diff options
author | Piotr Jasiukajtis <estibi@me.com> | 2014-02-04 20:31:57 +0100 |
---|---|---|
committer | Dan McDonald <danmcd@omniti.com> | 2014-10-17 18:00:52 -0400 |
commit | 25c28e83beb90e7c80452a7c818c5e6f73a07dc8 (patch) | |
tree | 95cb102e7fb37f52d4b3ec3e44508f352a335ee5 /usr/src/lib/libm/common/C/log.c | |
parent | 4e6070e87069f63bef94d8e79c2fc3cab2c1ab6b (diff) | |
download | illumos-gate-25c28e83beb90e7c80452a7c818c5e6f73a07dc8.tar.gz |
693 Opensource replacement of sunwlibm
Reviewed by: Igor Kozhukhov ikozhukhov@gmail.com
Reviewed by: Keith M Wesolowski <keith.wesolowski@joyent.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Approved by: Dan McDonald <danmcd@omniti.com>
Diffstat (limited to 'usr/src/lib/libm/common/C/log.c')
-rw-r--r-- | usr/src/lib/libm/common/C/log.c | 220 |
1 files changed, 220 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/C/log.c b/usr/src/lib/libm/common/C/log.c new file mode 100644 index 0000000000..7d755b4220 --- /dev/null +++ b/usr/src/lib/libm/common/C/log.c @@ -0,0 +1,220 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2011 Nexenta Systems, Inc. All rights reserved. + */ +/* + * Copyright 2005 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#pragma weak log = __log + +/* INDENT OFF */ +/* + * log(x) + * Table look-up algorithm with product polynomial approximation. + * By K.C. Ng, Oct 23, 2004. Updated Oct 18, 2005. + * + * (a). For x in [1-0.125, 1+0.1328125], using a special approximation: + * Let f = x - 1 and z = f*f. + * return f + ((a1*z) * + * ((a2 + (a3*f)*(a4+f)) + (f*z)*(a5+f))) * + * (((a6 + f*(a7+f)) + (f*z)*(a8+f)) * + * ((a9 + (a10*f)*(a11+f)) + (f*z)*(a12+f))) + * a1 -6.88821452420390473170286327331268694251775741577e-0002, + * a2 1.97493380704769294631262255279580131173133850098e+0000, + * a3 2.24963218866067560242072431719861924648284912109e+0000, + * a4 -9.02975906958474405783476868236903101205825805664e-0001, + * a5 -1.47391630715542865104339398385491222143173217773e+0000, + * a6 1.86846544648220058704168877738993614912033081055e+0000, + * a7 1.82277370459347465292410106485476717352867126465e+0000, + * a8 1.25295479915214102994980294170090928673744201660e+0000, + * a9 1.96709676945198275177517643896862864494323730469e+0000, + * a10 -4.00127989749189894030934055990655906498432159424e-0001, + * a11 3.01675528558798333733648178167641162872314453125e+0000, + * a12 -9.52325445049240770778453679668018594384193420410e-0001, + * + * with remez error |(log(1+f) - P(f))/f| <= 2**-56.81 and + * + * (b). For 0.09375 <= x < 24 + * Use an 8-bit table look-up (3-bit for exponent and 5 bit for + * significand): + * Let ix stands for the high part of x in IEEE double format. + * Since 0.09375 <= x < 24, we have + * 0x3fb80000 <= ix < 0x40380000. + * Let j = (ix - 0x3fb80000) >> 15. Then 0 <= j < 256. Choose + * a Y[j] such that HIWORD(Y[j]) ~ 0x3fb8400 + (j<<15) (the middle + * number between 0x3fb80000 + (j<<15) and 3fb80000 + ((j+1)<<15)), + * and at the same time 1/Y[j] as well as log(Y[j]) are very close + * to 53-bits floating point numbers. + * A table of Y[j], 1/Y[j], and log(Y[j]) are pre-computed and thus + * log(x) = log(Y[j]) + log(1 + (x-Y[j])*(1/Y[j])) + * = log(Y[j]) + log(1 + s) + * where + * s = (x-Y[j])*(1/Y[j]) + * We compute max (x-Y[j])*(1/Y[j]) for the chosen Y[j] and obtain + * |s| < 0.0154. By applying remez algorithm with Product Polynomial + * Approximiation, we find the following approximated of log(1+s) + * (b1*s)*(b2+s*(b3+s))*((b4+s*b5)+(s*s)*(b6+s))*(b7+s*(b8+s)) + * with remez error |log(1+s) - P(s)| <= 2**-63.5 + * + * (c). Otherwise, get "n", the exponent of x, and then normalize x to + * z in [1,2). Then similar to (b) find a Y[i] that matches z to 5.5 + * significant bits. Then + * log(x) = n*ln2 + log(Y[i]) + log(z/Y[i]). + * + * Special cases: + * log(x) is NaN with signal if x < 0 (including -INF) ; + * log(+INF) is +INF; log(0) is -INF with signal; + * log(NaN) is that NaN with no signal. + * + * Maximum error observed: less than 0.90 ulp + * + * Constants: + * The hexadecimal values are the