diff options
author | Piotr Jasiukajtis <estibi@me.com> | 2014-02-04 20:31:57 +0100 |
---|---|---|
committer | Dan McDonald <danmcd@omniti.com> | 2014-10-17 18:00:52 -0400 |
commit | 25c28e83beb90e7c80452a7c818c5e6f73a07dc8 (patch) | |
tree | 95cb102e7fb37f52d4b3ec3e44508f352a335ee5 /usr/src/lib/libm/common/C/jn.c | |
parent | 4e6070e87069f63bef94d8e79c2fc3cab2c1ab6b (diff) | |
download | illumos-gate-25c28e83beb90e7c80452a7c818c5e6f73a07dc8.tar.gz |
693 Opensource replacement of sunwlibm
Reviewed by: Igor Kozhukhov ikozhukhov@gmail.com
Reviewed by: Keith M Wesolowski <keith.wesolowski@joyent.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Approved by: Dan McDonald <danmcd@omniti.com>
Diffstat (limited to 'usr/src/lib/libm/common/C/jn.c')
-rw-r--r-- | usr/src/lib/libm/common/C/jn.c | 306 |
1 files changed, 306 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/C/jn.c b/usr/src/lib/libm/common/C/jn.c new file mode 100644 index 0000000000..b8d507dd59 --- /dev/null +++ b/usr/src/lib/libm/common/C/jn.c @@ -0,0 +1,306 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ + +/* + * Copyright 2011 Nexenta Systems, Inc. All rights reserved. + */ +/* + * Copyright 2006 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#pragma weak jn = __jn +#pragma weak yn = __yn + +/* + * floating point Bessel's function of the 1st and 2nd kind + * of order n: jn(n,x),yn(n,x); + * + * Special cases: + * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; + * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. + * Note 2. About jn(n,x), yn(n,x) + * For n=0, j0(x) is called, + * for n=1, j1(x) is called, + * for n<x, forward recursion us used starting + * from values of j0(x) and j1(x). + * for n>x, a continued fraction approximation to + * j(n,x)/j(n-1,x) is evaluated and then backward + * recursion is used starting from a supposed value + * for j(n,x). The resulting value of j(0,x) is + * compared with the actual value to correct the + * supposed value of j(n,x). + * + * yn(n,x) is similar in all respects, except + * that forward recursion is used for all + * values of n>1. + * + */ + +#include "libm.h" +#include <float.h> /* DBL_MIN */ +#include <values.h> /* X_TLOSS */ +#include "xpg6.h" /* __xpg6 */ + +#define GENERIC double + +static const GENERIC + invsqrtpi = 5.641895835477562869480794515607725858441e-0001, + two = 2.0, + zero = 0.0, + one = 1.0; + +GENERIC +jn(int n, GENERIC x) { + int i, sgn; + GENERIC a, b, temp = 0; + GENERIC z, w, ox, on; + + /* + * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) + * Thus, J(-n,x) = J(n,-x) + */ + ox = x; on = (GENERIC)n; + if (n < 0) { + n = -n; + x = -x; + } + if (isnan(x)) + return (x*x); /* + -> * for Cheetah */ + if (!((int) _lib_version == libm_ieee || + (__xpg6 & _C99SUSv3_math_errexcept) != 0)) { + if (fabs(x) > X_TLOSS) + return (_SVID_libm_err(on, ox, 38)); + } + if (n == 0) + return (j0(x)); + if (n == 1) + return (j1(x)); + if ((n&1) == 0) + sgn = 0; /* even n */ + else + sgn = signbit(x); /* old n */ + x = fabs(x); + if (x == zero||!finite(x)) b = zero; + else if ((GENERIC)n <= x) { + /* + * Safe to use + * J(n+1,x)=2n/x *J(n,x)-J(n-1,x) + */ + if (x > 1.0e91) { + /* + * x >> n**2 + * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Let s=sin(x), c=cos(x), + * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then + * + * n sin(xn)*sqt2 cos(xn)*sqt2 + * ---------------------------------- + * 0 s-c c+s + * 1 -s-c -c+s + * 2 -s+c -c-s + * 3 s+c c-s + */ + switch (n&3) { + case 0: temp = cos(x)+sin(x); break; + case 1: temp = -cos(x)+sin(x); break; + case 2: temp = -cos(x)-sin(x); break; + case 3: temp = cos(x)-sin(x); break; + } + b = invsqrtpi*temp/sqrt(x); + } else { + a = j0(x); + b = j1(x); + for (i = 1; i < n; i++) { + temp = b; + b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */ + a = temp; + } + } + } else { + if (x < 1e-9) { /* use J(n,x) = 1/n!