summaryrefslogtreecommitdiff
path: root/src/common/Random.c
blob: 66b180e5fe8139e9ca4feb21f589063360a89508 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/*
	Random.c
		quasi- and pseudo-random-number generation
		last modified 8 Jun 10 th
*/


/*
	PART 1: Sobol quasi-random-number generator
	adapted from ACM TOMS algorithm 659
*/

static void SobolGet(This *t, real *x)
{
  number seq = t->rng.sobol.seq++;
  count zerobit = 0, dim;

  while( seq & 1 ) {
    ++zerobit;
    seq >>= 1;
  }

  for( dim = 0; dim < t->ndim; ++dim ) {
    t->rng.sobol.prev[dim] ^= t->rng.sobol.v[dim][zerobit];
    x[dim] = t->rng.sobol.prev[dim]*t->rng.sobol.norm;
  }
}


static void SobolSkip(This *t, number n)
{
  while( n-- ) {
    number seq = t->rng.sobol.seq++;
    count zerobit = 0, dim;

    while( seq & 1 ) {
      ++zerobit;
      seq >>= 1;
    }

    for( dim = 0; dim < t->ndim; ++dim )
      t->rng.sobol.prev[dim] ^= t->rng.sobol.v[dim][zerobit];
  }
}


static inline void SobolIni(This *t)
{
  static number ini[9*40] = {
      3,   1,   0,   0,   0,   0,   0,   0,   0,
      7,   1,   1,   0,   0,   0,   0,   0,   0,
     11,   1,   3,   7,   0,   0,   0,   0,   0,
     13,   1,   1,   5,   0,   0,   0,   0,   0,
     19,   1,   3,   1,   1,   0,   0,   0,   0,
     25,   1,   1,   3,   7,   0,   0,   0,   0,
     37,   1,   3,   3,   9,   9,   0,   0,   0,
     59,   1,   3,   7,  13,   3,   0,   0,   0,
     47,   1,   1,   5,  11,  27,   0,   0,   0,
     61,   1,   3,   5,   1,  15,   0,   0,   0,
     55,   1,   1,   7,   3,  29,   0,   0,   0,
     41,   1,   3,   7,   7,  21,   0,   0,   0,
     67,   1,   1,   1,   9,  23,  37,   0,   0,
     97,   1,   3,   3,   5,  19,  33,   0,   0,
     91,   1,   1,   3,  13,  11,   7,   0,   0,
    109,   1,   1,   7,  13,  25,   5,   0,   0,
    103,   1,   3,   5,  11,   7,  11,   0,   0,
    115,   1,   1,   1,   3,  13,  39,   0,   0,
    131,   1,   3,   1,  15,  17,  63,  13,   0,
    193,   1,   1,   5,   5,   1,  27,  33,   0,
    137,   1,   3,   3,   3,  25,  17, 115,   0,
    145,   1,   1,   3,  15,  29,  15,  41,   0,
    143,   1,   3,   1,   7,   3,  23,  79,   0,
    241,   1,   3,   7,   9,  31,  29,  17,   0,
    157,   1,   1,   5,  13,  11,   3,  29,   0,
    185,   1,   3,   1,   9,   5,  21, 119,   0,
    167,   1,   1,   3,   1,  23,  13,  75,   0,
    229,   1,   3,   3,  11,  27,  31,  73,   0,
    171,   1,   1,   7,   7,  19,  25, 105,   0,
    213,   1,   3,   5,   5,  21,   9,   7,   0,
    191,   1,   1,   1,  15,   5,  49,  59,   0,
    253,   1,   1,   1,   1,   1,  33,  65,   0,
    203,   1,   3,   5,  15,  17,  19,  21,   0,
    211,   1,   1,   7,  11,  13,  29,   3,   0,
    239,   1,   3,   7,   5,   7,  11, 113,   0,
    247,   1,   1,   5,   3,  15,  19,  61,   0,
    285,   1,   3,   1,   1,   9,  27,  89,   7,
    369,   1,   1,   3,   7,  31,  15,  45,  23,
    299,   1,   3,   3,   9,   9,  25, 107,  39 };

  count dim, bit, nbits;
  number max, *pini = ini;
  cnumber nmax = 2*t->maxeval;

