1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
:Evaluate: BeginPackage["Cuba`"]
:Evaluate: Vegas::usage = "Vegas[f, {x, xmin, xmax}..] computes a numerical approximation to the integral of the real scalar or vector function f.
The output is a list with entries of the form {integral, error, chi-square probability} for each component of the integrand."
:Evaluate: NStart::usage = "NStart is an option of Vegas.
It specifies the number of integrand evaluations per iteration to start with."
:Evaluate: NIncrease::usage = "NIncrease is an option of Vegas.
It specifies the increase in the number of integrand evaluations per iteration."
:Evaluate: NBatch::usage = "NBatch is an option of Vegas.
It specifies how many points are sent in one MathLink packet to be sampled by Mathematica."
:Evaluate: GridNo::usage = "GridNo is an option of Vegas.
Vegas maintains an internal table in which it can memorize up to 10 grids, to be used on subsequent integrations.
A GridNo between 1 and 10 selects the slot in this internal table.
For other values the grid is initialized from scratch and discarded at the end of the integration."
:Evaluate: StateFile::usage = "StateFile is an option of Vegas.
It specifies a file in which the internal state is stored after each iteration and from which it can be restored on a subsequent run.
The state file is removed once the prescribed accuracy has been reached."
:Evaluate: MinPoints::usage = "MinPoints is an option of Vegas.
It specifies the minimum number of points to sample."
:Evaluate: Final::usage = "Final is an option of Vegas.
It can take the values Last or All which determine whether only the last (largest) or all of the samples collected on a subregion over the iterations contribute to the final result."
:Evaluate: PseudoRandom::usage = "PseudoRandom is an option of Vegas.
It can take the following values:
False for Sobol quasi-random numbers (default),
True or 0 for Mersenne Twister pseudo-random numbers,
any other integer value n for Ranlux pseudo-random numbers of luxury level n."
:Evaluate: PseudoRandomSeed::usage = "PseudoRandomSeed is an option of Vegas.
It specifies the seed for the pseudo-random number generator."
:Evaluate: SharpEdges::usage = "SharpEdges is an option of Vegas.
It turns off smoothing of the importance function for integrands with sharp edges."
:Evaluate: $Weight::usage = "$Weight is a global variable set by Vegas during the evaluation of the integrand to the weight of the point being sampled."
:Evaluate: $Iteration::usage = "$Iteration is a global variable set by Suave during the evaluation of the integrand to the present iteration number."
:Evaluate: MapSample::usage = "MapSample is a function used to map the integrand over the points to be sampled."
:Evaluate: Begin["`Vegas`"]
:Begin:
:Function: Vegas
:Pattern: MLVegas[ndim_, ncomp_,
epsrel_, epsabs_, flags_, seed_,
mineval_, maxeval_,
nstart_, nincrease_, nbatch_,
gridno_, statefile_]
:Arguments: {ndim, ncomp,
epsrel, epsabs, flags, seed,
mineval, maxeval,
nstart, nincrease, nbatch,
gridno, statefile}
:ArgumentTypes: {Integer, Integer,
Real, Real, Integer, Integer,
Integer, Integer,
Integer, Integer, Integer,
Integer, String}
:ReturnType: Manual
:End:
:Evaluate: Attributes[Vegas] = {HoldFirst}
:Evaluate: Options[Vegas] = {PrecisionGoal -> 3, AccuracyGoal -> 12,
MinPoints -> 0, MaxPoints -> 50000,
NStart -> 1000, NIncrease -> 500,
NBatch -> 1000, GridNo -> 0, StateFile -> "",
Verbose -> 1, Final -> All,
PseudoRandom -> False, PseudoRandomSeed -> 5489,
SharpEdges -> False, Compiled -> True}
:Evaluate: Vegas[f_, v:{_, _, _}.., opt___Rule] :=
Block[ {ff = HoldForm[f], ndim = Length[{v}], ncomp,
tags, vars, lower, range, jac, tmp, defs, intT,
rel, abs, mineval, maxeval, nstart, nincrease, nbatch,
gridno, verbose, final, level, seed, edges, compiled,
$Weight, $Iteration},
Message[Vegas::optx, #, Vegas]&/@
Complement[First/@ {opt}, tags = First/@ Options[Vegas]];
{rel, abs, mineval, maxeval, nstart, nincrease, nbatch,
gridno, state, verbose, final, level, seed, edges, compiled} =
tags /. {opt} /. Options[Vegas];
{vars, lower, range} = Transpose[{v}];
jac = Simplify[Times@@ (range -= lower)];
tmp = Array[tmpvar, ndim];
defs = Simplify[lower + range tmp];
Block[{Set}, define[compiled, tmp, Thread[vars = defs], jac]];
intT = integrandT[f];
Block[#,
ncomp = Length[intT@@ RandomReal[1, ndim]];
MLVegas[ndim, ncomp, 10.^-rel, 10.^-abs,
Min[Max[verbose, 0], 3] +
If[final === Last, 4, 0] +
If[TrueQ[edges], 8, 0]
If[IntegerQ[level], 256 level, 0],
If[level =!= False && IntegerQ[seed], seed, 0],
mineval, maxeval,
nstart, nincrease, nbatch,
gridno, state]
]& @ vars
]
:Evaluate: tmpvar[n_] := ToExpression["Cuba`Vegas`t" <> ToString[n]]
:Evaluate: Attributes[foo] = {HoldAll}
:Evaluate: define[True, tmp_, defs_, jac_] :=
integrandT[f_] := Compile[tmp, eval[defs, Chop[f jac]//N],
{{_eval, _Real, 1}}]
:Evaluate: define[_, tmp_, defs_, jac_] :=
integrandT[f_] := Function[tmp, eval[defs, Chop[f jac]//N]]
:Evaluate: eval[_, f_Real] = {f}
:Evaluate: eval[_, f:{__Real}] = f
:Evaluate: eval[x_, _] := (Message[Vegas::badsample, ff, x]; {})
:Evaluate: sample[x_, w_, iter_] := (
$Iteration = iter;
Check[Flatten @ MapSample[
($Weight = #[[1]]; intT@@ #[[2]])&,
Transpose[{w, Partition[x, ndim]}] ], {}] )
:Evaluate: MapSample = Map
:Evaluate: Vegas::badsample = "`` is not a real-valued function at ``."
