+ return float64_to_g(fr);
+}
+
+/* PALcode support special instructions */
+#if !defined (CONFIG_USER_ONLY)
+void helper_hw_rei (void)
+{
+ env->pc = env->ipr[IPR_EXC_ADDR] & ~3;
+ env->ipr[IPR_EXC_ADDR] = env->ipr[IPR_EXC_ADDR] & 1;
+ env->intr_flag = 0;
+ env->lock_addr = -1;
+ /* XXX: re-enable interrupts and memory mapping */
+}
+
+void helper_hw_ret (uint64_t a)
+{
+ env->pc = a & ~3;
+ env->ipr[IPR_EXC_ADDR] = a & 1;
+ env->intr_flag = 0;
+ env->lock_addr = -1;
+ /* XXX: re-enable interrupts and memory mapping */
+}
+
+uint64_t helper_mfpr (int iprn, uint64_t val)
+{
+ uint64_t tmp;
+
+ if (cpu_alpha_mfpr(env, iprn, &tmp) == 0)
+ val = tmp;
+
+ return val;
+}
+
+void helper_mtpr (int iprn, uint64_t val)
+{
+ cpu_alpha_mtpr(env, iprn, val, NULL);
+}
+
+void helper_set_alt_mode (void)
+{
+ env->saved_mode = env->ps & 0xC;
+ env->ps = (env->ps & ~0xC) | (env->ipr[IPR_ALT_MODE] & 0xC);
+}
+
+void helper_restore_mode (void)
+{
+ env->ps = (env->ps & ~0xC) | env->saved_mode;
+}
+
+#endif
+
+/*****************************************************************************/
+/* Softmmu support */
+#if !defined (CONFIG_USER_ONLY)
+
+/* XXX: the two following helpers are pure hacks.
+ * Hopefully, we emulate the PALcode, then we should never see
+ * HW_LD / HW_ST instructions.
+ */
+uint64_t helper_ld_virt_to_phys (uint64_t virtaddr)
+{
+ uint64_t tlb_addr, physaddr;
+ int index, mmu_idx;
+ void *retaddr;
+
+ mmu_idx = cpu_mmu_index(env);
+ index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ redo:
+ tlb_addr = env->tlb_table[mmu_idx][index].addr_read;
+ if ((virtaddr & TARGET_PAGE_MASK) ==
+ (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
+ physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
+ } else {
+ /* the page is not in the TLB : fill it */
+ retaddr = GETPC();
+ tlb_fill(virtaddr, 0, mmu_idx, retaddr);
+ goto redo;
+ }
+ return physaddr;
+}
+
+uint64_t helper_st_virt_to_phys (uint64_t virtaddr)
+{
+ uint64_t tlb_addr, physaddr;
+ int index, mmu_idx;
+ void *retaddr;
+
+ mmu_idx = cpu_mmu_index(env);
+ index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ redo:
+ tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
+ if ((virtaddr & TARGET_PAGE_MASK) ==
+ (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
+ physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
+ } else {
+ /* the page is not in the TLB : fill it */
+ retaddr = GETPC();
+ tlb_fill(virtaddr, 1, mmu_idx, retaddr);
+ goto redo;
+ }
+ return physaddr;
+}
+
+void helper_ldl_raw(uint64_t t0, uint64_t t1)
+{
+ ldl_raw(t1, t0);
+}
+
+void helper_ldq_raw(uint64_t t0, uint64_t t1)
+{
+ ldq_raw(t1, t0);
+}
+
+void helper_ldl_l_raw(uint64_t t0, uint64_t t1)
+{
+ env->lock = t1;
+ ldl_raw(t1, t0);
+}
+
+void helper_ldq_l_raw(uint64_t t0, uint64_t t1)
+{
+ env->lock = t1;
+ ldl_raw(t1, t0);
+}
+
+void helper_ldl_kernel(uint64_t t0, uint64_t t1)
+{
+ ldl_kernel(t1, t0);
+}
+
+void helper_ldq_kernel(uint64_t t0, uint64_t t1)
+{
+ ldq_kernel(t1, t0);
+}
+
+void helper_ldl_data(uint64_t t0, uint64_t t1)
+{
+ ldl_data(t1, t0);
+}
+
+void helper_ldq_data(uint64_t t0, uint64_t t1)
+{
+ ldq_data(t1, t0);
+}
+
+void helper_stl_raw(uint64_t t0, uint64_t t1)
+{
+ stl_raw(t1, t0);
+}
+
+void helper_stq_raw(uint64_t t0, uint64_t t1)
+{
+ stq_raw(t1, t0);
+}
+
+uint64_t helper_stl_c_raw(uint64_t t0, uint64_t t1)
+{
+ uint64_t ret;
+
+ if (t1 == env->lock) {
+ stl_raw(t1, t0);
+ ret = 0;
+ } else
+ ret = 1;
+
+ env->lock = 1;
+
+ return ret;
+}
+
+uint64_t helper_stq_c_raw(uint64_t t0, uint64_t t1)
+{
+ uint64_t ret;
+
+ if (t1 == env->lock) {
+ stq_raw(t1, t0);
+ ret = 0;
+ } else
+ ret = 1;
+
+ env->lock = 1;
+
+ return ret;
+}
+
+#define MMUSUFFIX _mmu
+
+#define SHIFT 0
+#include "softmmu_template.h"
+
+#define SHIFT 1
+#include "softmmu_template.h"
+
+#define SHIFT 2
+#include "softmmu_template.h"
+
+#define SHIFT 3
+#include "softmmu_template.h"
+
+/* try to fill the TLB and return an exception if error. If retaddr is
+ NULL, it means that the function was called in C code (i.e. not
+ from generated code or from helper.c) */
+/* XXX: fix it to restore all registers */
+void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
+{
+ TranslationBlock *tb;
+ CPUState *saved_env;
+ unsigned long pc;
+ int ret;
+
+ /* XXX: hack to restore env in all cases, even if not called from
+ generated code */
+ saved_env = env;
+ env = cpu_single_env;
+ ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
+ if (!likely(ret == 0)) {
+ if (likely(retaddr)) {
+ /* now we have a real cpu fault */
+ pc = (unsigned long)retaddr;
+ tb = tb_find_pc(pc);
+ if (likely(tb)) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, NULL);
+ }
+ }
+ /* Exception index and error code are already set */
+ cpu_loop_exit();
+ }
+ env = saved_env;
+}
+
+#endif