  for( nbits = 0, max = 1; max <= nmax; max <<= 1 ) ++nbits;
  t->rng.sobol.norm = 1./max;

  for( bit = 0; bit < nbits; ++bit )
    t->rng.sobol.v[0][bit] = (max >>= 1);

  for( dim = 1; dim < t->ndim; ++dim ) {
    number *pv = t->rng.sobol.v[dim], *pvv = pv;
    number powers = *pini++, j;
    int inibits = -1, bit;
    for( j = powers; j; j >>= 1 ) ++inibits;

    memcpy(pv, pini, inibits*sizeof(*pini));
    pini += 8;

    for( bit = inibits; bit < nbits; ++bit ) {
      number newv = *pvv, j = powers;
      int b;
      for( b = 0; b < inibits; ++b ) {
        if( j & 1 ) newv ^= pvv[b] << (inibits - b);
        j >>= 1;
      }
      pvv[inibits] = newv;
      ++pvv;
    }

    for( bit = 0; bit < nbits - 1; ++bit )
      pv[bit] <<= nbits - bit - 1;
  }

  t->rng.sobol.seq = 0;
  VecClear(t->rng.sobol.prev);

  t->rng.getrandom = SobolGet;
  t->rng.skiprandom = SobolSkip;
}


/*
	PART 2: Mersenne Twister pseudo-random-number generator
	adapted from T. Nishimura's and M. Matsumoto's C code at
	http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
*/

/* 32 or 53 random bits */
#define RANDOM_BITS 32


static inline state_t Twist(state_t a, state_t b)
{
  state_t mixbits = (a & 0x80000000) | (b & 0x7fffffff);
  state_t matrixA = (-(b & 1)) & 0x9908b0df;
  return (mixbits >> 1) ^ matrixA;
}


static inline void MersenneReload(state_t *state)
{
  state_t *s = state;
  int j;

  for( j = MERSENNE_N - MERSENNE_M + 1; --j; ++s )
    *s = s[MERSENNE_M] ^ Twist(s[0], s[1]);
  for( j = MERSENNE_M; --j; ++s )
    *s = s[MERSENNE_M - MERSENNE_N] ^ Twist(s[0], s[1]);
  *s = s[MERSENNE_M - MERSENNE_N] ^ Twist(s[0], state[0]);
}


static inline state_t MersenneInt(state_t s)
{
  s ^= s >> 11;
  s ^= (s << 7) & 0x9d2c5680;
  s ^= (s << 15) & 0xefc60000;
  return s ^ (s >> 18);
}


static void MersenneGet(This *t, real *x)
{
  count next = t->rng.mersenne.next, dim;

  for( dim = 0; dim < t->ndim; ++dim ) {
#if RANDOM_BITS == 53
    state_t a, b;
#endif

    if( next >= MERSENNE_N ) {
      MersenneReload(t->rng.mersenne.state);
      next = 0;
    }

#if RANDOM_BITS == 53
    a = MersenneInt(t->rng.mersenne.state[next++]) >> 5;
    b = MersenneInt(t->rng.mersenne.state[next++]) >> 6;
    x[dim] = (67108864.*a + b)/9007199254740992.;
#else
    x[dim] = MersenneInt(t->rng.mersenne.state[next++])/4294967296.;
#endif
  }

  t->rng.mersenne.next = next;
}


static void MersenneSkip(This *t, number n)
{
#if RANDOM_BITS == 53
  n = 2*n*t->ndim + t->rng.mersenne.next;
#else
  n = n*t->ndim + t->rng.mersenne.next;
#endif
  t->rng.mersenne.next = n % MERSENNE_N;
  n /= MERSENNE_N;
  while( n-- ) MersenneReload(t->rng.mersenne.state);
}


static inline void MersenneIni(This *t)
{
  state_t seed = t->seed;
  state_t *next = t->rng.mersenne.state;
  count j;

  for( j = 1; j <= MERSENNE_N; ++j ) {
    *next++ = seed;
    seed = 0x6c078965*(seed ^ (seed >> 30)) + j;
    /* see Knuth TAOCP Vol 2, 3rd Ed, p. 106 for multiplier */
  }

  MersenneReload(t->rng.mersenne.state);
  t->rng.mersenne.next = 0;

  t->rng.getrandom = MersenneGet;
  t->rng.skiprandom = MersenneSkip;
}


/*
	PART 3: Ranlux subtract-and-borrow random-number generator 
	proposed by Marsaglia and Zaman, implemented by F. James with 
	the name RCARRY in 1991, and later improved by Martin Luescher 
	in 1993 to produce "Luxury Pseudorandom Numbers".
	Adapted from the CERNlib Fortran 77 code by F. James, 1993.

