summaryrefslogtreecommitdiff
path: root/usr/src/libm/src/C/log1p.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/libm/src/C/log1p.c')
-rw-r--r--usr/src/libm/src/C/log1p.c201
1 files changed, 201 insertions, 0 deletions
diff --git a/usr/src/libm/src/C/log1p.c b/usr/src/libm/src/C/log1p.c
new file mode 100644
index 0000000..845fd0e
--- /dev/null
+++ b/usr/src/libm/src/C/log1p.c
@@ -0,0 +1,201 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "@(#)log1p.c 1.23 06/01/23 SMI"
+
+#pragma weak log1p = __log1p
+
+/* INDENT OFF */
+/*
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * 1+x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * Note. If k=0, then f=x is exact. However, if k!=0, then f
+ * may not be representable exactly. In that case, a correction
+ * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
+ * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
+ * and add back the correction term c/u.
+ * (Note: when x > 2**53, one can simply return log(x))
+ *
+ * 2. Approximation of log1p(f).
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ * = 2s + s*R
+ * We use a special Reme algorithm on [0,0.1716] to generate
+ * a polynomial of degree 14 to approximate R The maximum error
+ * of this polynomial approximation is bounded by 2**-58.45. In
+ * other words,
+ * 2 4 6 8 10 12 14
+ * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
+ * (the values of Lp1 to Lp7 are listed in the program)
+ * and
+ * | 2 14 | -58.45
+ * | Lp1*s +...+Lp7*s - R(z) | <= 2
+ * | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ * In order to guarantee error in log below 1ulp, we compute log
+ * by
+ * log1p(f) = f - (hfsq - s*(hfsq+R)).
+ *
+ * 3. Finally, log1p(x) = k*ln2 + log1p(f).
+ * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ * Here ln2 is splitted into two floating point number:
+ * ln2_hi + ln2_lo,
+ * where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ * log1p(x) is NaN with signal if x < -1 (including -INF) ;
+ * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
+ * log1p(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ *
+ * Note: Assuming log() return accurate answer, the following
+ * algorithm can be used to compute log1p(x) to within a few ULP:
+ *
+ * u = 1+x;
+ * if(u==1.0) return x ; else
+ * return log(u)*(x/(u-1.0));
+ *
+ * See HP-15C Advanced Functions Handbook, p.193.
+ */
+/* INDENT ON */
+
+#include "libm.h"
+
+static const double xxx[] = {
+/* ln2_hi */ 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
+/* ln2_lo */ 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
+/* two54 */ 1.80143985094819840000e+16, /* 43500000 00000000 */
+/* Lp1 */ 6.666666666666735130e-01, /* 3FE55555 55555593 */
+/* Lp2 */ 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+/* Lp3 */ 2.857142874366239149e-01, /* 3FD24924 94229359 */
+/* Lp4 */ 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+/* Lp5 */ 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+/* Lp6 */ 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+/* Lp7 */ 1.479819860511658591e-01, /* 3FC2F112 DF3E5244 */
+/* zero */ 0.0
+};
+#define ln2_hi xxx[0]
+#define ln2_lo xxx[1]
+#define two54 xxx[2]
+#define Lp1 xxx[3]
+#define Lp2 xxx[4]
+#define Lp3 xxx[5]
+#define Lp4 xxx[6]
+#define Lp5 xxx[7]
+#define Lp6 xxx[8]
+#define Lp7 xxx[9]
+#define zero xxx[10]
+
+double
+log1p(double x) {
+ double hfsq, f, c, s, z, R, u;
+ int k, hx, hu, ax;
+
+ hx = ((int *)&x)[HIWORD]; /* high word of x */
+ ax = hx & 0x7fffffff;
+
+ if (ax >= 0x7ff00000) { /* x is inf or nan */
+ if (((hx - 0xfff00000) | ((int *)&x)[LOWORD]) == 0) /* -inf */
+ return (_SVID_libm_err(x, x, 44));
+ return (x * x);
+ }
+
+ k = 1;
+ if (hx < 0x3FDA827A) { /* x < 0.41422 */
+ if (ax >= 0x3ff00000) /* x <= -1.0 */
+ return (_SVID_libm_err(x, x, x == -1.0 ? 43 : 44));
+ if (ax < 0x3e200000) { /* |x| < 2**-29 */
+ if (two54 + x > zero && /* raise inexact */
+ ax < 0x3c900000) /* |x| < 2**-54 */
+ return (x);
+ else
+ return (x - x * x * 0.5);
+ }
+ if (hx > 0 || hx <= (int)0xbfd2bec3) { /* -0.2929<x<0.41422 */
+ k = 0;
+ f = x;
+ hu = 1;
+ }
+ }
+ if (k != 0) {
+ if (hx < 0x43400000) {
+ u = 1.0 + x;
+ hu = ((int *)&u)[HIWORD]; /* high word of u */
+ k = (hu >> 20) - 1023;
+ /*
+ * correction term
+ */
+ c = k > 0 ? 1.0 - (u - x) : x - (u - 1.0);
+ c /= u;
+ } else {
+ u = x;
+ hu = ((int *)&u)[HIWORD]; /* high word of u */
+ k = (hu >> 20) - 1023;
+ c = 0;
+ }
+ hu &= 0x000fffff;
+ if (hu < 0x6a09e) { /* normalize u */
+ ((int *)&u)[HIWORD] = hu | 0x3ff00000;
+ } else { /* normalize u/2 */
+ k += 1;
+ ((int *)&u)[HIWORD] = hu | 0x3fe00000;
+ hu = (0x00100000 - hu) >> 2;
+ }
+ f = u - 1.0;
+ }
+ hfsq = 0.5 * f * f;
+ if (hu == 0) { /* |f| < 2**-20 */
+ if (f == zero) {
+ if (k == 0)
+ return (zero);
+ c += k * ln2_lo;
+ return (k * ln2_hi + c);
+ }
+ R = hfsq * (1.0 - 0.66666666666666666 * f);
+ if (k == 0)
+ return (f - R);
+ return (k * ln2_hi - ((R - (k * ln2_lo + c)) - f));
+ }
+ s = f / (2.0 + f);
+ z = s * s;
+ R = z * (Lp1 + z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 +
+ z * (Lp6 + z * Lp7))))));
+ if (k == 0)
+ return (f - (hfsq - s * (hfsq + R)));
+ return (k * ln2_hi - ((hfsq - (s * (hfsq + R) +
+ (k * ln2_lo + c))) - f));
+}