diff options
author | Richard Lowe <richlowe@richlowe.net> | 2019-06-03 18:33:00 +0000 |
---|---|---|
committer | Richard Lowe <richlowe@richlowe.net> | 2019-06-06 20:20:31 +0000 |
commit | 685c1a21304711e8d0a21bade51b783487d53044 (patch) | |
tree | d596eaf9e1ec9575088d1adbbba12eb3ba83be38 /usr/src/lib/libm/common/C/jn.c | |
parent | d0bed8f264c913bf83285b0beed22bd3a9f7eb08 (diff) | |
download | illumos-gate-685c1a21304711e8d0a21bade51b783487d53044.tar.gz |
11175 libm should use signbit() correctly
11188 c99 math macros should return strictly backward compatible values
Reviewed by: Andy Fiddaman <andy@omniosce.org>
Reviewed by: Igor Kozhukhov <igor@dilos.org>
Approved by: Dan McDonald <danmcd@joyent.com>
Diffstat (limited to 'usr/src/lib/libm/common/C/jn.c')
-rw-r--r-- | usr/src/lib/libm/common/C/jn.c | 244 |
1 files changed, 139 insertions, 105 deletions
diff --git a/usr/src/lib/libm/common/C/jn.c b/usr/src/lib/libm/common/C/jn.c index d65dfb0a97..bfdaefecf6 100644 --- a/usr/src/lib/libm/common/C/jn.c +++ b/usr/src/lib/libm/common/C/jn.c @@ -69,7 +69,8 @@ static const GENERIC one = 1.0; GENERIC -jn(int n, GENERIC x) { +jn(int n, GENERIC x) +{ int i, sgn; GENERIC a, b, temp = 0; GENERIC z, w, ox, on; @@ -78,16 +79,18 @@ jn(int n, GENERIC x) { * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) * Thus, J(-n,x) = J(n,-x) */ - ox = x; on = (GENERIC)n; + ox = x; + on = (GENERIC)n; + if (n < 0) { n = -n; x = -x; } if (isnan(x)) return (x*x); /* + -> * for Cheetah */ - if (!((int) _lib_version == libm_ieee || - (__xpg6 & _C99SUSv3_math_errexcept) != 0)) { - if (fabs(x) > X_TLOSS) + if (!((int)_lib_version == libm_ieee || + (__xpg6 & _C99SUSv3_math_errexcept) != 0)) { + if (fabs(x) > X_TLOSS) return (_SVID_libm_err(on, ox, 38)); } if (n == 0) @@ -95,7 +98,7 @@ jn(int n, GENERIC x) { if (n == 1) return (j1(x)); if ((n&1) == 0) - sgn = 0; /* even n */ + sgn = 0; /* even n */ else sgn = signbit(x); /* old n */ x = fabs(x); @@ -105,7 +108,7 @@ jn(int n, GENERIC x) { * Safe to use * J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ - if (x > 1.0e91) { + if (x > 1.0e91) { /* * x >> n**2 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) @@ -116,124 +119,147 @@ jn(int n, GENERIC x) { * n sin(xn)*sqt2 cos(xn)*sqt2 * ---------------------------------- * 0 s-c c+s - * 1 -s-c -c+s + * 1 -s-c -c+s * 2 -s+c -c-s * 3 s+c c-s */ - switch (n&3) { - case 0: temp = cos(x)+sin(x); break; - case 1: temp = -cos(x)+sin(x); break; - case 2: temp = -cos(x)-sin(x); break; - case 3: temp = cos(x)-sin(x); break; - } - b = invsqrtpi*temp/sqrt(x); - } else { + switch (n&3) { + case 0: + temp = cos(x)+sin(x); + break; + case 1: + temp = -cos(x)+sin(x); + break; + case 2: + temp = -cos(x)-sin(x); + break; + case 3: + temp = cos(x)-sin(x); + break; + } + b = invsqrtpi*temp/sqrt(x); + } else { a = j0(x); b = j1(x); for (i = 1; i < n; i++) { - temp = b; - b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */ - a = temp; + temp = b; + /* avoid underflow */ + b = b*((GENERIC)(i+i)/x) - a; + a = temp; } - } - } else { - if (x < 1e-9) { /* use J(n,x) = 1/n!*(x/2)^n */ - b = pow(0.5*x, (GENERIC) n); - if (b != zero) { - for (a = one, i = 1; i <= n; i++) a *= (GENERIC)i; - b = b/a; - } - } else { - /* - * use backward recurrence - * x x^2 x^2 - * J(n,x)/J(n-1,x) = ---- ------ ------ ..... - * 2n - 2(n+1) - 2(n+2) - * - * 1 1 1 - * (for large x) = ---- ------ ------ ..... - * 2n 2(n+1) 2(n+2) - * -- - ------ - ------ - - * x x x - * - * Let w = 2n/x and h = 2/x, then the above quotient - * is equal to the continued fraction: - * 1 - * = ----------------------- - * 1 - * w - ----------------- - * 1 - * w+h - --------- - * w+2h - ... - * - * To determine how many terms needed, let - * Q(0) = w, Q(1) = w(w+h) - 1, - * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), - * When Q(k) > 1e4 good for single - * When Q(k) > 1e9 good for double - * When Q(k) > 1e17 good for quaduple - */ - /* determin k */ - GENERIC t, v; - double