summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/C/log.c
diff options
context:
space:
mode:
authorPiotr Jasiukajtis <estibi@me.com>2014-02-04 20:31:57 +0100
committerDan McDonald <danmcd@omniti.com>2014-10-17 18:00:52 -0400
commit25c28e83beb90e7c80452a7c818c5e6f73a07dc8 (patch)
tree95cb102e7fb37f52d4b3ec3e44508f352a335ee5 /usr/src/lib/libm/common/C/log.c
parent4e6070e87069f63bef94d8e79c2fc3cab2c1ab6b (diff)
downloadillumos-gate-25c28e83beb90e7c80452a7c818c5e6f73a07dc8.tar.gz
693 Opensource replacement of sunwlibm
Reviewed by: Igor Kozhukhov ikozhukhov@gmail.com Reviewed by: Keith M Wesolowski <keith.wesolowski@joyent.com> Reviewed by: Richard Lowe <richlowe@richlowe.net> Approved by: Dan McDonald <danmcd@omniti.com>
Diffstat (limited to 'usr/src/lib/libm/common/C/log.c')
-rw-r--r--usr/src/lib/libm/common/C/log.c220
1 files changed, 220 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/C/log.c b/usr/src/lib/libm/common/C/log.c
new file mode 100644
index 0000000000..7d755b4220
--- /dev/null
+++ b/usr/src/lib/libm/common/C/log.c
@@ -0,0 +1,220 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
+ */
+/*
+ * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma weak log = __log
+
+/* INDENT OFF */
+/*
+ * log(x)
+ * Table look-up algorithm with product polynomial approximation.
+ * By K.C. Ng, Oct 23, 2004. Updated Oct 18, 2005.
+ *
+ * (a). For x in [1-0.125, 1+0.1328125], using a special approximation:
+ * Let f = x - 1 and z = f*f.
+ * return f + ((a1*z) *
+ * ((a2 + (a3*f)*(a4+f)) + (f*z)*(a5+f))) *
+ * (((a6 + f*(a7+f)) + (f*z)*(a8+f)) *
+ * ((a9 + (a10*f)*(a11+f)) + (f*z)*(a12+f)))
+ * a1 -6.88821452420390473170286327331268694251775741577e-0002,
+ * a2 1.97493380704769294631262255279580131173133850098e+0000,
+ * a3 2.24963218866067560242072431719861924648284912109e+0000,
+ * a4 -9.02975906958474405783476868236903101205825805664e-0001,
+ * a5 -1.47391630715542865104339398385491222143173217773e+0000,
+ * a6 1.86846544648220058704168877738993614912033081055e+0000,
+ * a7 1.82277370459347465292410106485476717352867126465e+0000,
+ * a8 1.25295479915214102994980294170090928673744201660e+0000,
+ * a9 1.96709676945198275177517643896862864494323730469e+0000,
+ * a10 -4.00127989749189894030934055990655906498432159424e-0001,
+ * a11 3.01675528558798333733648178167641162872314453125e+0000,
+ * a12 -9.52325445049240770778453679668018594384193420410e-0001,
+ *
+ * with remez error |(log(1+f) - P(f))/f| <= 2**-56.81 and
+ *
+ * (b). For 0.09375 <= x < 24
+ * Use an 8-bit table look-up (3-bit for exponent and 5 bit for
+ * significand):
+ * Let ix stands for the high part of x in IEEE double format.
+ * Since 0.09375 <= x < 24, we have
+ * 0x3fb80000 <= ix < 0x40380000.
+ * Let j = (ix - 0x3fb80000) >> 15. Then 0 <= j < 256. Choose
+ * a Y[j] such that HIWORD(Y[j]) ~ 0x3fb8400 + (j<<15) (the middle
+ * number between 0x3fb80000 + (j<<15) and 3fb80000 + ((j+1)<<15)),
+ * and at the same time 1/Y[j] as well as log(Y[j]) are very close
+ * to 53-bits floating point numbers.
+ * A table of Y[j], 1/Y[j], and log(Y[j]) are pre-computed and thus
+ * log(x) = log(Y[j]) + log(1 + (x-Y[j])*(1/Y[j]))
+ * = log(Y[j]) + log(1 + s)
+ * where
+ * s = (x-Y[j])*(1/Y[j])
+ * We compute max (x-Y[j])*(1/Y[j]) for the chosen Y[j] and obtain
+ * |s| < 0.0154. By applying remez algorithm with Product Polynomial
+ * Approximiation, we find the following approximated of log(1+s)
+ * (b1*s)*(b2+s*(b3+s))*((b4+s*b5)+(s*s)*(b6+s))*(b7+s*(b8+s))
+ * with remez error |log(1+s) - P(s)| <= 2**-63.5
+ *
+ * (c). Otherwise, get "n", the exponent of x, and then normalize x to
+ * z in [1,2). Then similar to (b) find a Y[i] that matches z to 5.5
+ * significant bits. Then
+ * log(x) = n*ln2 + log(Y[i]) + log(z/Y[i]).
