summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/C/expm1.c
diff options
context:
space:
mode:
authorPiotr Jasiukajtis <estibi@me.com>2014-02-04 20:31:57 +0100
committerDan McDonald <danmcd@omniti.com>2014-10-17 18:00:52 -0400
commit25c28e83beb90e7c80452a7c818c5e6f73a07dc8 (patch)
tree95cb102e7fb37f52d4b3ec3e44508f352a335ee5 /usr/src/lib/libm/common/C/expm1.c
parent4e6070e87069f63bef94d8e79c2fc3cab2c1ab6b (diff)
downloadillumos-gate-25c28e83beb90e7c80452a7c818c5e6f73a07dc8.tar.gz
693 Opensource replacement of sunwlibm
Reviewed by: Igor Kozhukhov ikozhukhov@gmail.com Reviewed by: Keith M Wesolowski <keith.wesolowski@joyent.com> Reviewed by: Richard Lowe <richlowe@richlowe.net> Approved by: Dan McDonald <danmcd@omniti.com>
Diffstat (limited to 'usr/src/lib/libm/common/C/expm1.c')
-rw-r--r--usr/src/lib/libm/common/C/expm1.c266
1 files changed, 266 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/C/expm1.c b/usr/src/lib/libm/common/C/expm1.c
new file mode 100644
index 0000000000..fad9d55bc7
--- /dev/null
+++ b/usr/src/lib/libm/common/C/expm1.c
@@ -0,0 +1,266 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
+ */
+/*
+ * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma weak expm1 = __expm1
+
+/* INDENT OFF */
+/*
+ * expm1(x)
+ * Returns exp(x)-1, the exponential of x minus 1.
+ *
+ * Method
+ * 1. Arugment reduction:
+ * Given x, find r and integer k such that
+ *
+ * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
+ *
+ * Here a correction term c will be computed to compensate
+ * the error in r when rounded to a floating-point number.
+ *
+ * 2. Approximating expm1(r) by a special rational function on
+ * the interval [0,0.34658]:
+ * Since
+ * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
+ * we define R1(r*r) by
+ * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
+ * That is,
+ * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
+ * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
+ * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
+ * We use a special Reme algorithm on [0,0.347] to generate
+ * a polynomial of degree 5 in r*r to approximate R1. The
+ * maximum error of this polynomial approximation is bounded
+ * by 2**-61. In other words,
+ * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
+ * where Q1 = -1.6666666666666567384E-2,
+ * Q2 = 3.9682539681370365873E-4,
+ * Q3 = -9.9206344733435987357E-6,
+ * Q4 = 2.5051361420808517002E-7,
+ * Q5 = -6.2843505682382617102E-9;
+ * (where z=r*r, and the values of Q1 to Q5 are listed below)
+ * with error bounded by
+ * | 5 | -61
+ * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
+ * | |
+ *
+ * expm1(r) = exp(r)-1 is then computed by the following
+ * specific way which minimize the accumulation rounding error:
+ * 2 3
+ * r r [ 3 - (R1 + R1*r/2) ]
+ * expm1(r) = r + --- + --- * [--------------------]
+ * 2 2 [ 6 - r*(3 - R1*r/2) ]
+ *
+ * To compensate the error in the argument reduction, we use
+ * expm1(r+c) = expm1(r) + c + expm1(r)*c
+ * ~ expm1(r) + c + r*c
+ * Thus c+r*c will be added in as the correction terms for
+ * expm1(r+c). Now rearrange the term to avoid optimization
+ * screw up:
+ * ( 2 2 )
+ * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
+ * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
+ * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
+ * ( )
+ *
+ * = r - E
+ * 3. Scale back to obtain expm1(x):
+ * From step 1, we have
+ * expm1(x) = either 2^k*[expm1(r)+1] - 1
+ * = or 2^k*[expm1(r) + (1-2^-k)]
+ * 4. Implementation notes:
+ * (A). To save one multiplication, we scale the coefficient Qi
+ * to Qi*2^i, and replace z by (x^2)/2.
