summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/C/jn.c
diff options
context:
space:
mode:
authorPiotr Jasiukajtis <estibi@me.com>2014-02-04 20:31:57 +0100
committerDan McDonald <danmcd@omniti.com>2014-10-17 18:00:52 -0400
commit25c28e83beb90e7c80452a7c818c5e6f73a07dc8 (patch)
tree95cb102e7fb37f52d4b3ec3e44508f352a335ee5 /usr/src/lib/libm/common/C/jn.c
parent4e6070e87069f63bef94d8e79c2fc3cab2c1ab6b (diff)
downloadillumos-gate-25c28e83beb90e7c80452a7c818c5e6f73a07dc8.tar.gz
693 Opensource replacement of sunwlibm
Reviewed by: Igor Kozhukhov ikozhukhov@gmail.com Reviewed by: Keith M Wesolowski <keith.wesolowski@joyent.com> Reviewed by: Richard Lowe <richlowe@richlowe.net> Approved by: Dan McDonald <danmcd@omniti.com>
Diffstat (limited to 'usr/src/lib/libm/common/C/jn.c')
-rw-r--r--usr/src/lib/libm/common/C/jn.c306
1 files changed, 306 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/C/jn.c b/usr/src/lib/libm/common/C/jn.c
new file mode 100644
index 0000000000..b8d507dd59
--- /dev/null
+++ b/usr/src/lib/libm/common/C/jn.c
@@ -0,0 +1,306 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
+ */
+/*
+ * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma weak jn = __jn
+#pragma weak yn = __yn
+
+/*
+ * floating point Bessel's function of the 1st and 2nd kind
+ * of order n: jn(n,x),yn(n,x);
+ *
+ * Special cases:
+ * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
+ * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
+ * Note 2. About jn(n,x), yn(n,x)
+ * For n=0, j0(x) is called,
+ * for n=1, j1(x) is called,
+ * for n<x, forward recursion us used starting
+ * from values of j0(x) and j1(x).
+ * for n>x, a continued fraction approximation to
+ * j(n,x)/j(n-1,x) is evaluated and then backward
+ * recursion is used starting from a supposed value
+ * for j(n,x). The resulting value of j(0,x) is
+ * compared with the actual value to correct the
+ * supposed value of j(n,x).
+ *
+ * yn(n,x) is similar in all respects, except
+ * that forward recursion is used for all
+ * values of n>1.
+ *
+ */
+
+#include "libm.h"
+#include <float.h> /* DBL_MIN */
+#include <values.h> /* X_TLOSS */
+#include "xpg6.h" /* __xpg6 */
+
+#define GENERIC double
+
+static const GENERIC
+ invsqrtpi = 5.641895835477562869480794515607725858441e-0001,
+ two = 2.0,
+ zero = 0.0,
+ one = 1.0;
+
+GENERIC
+jn(int n, GENERIC x) {
+ int i, sgn;
+ GENERIC a, b, temp = 0;
+ GENERIC z, w, ox, on;
+
+ /*
+ * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
+ * Thus, J(-n,x) = J(n,-x)
+ */
+ ox = x; on = (GENERIC)n;
+ if (n < 0) {
+ n = -n;
+ x = -x;
+ }
+ if (isnan(x))
+ return (x*x); /* + -> * for Cheetah */
+ if (!((int) _lib_version == libm_ieee ||
+ (__xpg6 & _C99SUSv3_math_errexcept) != 0)) {
+ if (fabs(x) > X_TLOSS)
+ return (_SVID_libm_err(on, ox, 38));
+ }
+ if (n == 0)
+ return (j0(x));
+ if (n == 1)
+ return (j1(x));
+ if ((n&1) == 0)
+ sgn = 0; /* even n */
+ else
+ sgn = signbit(x); /* old n */
+ x = fabs(x);
+ if (x == zero||!finite(x)) b = zero;
+ else if ((GENERIC)n <= x) {
+ /*
+ * Safe to use
+ * J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
+ */
+ if (x > 1.0e91) {
+ /*
+ * x >> n**2
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Let s=sin(x), c=cos(x),
+ * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+ *
+ * n sin(xn)*sqt2 cos(xn)*sqt2
+ * ----------------------------------
+ * 0 s-c c+s
+ * 1 -s-c -c+s
+ * 2 -s+c -c-s
+ * 3 s+c c-s
+ */
+ switch (n&3) {
+ case 0: temp = cos(x)+sin(x); break;
+ case 1: temp = -cos(x)+sin(x); break;
+ case 2: temp = -cos(x)-sin(x); break;
+ case 3: temp = cos(x)-sin(x); break;
+ }
+ b = invsqrtpi*temp/sqrt(x);
+ } else {
+ a = j0(x);
+ b = j1(x);
+ for (i = 1; i < n; i++) {
+ temp = b;
+ b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */
+ a = temp;
+ }
+ }
+ } else {
+ if (x < 1e-9) { /* use J(n,x) = 1/n!*(x/2)^n */
+ b = pow(0.5*x, (GENERIC) n);
+ if (b != zero) {
+ for (a = one, i = 1; i <= n; i++) a *= (GENERIC)i;
+ b = b/a;
+ }
+ } else {
+ /*
+ * use backward recurrence
+ * x x^2 x^2
+ * J(n,x)/J(n-1,x) = ---- ------ ------ .....