intended ones for the following constants. + * The decimal values may be used, provided that the compiler will convert + * from decimal to binary accurately enough to produce the hexadecimal values + * shown. + */ +/* INDENT ON */ + +#include "libm.h" + +extern const double _TBL_log[]; + +static const double P[] = { +/* ONE */ 1.0, +/* TWO52 */ 4503599627370496.0, +/* LN2HI */ 6.93147180369123816490e-01, /* 3fe62e42, fee00000 */ +/* LN2LO */ 1.90821492927058770002e-10, /* 3dea39ef, 35793c76 */ +/* A1 */ -6.88821452420390473170286327331268694251775741577e-0002, +/* A2 */ 1.97493380704769294631262255279580131173133850098e+0000, +/* A3 */ 2.24963218866067560242072431719861924648284912109e+0000, +/* A4 */ -9.02975906958474405783476868236903101205825805664e-0001, +/* A5 */ -1.47391630715542865104339398385491222143173217773e+0000, +/* A6 */ 1.86846544648220058704168877738993614912033081055e+0000, +/* A7 */ 1.82277370459347465292410106485476717352867126465e+0000, +/* A8 */ 1.25295479915214102994980294170090928673744201660e+0000, +/* A9 */ 1.96709676945198275177517643896862864494323730469e+0000, +/* A10 */ -4.00127989749189894030934055990655906498432159424e-0001, +/* A11 */ 3.01675528558798333733648178167641162872314453125e+0000, +/* A12 */ -9.52325445049240770778453679668018594384193420410e-0001, +/* B1 */ -1.25041641589283658575482149899471551179885864258e-0001, +/* B2 */ 1.87161713283355151891381127914642725337613123482e+0000, +/* B3 */ -1.89082956295731507978530316904652863740921020508e+0000, +/* B4 */ -2.50562891673640253387134180229622870683670043945e+0000, +/* B5 */ 1.64822828085258366037635369139024987816810607910e+0000, +/* B6 */ -1.24409107065868340669112512841820716857910156250e+0000, +/* B7 */ 1.70534231658220414296067701798165217041969299316e+0000, +/* B8 */ 1.99196833784655646937267192697618156671524047852e+0000, +}; + +#define ONE P[0] +#define TWO52 P[1] +#define LN2HI P[2] +#define LN2LO P[3] +#define A1 P[4] +#define A2 P[5] +#define A3 P[6] +#define A4 P[7] +#define A5 P[8] +#define A6 P[9] +#define A7 P[10] +#define A8 P[11] +#define A9 P[12] +#define A10 P[13] +#define A11 P[14] +#define A12 P[15] +#define B1 P[16] +#define B2 P[17] +#define B3 P[18] +#define B4 P[19] +#define B5 P[20] +#define B6 P[21] +#define B7 P[22] +#define B8 P[23] + +double +log(double x) { + double *tb, dn, dn1, s, z, r, w; + int i, hx, ix, n, lx; + + n = 0; + hx = ((int *)&x)[HIWORD]; + ix = hx & 0x7fffffff; + lx = ((int *)&x)[LOWORD]; + + /* subnormal,0,negative,inf,nan */ + if ((hx + 0x100000) < 0x200000) { + if (ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0)) /* nan */ + return (x * x); + if (((hx << 1) | lx) == 0) /* zero */ + return (_SVID_libm_err(x, x, 16)); + if (hx < 0) /* negative */ + return (_SVID_libm_err(x, x, 17)); + if (((hx - 0x7ff00000) | lx) == 0) /* +inf */ + return (x); + + /* x must be positive and subnormal */ + x *= TWO52; + n = -52; + ix = ((int *)&x)[HIWORD]; + lx = ((int *)&x)[LOWORD]; + } + + i = ix >> 19; + if (i >= 0x7f7 && i <= 0x806) { + /* 0.09375 (0x3fb80000) <= x < 24 (0x40380000) */ + if (ix >= 0x3fec0000 && ix < 0x3ff22000) { + /* 0.875 <= x < 1.125 */ + s = x - ONE; + z = s * s; + if (((ix - 0x3ff00000) | lx) == 0) /* x = 1 */ + return (z); + r = (A10 * s) * (A11 + s); + w = z * s; + return (s + ((A1 * z) * + (A2 + ((A3 * s) * (A4 + s) + w * (A5 + s)))) * + ((A6 + (s * (A7 + s) + w * (A8 + s))) * + (A9 + (r + w * (A12 + s))))); + } else { + i = (ix - 0x3fb80000) >> 15; + tb = (double *)_TBL_log + (i + i + i); + s = (x - tb[0]) * tb[1]; + return (tb[2] + ((B1 * s) * (B2 + s * (B3 + s))) * + (((B4 + s * B5) + (s * s) * (B6 + s)) * + (B7 + s * (B8 + s)))); + } + } else { + dn = (double)(n + ((ix >> 20) - 0x3ff)); + dn1 = dn * LN2HI; + i = (ix & 0x000fffff) | 0x3ff00000; /* scale x to [1,2] */ + ((int *)&x)[HIWORD] = i; + i = (i - 0x3fb80000) >> 15; + tb = (double *)_TBL_log + (i + i + i); + s = (x - tb[0]) * tb[1]; + dn = dn * LN2LO + tb[2]; + return (dn1 + (dn + ((B1 * s) * (B2 + s * (B3 + s))) * + (((B4 + s * B5) + (s * s) * (B6 + s)) * + (B7 + s * (B8 + s))))); + } +} |