diff options
author | Piotr Jasiukajtis <estibi@me.com> | 2014-02-04 20:31:57 +0100 |
---|---|---|
committer | Dan McDonald <danmcd@omniti.com> | 2014-10-17 18:00:52 -0400 |
commit | 25c28e83beb90e7c80452a7c818c5e6f73a07dc8 (patch) | |
tree | 95cb102e7fb37f52d4b3ec3e44508f352a335ee5 /usr/src/lib/libm/common/C/expm1.c | |
parent | 4e6070e87069f63bef94d8e79c2fc3cab2c1ab6b (diff) | |
download | illumos-gate-25c28e83beb90e7c80452a7c818c5e6f73a07dc8.tar.gz |
693 Opensource replacement of sunwlibm
Reviewed by: Igor Kozhukhov ikozhukhov@gmail.com
Reviewed by: Keith M Wesolowski <keith.wesolowski@joyent.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Approved by: Dan McDonald <danmcd@omniti.com>
Diffstat (limited to 'usr/src/lib/libm/common/C/expm1.c')
-rw-r--r-- | usr/src/lib/libm/common/C/expm1.c | 266 |
1 files changed, 266 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/C/expm1.c b/usr/src/lib/libm/common/C/expm1.c new file mode 100644 index 0000000000..fad9d55bc7 --- /dev/null +++ b/usr/src/lib/libm/common/C/expm1.c @@ -0,0 +1,266 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ + +/* + * Copyright 2011 Nexenta Systems, Inc. All rights reserved. + */ +/* + * Copyright 2006 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#pragma weak expm1 = __expm1 + +/* INDENT OFF */ +/* + * expm1(x) + * Returns exp(x)-1, the exponential of x minus 1. + * + * Method + * 1. Arugment reduction: + * Given x, find r and integer k such that + * + * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 + * + * Here a correction term c will be computed to compensate + * the error in r when rounded to a floating-point number. + * + * 2. Approximating expm1(r) by a special rational function on + * the interval [0,0.34658]: + * Since + * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... + * we define R1(r*r) by + * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) + * That is, + * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) + * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) + * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... + * We use a special Reme algorithm on [0,0.347] to generate + * a polynomial of degree 5 in r*r to approximate R1. The + * maximum error of this polynomial approximation is bounded + * by 2**-61. In other words, + * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 + * where Q1 = -1.6666666666666567384E-2, + * Q2 = 3.9682539681370365873E-4, + * Q3 = -9.9206344733435987357E-6, + * Q4 = 2.5051361420808517002E-7, + * Q5 = -6.2843505682382617102E-9; + * (where z=r*r, and the values of Q1 to Q5 are listed below) + * with error bounded by + * | 5 | -61 + * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 + * | | + * + * expm1(r) = exp(r)-1 is then computed by the following + * specific way which minimize the accumulation rounding error: + * 2 3 + * r r [ 3 - (R1 + R1*r/2) ] + * expm1(r) = r + --- + --- * [--------------------] + * 2 2 [ 6 - r*(3 - R1*r/2) ] + * + * To compensate the error in the argument reduction, we use + * expm1(r+c) = expm1(r) + c + expm1(r)*c + * ~ expm1(r) + c + r*c + * Thus c+r*c will be added in as the correction terms for + * expm1(r+c). Now rearrange the term to avoid optimization + * screw up: + * ( 2 2 ) + * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) + * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) + * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) + * ( ) + * + * = r - E + * 3. Scale back to obtain expm1(x): + * From step 1, we have + * expm1(x) = either 2^k*[expm1(r)+1] - 1 + * = or 2^k*[expm1(r) + (1-2^-k)] + * 4. Implementation notes: + * (A). To save one multiplication, we scale the coefficient Qi + * to Qi*2^i, and replace z by (x^2)/2. + * (B). To achieve maximum accuracy, we compute expm1(x) by + * (i) if x < -56*ln2, return -1.0, (raise inexact if x != inf) + * (ii) if k=0, return r-E + * (iii) if k=-1, return 0.5*(r-E)-0.5 + * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) + * else return 1.0+2.0*(r-E); + * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) + * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else + * (vii) return 2^k(1-((E+2^-k)-r)) + * + * Special cases: + * expm1(INF) is INF, expm1(NaN) is NaN; + * expm1(-INF) is -1, and + * for finite argument, only expm1(0)=0 is exact. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Misc. info. + * For IEEE double + * if x > 7.09782712893383973096e+02 then expm1(x) overflow + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ +/* INDENT ON */ + +#include "libm_synonyms.h" /* __expm1 */ +#include "libm_macros.h" +#include <math.h> + +static const double xxx[] = { +/* one */ 1.0, +/* huge */ 1.0e+300, +/* tiny */ 1.0e-300, +/* o_threshold */ 7.09782712893383973096e+02, /* 40862E42 FEFA39EF */ +/* ln2_hi */ 6.93147180369123816490e-01, /* 3FE62E42 FEE00000 */ +/* ln2_lo */ 1.90821492927058770002e-10, /* 3DEA39EF 35793C76 */ +/* invln2 */ 1.44269504088896338700e+00, /* 3FF71547 652B82FE */ +/* scaled coefficients related to expm1 */ +/* Q1 */ -3.33333333333331316428e-02, /* BFA11111 111110F4 */ +/* Q2 */ 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ +/* Q3 */ -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ +/* Q4 */ 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ +/* Q5 */ -2.01099218183624371326e-07 /* BE8AFDB7 6E09C32D */ +}; +#define one xxx[0] +#define huge xxx[1] +#define tiny xxx[2] +#define o_threshold xxx[3] +#define ln2_hi xxx[4] +#define ln2_lo xxx[5] +#define invln2 xxx[6] +#define Q1 xxx[7] +#define Q2 xxx[8] +#define Q3 xxx[9] +#define Q4 xxx[10] +#define Q5 xxx[11] + +double +expm1(double x) { + double y, hi, lo, c = 0.0L, t, e, hxs, hfx, r1; + int k, xsb; + unsigned hx; + + hx = ((unsigned *) &x)[HIWORD]; /* high word of x */ + xsb = hx & 0x80000000; /* sign bit of x */ + if (xsb == 0) + y = x; + else + y = -x; /* y = |x| */ + hx &= 0x7fffffff; /* high word of |x| */ + + /* filter out huge and non-finite argument */ + /* for example exp(38)-1 is approximately 3.1855932e+16 */ + if (hx >= 0x4043687A) { + /* if |x|>=56*ln2 (~38.8162...) */ + if (hx >= 0x40862E42) { /* if |x|>=709.78... -> inf */ + if (hx >= 0x7ff00000) { + if (((hx & 0xfffff) | ((int *) &x)[LOWORD]) + != 0) + return (x * x); /* + -> * for Cheetah */ + else + /* exp(+-inf)={inf,-1} */ + return (xsb == 0 ? x : -1.0); + } + if (x > o_threshold) + return (huge * huge); /* overflow */ + } + if (xsb != 0) { /* x < -56*ln2, return -1.0 w/inexact */ + if (x + tiny < 0.0) /* raise inexact */ + return (tiny - one); /* return -1 */ + } + } + + /* argument reduction */ + if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ + if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ + if (xsb == 0) { /* positive number */ + hi = x - ln2_hi; + lo = ln2_lo; + k = 1; + } else { + /* negative number */ + hi = x + ln2_hi; + lo = -ln2_lo; + k = -1; + } + } else { + /* |x| > 1.5 ln2 */ + k = (int) (invln2 * x + (xsb == 0 ? 0.5 : -0.5)); + t = k; + hi = x - t * ln2_hi; /* t*ln2_hi is exact here */ + lo = t * ln2_lo; + } + x = hi - lo; + c = (hi - x) - lo; /* still at |x| > 0.5 ln2 */ + } else if (hx < 0x3c900000) { + /* when |x|<2**-54, return x */ + t = huge + x; /* return x w/inexact when x != 0 */ + return (x - (t - (huge + x))); + } else + /* |x| <= 0.5 ln2 */ + k = 0; + + /* x is now in primary range */ + hfx = 0.5 * x; + hxs = x * hfx; + r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); + t = 3.0 - r1 * hfx; + e = hxs * ((r1 - t) / (6.0 - x * t)); + if (k == 0) /* |x| <= 0.5 ln2 */ + return (x - (x * e - hxs)); + else { /* |x| > 0.5 ln2 */ + e = (x * (e - c) - c); + e -= hxs; + if (k == -1) + return (0.5 * (x - e) - 0.5); + if (k == 1) { + if (x < -0.25) + return (-2.0 * (e - (x + 0.5))); + else + return (one + 2.0 * (x - e)); + } + if (k <= -2 || k > 56) { /* suffice to return exp(x)-1 */ + y = one - (e - x); + ((int *) &y)[HIWORD] += k << 20; + return (y - one); + } + t = one; + if (k < 20) { + ((int *) &t)[HIWORD] = 0x3ff00000 - (0x200000 >> k); + /* t = 1 - 2^-k */ + y = t - (e - x); + ((int *) &y)[HIWORD] += k << 20; + } else { + ((int *) &t)[HIWORD] = (0x3ff - k) << 20; /* 2^-k */ + y = x - (e + t); + y += one; + ((int *) &y)[HIWORD] += k << 20; + } + } + return (y); +} |