+ * 2n - 2(n+1) - 2(n+2)
+ *
+ * 1 1 1
+ * (for large x) = ---- ------ ------ .....
+ * 2n 2(n+1) 2(n+2)
+ * -- - ------ - ------ -
+ * x x x
+ *
+ * Let w = 2n/x and h = 2/x, then the above quotient
+ * is equal to the continued fraction:
+ * 1
+ * = -----------------------
+ * 1
+ * w - -----------------
+ * 1
+ * w+h - ---------
+ * w+2h - ...
+ *
+ * To determine how many terms needed, let
+ * Q(0) = w, Q(1) = w(w+h) - 1,
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+ * When Q(k) > 1e4 good for single
+ * When Q(k) > 1e9 good for double
+ * When Q(k) > 1e17 good for quaduple
+ */
+ /* determin k */
+ GENERIC t, v;
+ double q0, q1, h, tmp; int k, m;
+ w = (n+n)/(double)x; h = 2.0/(double)x;
+ q0 = w; z = w + h; q1 = w*z - 1.0; k = 1;
+ while (q1 < 1.0e9) {
+ k += 1; z += h;
+ tmp = z*q1 - q0;
+ q0 = q1;
+ q1 = tmp;
+ }
+ m = n+n;
+ for (t = zero, i = 2*(n+k); i >= m; i -= 2) t = one/(i/x-t);
+ a = t;
+ b = one;
+ /*
+ * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+ * hence, if n*(log(2n/x)) > ...
+ * single 8.8722839355e+01
+ * double 7.09782712893383973096e+02
+ * long double 1.1356523406294143949491931077970765006170e+04
+ * then recurrent value may overflow and the result is
+ * likely underflow to zero
+ */
+ tmp = n;
+ v = two/x;
+ tmp = tmp*log(fabs(v*tmp));
+ if (tmp < 7.09782712893383973096e+02) {
+ for (i = n-1; i > 0; i--) {
+ temp = b;
+ b = ((i+i)/x)*b - a;
+ a = temp;
+ }
+ } else {
+ for (i = n-1; i > 0; i--) {
+ temp = b;
+ b = ((i+i)/x)*b - a;
+ a = temp;
+ if (b > 1e100) {
+ a /= b;
+ t /= b;
+ b = 1.0;
+ }
+ }
+ }
+ b = (t*j0(x)/b);
+ }
+ }
+ if (sgn == 1)
+ return (-b);
+ else
+ return (b);
+}
+
+GENERIC
+yn(int n, GENERIC x) {
+ int i;
+ int sign;
+ GENERIC a, b, temp = 0, ox, on;
+
+ ox = x; on = (GENERIC)n;
+ if (isnan(x))
+ return (x*x); /* + -> * for Cheetah */
+ if (x <= zero) {
+ if (x == zero) {
+ /* return -one/zero; */
+ return (_SVID_libm_err((GENERIC)n, x, 12));
+ } else {
+ /* return zero/zero; */
+ return (_SVID_libm_err((GENERIC)n, x, 13));
+ }
+ }
+ if (!((int) _lib_version == libm_ieee ||
+ (__xpg6 & _C99SUSv3_math_errexcept) != 0)) {
+ if (x > X_TLOSS)
+ return (_SVID_libm_err(on, ox, 39));
+ }
+ sign = 1;
+ if (n < 0) {
+ n = -n;
+ if ((n&1) == 1) sign = -1;
+ }
+ if (n == 0)
+ return (y0(x));
+ if (n == 1)
+ return (sign*y1(x));
+ if (!finite(x))
+ return (zero);
+
+ if (x > 1.0e91) {
+ /*
+ * x >> n**2
+ * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+ * Let s = sin(x), c = cos(x),
+ * xn = x-(2n+1)*pi/4, sqt2 = sqrt(2), then
+ *
+ * n sin(xn)*sqt2 cos(xn)*sqt2
+ * ----------------------------------
+ * 0 s-c c+s
+ * 1 -s-c -c+s
+ * 2 -s+c -c-s
+ * 3 s+c c-s
+ */
+ switch (n&3) {
+ case 0: temp = sin(x)-cos(x); break;
+ case 1: temp = -sin(x)-cos(x); break;
+ case 2: temp = -sin(x)+cos(x); break;
+ case 3: temp = sin(x)+cos(x); break;
+ }
+ b = invsqrtpi*temp/sqrt(x);
+ } else {
+ a = y0(x);
+ b = y1(x);
+ /*
+ * fix 1262058 and take care of non-default rounding
+ */
+ for (i = 1; i < n; i++) {
+ temp = b;
+ b *= (GENERIC) (i + i) / x;
+ if (b <= -DBL_MAX)
+ break;
+ b -= a;
+ a = temp;
+ }
+ }
+ if (sign > 0)
+ return (b);
+ else
+ return (-b);
+}