+ * (B). To achieve maximum accuracy, we compute expm1(x) by
+ * (i) if x < -56*ln2, return -1.0, (raise inexact if x != inf)
+ * (ii) if k=0, return r-E
+ * (iii) if k=-1, return 0.5*(r-E)-0.5
+ * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
+ * else return 1.0+2.0*(r-E);
+ * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
+ * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
+ * (vii) return 2^k(1-((E+2^-k)-r))
+ *
+ * Special cases:
+ * expm1(INF) is INF, expm1(NaN) is NaN;
+ * expm1(-INF) is -1, and
+ * for finite argument, only expm1(0)=0 is exact.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ * For IEEE double
+ * if x > 7.09782712893383973096e+02 then expm1(x) overflow
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+/* INDENT ON */
+
+#include "libm_synonyms.h" /* __expm1 */
+#include "libm_macros.h"
+#include <math.h>
+
+static const double xxx[] = {
+/* one */ 1.0,
+/* huge */ 1.0e+300,
+/* tiny */ 1.0e-300,
+/* o_threshold */ 7.09782712893383973096e+02, /* 40862E42 FEFA39EF */
+/* ln2_hi */ 6.93147180369123816490e-01, /* 3FE62E42 FEE00000 */
+/* ln2_lo */ 1.90821492927058770002e-10, /* 3DEA39EF 35793C76 */
+/* invln2 */ 1.44269504088896338700e+00, /* 3FF71547 652B82FE */
+/* scaled coefficients related to expm1 */
+/* Q1 */ -3.33333333333331316428e-02, /* BFA11111 111110F4 */
+/* Q2 */ 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
+/* Q3 */ -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
+/* Q4 */ 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
+/* Q5 */ -2.01099218183624371326e-07 /* BE8AFDB7 6E09C32D */
+};
+#define one xxx[0]
+#define huge xxx[1]
+#define tiny xxx[2]
+#define o_threshold xxx[3]
+#define ln2_hi xxx[4]
+#define ln2_lo xxx[5]
+#define invln2 xxx[6]
+#define Q1 xxx[7]
+#define Q2 xxx[8]
+#define Q3 xxx[9]
+#define Q4 xxx[10]
+#define Q5 xxx[11]
+
+double
+expm1(double x) {
+ double y, hi, lo, c = 0.0L, t, e, hxs, hfx, r1;
+ int k, xsb;
+ unsigned hx;
+
+ hx = ((unsigned *) &x)[HIWORD]; /* high word of x */
+ xsb = hx & 0x80000000; /* sign bit of x */
+ if (xsb == 0)
+ y = x;
+ else
+ y = -x; /* y = |x| */
+ hx &= 0x7fffffff; /* high word of |x| */
+
+ /* filter out huge and non-finite argument */
+ /* for example exp(38)-1 is approximately 3.1855932e+16 */
+ if (hx >= 0x4043687A) {
+ /* if |x|>=56*ln2 (~38.8162...) */
+ if (hx >= 0x40862E42) { /* if |x|>=709.78... -> inf */
+ if (hx >= 0x7ff00000) {
+ if (((hx & 0xfffff) | ((int *) &x)[LOWORD])
+ != 0)
+ return (x * x); /* + -> * for Cheetah */
+ else
+ /* exp(+-inf)={inf,-1} */
+ return (xsb == 0 ? x : -1.0);
+ }
+ if (x > o_threshold)
+ return (huge * huge); /* overflow */
+ }
+ if (xsb != 0) { /* x < -56*ln2, return -1.0 w/inexact */
+ if (x + tiny < 0.0) /* raise inexact */
+ return (tiny - one); /* return -1 */
+ }
+ }
+
+ /* argument reduction */
+ if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
+ if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
+ if (xsb == 0) { /* positive number */
+ hi = x - ln2_hi;
+ lo = ln2_lo;
+ k = 1;
+ } else {
+ /* negative number */
+ hi = x + ln2_hi;
+ lo = -ln2_lo;
+ k = -1;
+ }
+ } else {
+ /* |x| > 1.5 ln2 */
+ k = (int) (invln2 * x + (xsb == 0 ? 0.5 : -0.5));
+ t = k;
+ hi = x - t * ln2_hi; /* t*ln2_hi is exact here */
+ lo = t * ln2_lo;
+ }
+ x = hi - lo;
+ c = (hi - x) - lo; /* still at |x| > 0.5 ln2 */
+ } else if (hx < 0x3c900000) {
+ /* when |x|<2**-54, return x */
+ t = huge + x; /* return x w/inexact when x != 0 */
+ return (x - (t - (huge + x)));
+ } else
+ /* |x| <= 0.5 ln2 */
+ k = 0;
+
+ /* x is now in primary range */
+ hfx = 0.5 * x;
+ hxs = x * hfx;
+ r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
+ t = 3.0 - r1 * hfx;
+ e = hxs * ((r1 - t) / (6.0 - x * t));
+ if (k == 0) /* |x| <= 0.5 ln2 */
+ return (x - (x * e - hxs));
+ else { /* |x| > 0.5 ln2 */
+ e = (x * (e - c) - c);
+ e -= hxs;
+ if (k == -1)
+ return (0.5 * (x - e) - 0.5);
+ if (k == 1) {
+ if (x < -0.25)
+ return (-2.0 * (e - (x + 0.5)));
+ else
+ return (one + 2.0 * (x - e));
+ }
+ if (k <= -2 || k > 56) { /* suffice to return exp(x)-1 */
+ y = one - (e - x);
+ ((int *) &y)[HIWORD] += k << 20;
+ return (y - one);
+ }
+ t = one;
+ if (k < 20) {
+ ((int *) &t)[HIWORD] = 0x3ff00000 - (0x200000 >> k);
+ /* t = 1 - 2^-k */
+ y = t - (e - x);
+ ((int *) &y)[HIWORD] += k << 20;
+ } else {
+ ((int *) &t)[HIWORD] = (0x3ff - k) << 20; /* 2^-k */
+ y = x - (e + t);
+ y += one;
+ ((int *) &y)[HIWORD] += k << 20;
+ }
+ }
+ return (y);
+}