q0, q1, h, tmp; int k, m; - w = (n+n)/(double)x; h = 2.0/(double)x; - q0 = w; z = w + h; q1 = w*z - 1.0; k = 1; - while (q1 < 1.0e9) { - k += 1; z += h; - tmp = z*q1 - q0; - q0 = q1; - q1 = tmp; } - m = n+n; - for (t = zero, i = 2*(n+k); i >= m; i -= 2) t = one/(i/x-t); - a = t; - b = one; - /* - * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) - * hence, if n*(log(2n/x)) > ... - * single 8.8722839355e+01 - * double 7.09782712893383973096e+02 - * long double 1.1356523406294143949491931077970765006170e+04 - * then recurrent value may overflow and the result is - * likely underflow to zero - */ - tmp = n; - v = two/x; - tmp = tmp*log(fabs(v*tmp)); - if (tmp < 7.09782712893383973096e+02) { - for (i = n-1; i > 0; i--) { - temp = b; - b = ((i+i)/x)*b - a; - a = temp; - } + } else { + if (x < 1e-9) { /* use J(n,x) = 1/n!*(x/2)^n */ + b = pow(0.5*x, (GENERIC) n); + if (b != zero) { + for (a = one, i = 1; i <= n; i++) + a *= (GENERIC)i; + b = b/a; + } } else { + /* + * use backward recurrence + * x x^2 x^2 + * J(n,x)/J(n-1,x) = ---- ------ ------ ..... + * 2n - 2(n+1) - 2(n+2) + * + * 1 1 1 + * (for large x) = ---- ------ ------ ..... + * 2n 2(n+1) 2(n+2) + * -- - ------ - ------ - + * x x x + * + * Let w = 2n/x and h = 2/x, then the above quotient + * is equal to the continued fraction: + * 1 + * = ----------------------- + * 1 + * w - ----------------- + * 1 + * w+h - --------- + * w+2h - ... + * + * To determine how many terms needed, let + * Q(0) = w, Q(1) = w(w+h) - 1, + * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), + * When Q(k) > 1e4 good for single + * When Q(k) > 1e9 good for double + * When Q(k) > 1e17 good for quaduple + */ + /* determine k */ + GENERIC t, v; + double q0, q1, h, tmp; + int k, m; + w = (n+n)/(double)x; + h = 2.0/(double)x; + q0 = w; + z = w + h; + q1 = w*z - 1.0; + k = 1; + + while (q1 < 1.0e9) { + k += 1; + z += h; + tmp = z*q1 - q0; + q0 = q1; + q1 = tmp; + } + m = n+n; + for (t = zero, i = 2*(n+k); i >= m; i -= 2) + t = one/(i/x-t); + a = t; + b = one; + /* + * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) + * hence, if n*(log(2n/x)) > ... + * single: + * 8.8722839355e+01 + * double: + * 7.09782712893383973096e+02 + * long double: + * 1.1356523406294143949491931077970765006170e+04 + * then recurrent value may overflow and the result is + * likely underflow to zero + */ + tmp = n; + v = two/x; + tmp = tmp*log(fabs(v*tmp)); + if (tmp < 7.09782712893383973096e+02) { + for (i = n-1; i > 0; i--) { + temp = b; + b = ((i+i)/x)*b - a; + a = temp; + } + } else { for (i = n-1; i > 0; i--) { - temp = b; - b = ((i+i)/x)*b - a; - a = temp; + temp = b; + b = ((i+i)/x)*b - a; + a = temp; if (b > 1e100) { a /= b; t /= b; b = 1.0; } } - } + } b = (t*j0(x)/b); - } + } } - if (sgn == 1) + if (sgn != 0) return (-b); else return (b); } GENERIC -yn(int n, GENERIC x) { +yn(int n, GENERIC x) +{ int i; int sign; GENERIC a, b, temp = 0, ox, on; - ox = x; on = (GENERIC)n; + ox = x; + on = (GENERIC)n; if (isnan(x)) return (x*x); /* + -> * for Cheetah */ if (x <= zero) { @@ -245,9 +271,9 @@ yn(int n, GENERIC x) { return (_SVID_libm_err((GENERIC)n, x, 13)); } } - if (!((int) _lib_version == libm_ieee || - (__xpg6 & _C99SUSv3_math_errexcept) != 0)) { - if (x > X_TLOSS) + if (!((int)_lib_version == libm_ieee || + (__xpg6 & _C99SUSv3_math_errexcept) != 0)) { + if (x > X_TLOSS) return (_SVID_libm_err(on, ox, 39)); } sign = 1; @@ -273,15 +299,23 @@ yn(int n, GENERIC x) { * n sin(xn)*sqt2 cos(xn)*sqt2 * ---------------------------------- * 0 s-c c+s - * 1 -s-c -c+s + * 1 -s-c -c+s * 2 -s+c -c-s * 3 s+c c-s */ switch (n&3) { - case 0: temp = sin(x)-cos(x); break; - case 1: temp = -sin(x)-cos(x); break; - case 2: temp = -sin(x)+cos(x); break; - case 3: temp = sin(x)+cos(x); break; + case 0: + temp = sin(x)-cos(x); + break; + case 1: + temp = -sin(x)-cos(x); + break; + case 2: + temp = -sin(x)+cos(x); + break; + case 3: + temp = sin(x)+cos(x); + break; } b = invsqrtpi*temp/sqrt(x); } else { |