	The available luxury levels are:

	level 0  (p = 24): equivalent to the original RCARRY of Marsaglia
	         and Zaman, very long period, but fails many tests.
	level 1  (p = 48): considerable improvement in quality over level 0,
	         now passes the gap test, but still fails spectral test.
	level 2  (p = 97): passes all known tests, but theoretically still
	         defective.
	level 3  (p = 223): DEFAULT VALUE.  Any theoretically possible
	         correlations have very small chance of being observed.
	level 4  (p = 389): highest possible luxury, all 24 bits chaotic.
*/


static inline int RanluxInt(This *t, count n)
{
  int s = 0;

  while( n-- ) {
    s = t->rng.ranlux.state[t->rng.ranlux.j24] -
        t->rng.ranlux.state[t->rng.ranlux.i24] + t->rng.ranlux.carry;
    s += (t->rng.ranlux.carry = NegQ(s)) & (1 << 24);
    t->rng.ranlux.state[t->rng.ranlux.i24] = s;
    --t->rng.ranlux.i24;
    t->rng.ranlux.i24 += NegQ(t->rng.ranlux.i24) & 24;
    --t->rng.ranlux.j24;
    t->rng.ranlux.j24 += NegQ(t->rng.ranlux.j24) & 24;
  }

  return s;
}


static void RanluxGet(This *t, real *x)
{
/* The Generator proper: "Subtract-with-borrow",
   as proposed by Marsaglia and Zaman, FSU, March 1989 */

  count dim;

  for( dim = 0; dim < t->ndim; ++dim ) {
    cint nskip = (--t->rng.ranlux.n24 >= 0) ? 0 :
      (t->rng.ranlux.n24 = 24, t->rng.ranlux.nskip);
    cint s = RanluxInt(t, 1 + nskip);
    x[dim] = s*0x1p-24;
/* small numbers (with less than 12 significant bits) are "padded" */
    if( s < (1 << 12) )
      x[dim] += t->rng.ranlux.state[t->rng.ranlux.j24]*0x1p-48;
  }
}


static void RanluxSkip(This *t, cnumber n)
{
  RanluxInt(t, n + t->rng.ranlux.nskip*(n/24));
  t->rng.ranlux.n24 = 24 - n % 24;
}


static inline void RanluxIni(This *t)
{
  cint skip[] = {24, 48, 97, 223, 389,
    223, 223, 223, 223, 223, 223, 223, 223, 223, 223,
    223, 223, 223, 223, 223, 223, 223, 223, 223, 223};
  state_t seed = t->seed;
  state_t level = RNG;
  count i;

  if( level < sizeof skip ) level = skip[level];
  t->rng.ranlux.nskip = level - 24;

  t->rng.ranlux.i24 = 23;
  t->rng.ranlux.j24 = 9;
  t->rng.ranlux.n24 = 24;

  for( i = 0; i < 24; ++i ) {
    cint k = seed/53668;
    seed = 40014*(seed - k*53668) - k*12211;
    seed += NegQ(seed) & 2147483563;
    t->rng.ranlux.state[i] = seed & ((1 << 24) - 1);
  }

  t->rng.ranlux.carry = ~TrueQ(t->rng.ranlux.state[23]) & (1 << 24);

  t->rng.getrandom = RanluxGet;
  t->rng.skiprandom = RanluxSkip;
}


/*
	PART 4: User routines:

	- IniRandom sets up the random-number generator to produce a
	  sequence of at least n ndim-dimensional random vectors.

	- GetRandom retrieves one random vector.

	- SkipRandom skips over n random vectors.
*/

static inline void IniRandom(This *t)
{
  if( t->seed == 0 ) SobolIni(t);
  else if( RNG == 0 ) MersenneIni(t);
  else RanluxIni(t);
}