*(x/2)^n */ + b = pow(0.5*x, (GENERIC) n); + if (b != zero) { + for (a = one, i = 1; i <= n; i++) a *= (GENERIC)i; + b = b/a; + } + } else { + /* + * use backward recurrence + * x x^2 x^2 + * J(n,x)/J(n-1,x) = ---- ------ ------ ..... + * 2n - 2(n+1) - 2(n+2) + * + * 1 1 1 + * (for large x) = ---- ------ ------ ..... + * 2n 2(n+1) 2(n+2) + * -- - ------ - ------ - + * x x x + * + * Let w = 2n/x and h = 2/x, then the above quotient + * is equal to the continued fraction: + * 1 + * = ----------------------- + * 1 + * w - ----------------- + * 1 + * w+h - --------- + * w+2h - ... + * + * To determine how many terms needed, let + * Q(0) = w, Q(1) = w(w+h) - 1, + * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), + * When Q(k) > 1e4 good for single + * When Q(k) > 1e9 good for double + * When Q(k) > 1e17 good for quaduple + */ + /* determin k */ + GENERIC t, v; + double q0, q1, h, tmp; int k, m; + w = (n+n)/(double)x; h = 2.0/(double)x; + q0 = w; z = w + h; q1 = w*z - 1.0; k = 1; + while (q1 < 1.0e9) { + k += 1; z += h; + tmp = z*q1 - q0; + q0 = q1; + q1 = tmp; + } + m = n+n; + for (t = zero, i = 2*(n+k); i >= m; i -= 2) t = one/(i/x-t); + a = t; + b = one; + /* + * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) + * hence, if n*(log(2n/x)) > ... + * single 8.8722839355e+01 + * double 7.09782712893383973096e+02 + * long double 1.1356523406294143949491931077970765006170e+04 + * then recurrent value may overflow and the result is + * likely underflow to zero + */ + tmp = n; + v = two/x; + tmp = tmp*log(fabs(v*tmp)); + if (tmp < 7.09782712893383973096e+02) { + for (i = n-1; i > 0; i--) { + temp = b; + b = ((i+i)/x)*b - a; + a = temp; + } + } else { + for (i = n-1; i > 0; i--) { + temp = b; + b = ((i+i)/x)*b - a; + a = temp; + if (b > 1e100) { + a /= b; + t /= b; + b = 1.0; + } + } + } + b = (t*j0(x)/b); + } + } + if (sgn == 1) + return (-b); + else + return (b); +} + +GENERIC +yn(int n, GENERIC x) { + int i; + int sign; + GENERIC a, b, temp = 0, ox, on; + + ox = x; on = (GENERIC)n; + if (isnan(x)) + return (x*x); /* + -> * for Cheetah */ + if (x <= zero) { + if (x == zero) { + /* return -one/zero; */ + return (_SVID_libm_err((GENERIC)n, x, 12)); + } else { + /* return zero/zero; */ + return (_SVID_libm_err((GENERIC)n, x, 13)); + } + } + if (!((int) _lib_version == libm_ieee || + (__xpg6 & _C99SUSv3_math_errexcept) != 0)) { + if (x > X_TLOSS) + return (_SVID_libm_err(on, ox, 39)); + } + sign = 1; + if (n < 0) { + n = -n; + if ((n&1) == 1) sign = -1; + } + if (n == 0) + return (y0(x)); + if (n == 1) + return (sign*y1(x)); + if (!finite(x)) + return (zero); + + if (x > 1.0e91) { + /* + * x >> n**2 + * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Let s = sin(x), c = cos(x), + * xn = x-(2n+1)*pi/4, sqt2 = sqrt(2), then + * + * n sin(xn)*sqt2 cos(xn)*sqt2 + * ---------------------------------- + * 0 s-c c+s + * 1 -s-c -c+s + * 2 -s+c -c-s + * 3 s+c c-s + */ + switch (n&3) { + case 0: temp = sin(x)-cos(x); break; + case 1: temp = -sin(x)-cos(x); break; + case 2: temp = -sin(x)+cos(x); break; + case 3: temp = sin(x)+cos(x); break; + } + b = invsqrtpi*temp/sqrt(x); + } else { + a = y0(x); + b = y1(x); + /* + * fix 1262058 and take care of non-default rounding + */ + for (i = 1; i < n; i++) { + temp = b; + b *= (GENERIC) (i + i) / x; + if (b <= -DBL_MAX) + break; + b -= a; + a = temp; + } + } + if (sign > 0) + return (b); + else + return (-b); +} |