:Evaluate: Vegas::baddim = "Cannot integrate in `` dimensions."
:Evaluate: Vegas::badcomp = "Cannot integrate `` components."
:Evaluate: Vegas::accuracy =
"Desired accuracy was not reached within `` function evaluations."
:Evaluate: Vegas::success = "Needed `` function evaluations."
:Evaluate: End[]
:Evaluate: EndPackage[]
/*
Vegas.tm
Vegas Monte Carlo integration
by Thomas Hahn
last modified 12 Aug 11 th
*/
#include "mathlink.h"
#include "decl.h"
/*********************************************************************/
static void Status(MLCONST char *msg, cint n)
{
MLPutFunction(stdlink, "CompoundExpression", 2);
MLPutFunction(stdlink, "Message", 2);
MLPutFunction(stdlink, "MessageName", 2);
MLPutSymbol(stdlink, "Vegas");
MLPutString(stdlink, msg);
MLPutInteger(stdlink, n);
}
/*********************************************************************/
static void Print(MLCONST char *s)
{
MLPutFunction(stdlink, "EvaluatePacket", 1);
MLPutFunction(stdlink, "Print", 1);
MLPutString(stdlink, s);
MLEndPacket(stdlink);
MLNextPacket(stdlink);
MLNewPacket(stdlink);
}
/*********************************************************************/
static void DoSample(This *t, cnumber n, real *x, real *f,
real *w, cint iter)
{
real *mma_f;
long mma_n;
if( MLAbort ) longjmp(t->abort, -99);
MLPutFunction(stdlink, "EvaluatePacket", 1);
MLPutFunction(stdlink, "Cuba`Vegas`sample", 3);
MLPutRealList(stdlink, x, n*t->ndim);
MLPutRealList(stdlink, w, n);
MLPutInteger(stdlink, iter);
MLEndPacket(stdlink);
MLNextPacket(stdlink);
if( !MLGetRealList(stdlink, &mma_f, &mma_n) ) {
MLClearError(stdlink);
MLNewPacket(stdlink);
longjmp(t->abort, -99);
}
if( mma_n != n*t->ncomp ) {
MLDisownRealList(stdlink, mma_f, mma_n);
longjmp(t->abort, -3);
}
Copy(f, mma_f, n*t->ncomp);
MLDisownRealList(stdlink, mma_f, mma_n);
t->neval += n;
}
/*********************************************************************/
#include "common.c"
static inline void DoIntegrate(This *t)
{
real integral[NCOMP], error[NCOMP], prob[NCOMP];
cint fail = Integrate(t, integral, error, prob);
if( fail < 0 ) {
switch( fail ) {
case -99:
MLPutFunction(stdlink, "Abort", 0);
return;
case -1:
Status("baddim", t->ndim);
break;
case -2:
Status("badcomp", t->ncomp);
break;
}
MLPutSymbol(stdlink, "$Failed");
}
else {
Status(fail ? "accuracy" : "success", t->neval);
MLPutFunction(stdlink, "Thread", 1);
MLPutFunction(stdlink, "List", 3);
MLPutRealList(stdlink, integral, t->ncomp);
MLPutRealList(stdlink, error, t->ncomp);
MLPutRealList(stdlink, prob, t->ncomp);
}
}
/*********************************************************************/
void Vegas(cint ndim, cint ncomp,
creal epsrel, creal epsabs,
cint flags, cint seed,
cnumber mineval, cnumber maxeval,
cnumber nstart, cnumber nincrease, cint nbatch,
cint gridno, cchar *statefile)
{
This t;
t.ndim = ndim;
t.ncomp = ncomp;
t.epsrel = epsrel;
t.epsabs = epsabs;
t.flags = flags;
t.seed = seed;
t.mineval = mineval;
t.maxeval = maxeval;
t.nstart = nstart;
t.nincrease = nincrease;
t.nbatch = nbatch;
t.gridno = gridno;
t.statefile = statefile;
t.neval = 0;
DoIntegrate(&t);
MLEndPacket(stdlink);
}
/*********************************************************************/
int main(int argc, char **argv)
{
return MLMain(argc, argv);
}
|