+ *
+ * Special cases:
+ * log(x) is NaN with signal if x < 0 (including -INF) ;
+ * log(+INF) is +INF; log(0) is -INF with signal;
+ * log(NaN) is that NaN with no signal.
+ *
+ * Maximum error observed: less than 0.90 ulp
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+/* INDENT ON */
+
+#include "libm.h"
+
+extern const double _TBL_log[];
+
+static const double P[] = {
+/* ONE */ 1.0,
+/* TWO52 */ 4503599627370496.0,
+/* LN2HI */ 6.93147180369123816490e-01, /* 3fe62e42, fee00000 */
+/* LN2LO */ 1.90821492927058770002e-10, /* 3dea39ef, 35793c76 */
+/* A1 */ -6.88821452420390473170286327331268694251775741577e-0002,
+/* A2 */ 1.97493380704769294631262255279580131173133850098e+0000,
+/* A3 */ 2.24963218866067560242072431719861924648284912109e+0000,
+/* A4 */ -9.02975906958474405783476868236903101205825805664e-0001,
+/* A5 */ -1.47391630715542865104339398385491222143173217773e+0000,
+/* A6 */ 1.86846544648220058704168877738993614912033081055e+0000,
+/* A7 */ 1.82277370459347465292410106485476717352867126465e+0000,
+/* A8 */ 1.25295479915214102994980294170090928673744201660e+0000,
+/* A9 */ 1.96709676945198275177517643896862864494323730469e+0000,
+/* A10 */ -4.00127989749189894030934055990655906498432159424e-0001,
+/* A11 */ 3.01675528558798333733648178167641162872314453125e+0000,
+/* A12 */ -9.52325445049240770778453679668018594384193420410e-0001,
+/* B1 */ -1.25041641589283658575482149899471551179885864258e-0001,
+/* B2 */ 1.87161713283355151891381127914642725337613123482e+0000,
+/* B3 */ -1.89082956295731507978530316904652863740921020508e+0000,
+/* B4 */ -2.50562891673640253387134180229622870683670043945e+0000,
+/* B5 */ 1.64822828085258366037635369139024987816810607910e+0000,
+/* B6 */ -1.24409107065868340669112512841820716857910156250e+0000,
+/* B7 */ 1.70534231658220414296067701798165217041969299316e+0000,
+/* B8 */ 1.99196833784655646937267192697618156671524047852e+0000,
+};
+
+#define ONE P[0]
+#define TWO52 P[1]
+#define LN2HI P[2]
+#define LN2LO P[3]
+#define A1 P[4]
+#define A2 P[5]
+#define A3 P[6]
+#define A4 P[7]
+#define A5 P[8]
+#define A6 P[9]
+#define A7 P[10]
+#define A8 P[11]
+#define A9 P[12]
+#define A10 P[13]
+#define A11 P[14]
+#define A12 P[15]
+#define B1 P[16]
+#define B2 P[17]
+#define B3 P[18]
+#define B4 P[19]
+#define B5 P[20]
+#define B6 P[21]
+#define B7 P[22]
+#define B8 P[23]
+
+double
+log(double x) {
+ double *tb, dn, dn1, s, z, r, w;
+ int i, hx, ix, n, lx;
+
+ n = 0;
+ hx = ((int *)&x)[HIWORD];
+ ix = hx & 0x7fffffff;
+ lx = ((int *)&x)[LOWORD];
+
+ /* subnormal,0,negative,inf,nan */
+ if ((hx + 0x100000) < 0x200000) {
+ if (ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0)) /* nan */
+ return (x * x);
+ if (((hx << 1) | lx) == 0) /* zero */
+ return (_SVID_libm_err(x, x, 16));
+ if (hx < 0) /* negative */
+ return (_SVID_libm_err(x, x, 17));
+ if (((hx - 0x7ff00000) | lx) == 0) /* +inf */
+ return (x);
+
+ /* x must be positive and subnormal */
+ x *= TWO52;
+ n = -52;
+ ix = ((int *)&x)[HIWORD];
+ lx = ((int *)&x)[LOWORD];
+ }
+
+ i = ix >> 19;
+ if (i >= 0x7f7 && i <= 0x806) {
+ /* 0.09375 (0x3fb80000) <= x < 24 (0x40380000) */
+ if (ix >= 0x3fec0000 && ix < 0x3ff22000) {
+ /* 0.875 <= x < 1.125 */
+ s = x - ONE;
+ z = s * s;
+ if (((ix - 0x3ff00000) | lx) == 0) /* x = 1 */
+ return (z);
+ r = (A10 * s) * (A11 + s);
+ w = z * s;
+ return (s + ((A1 * z) *
+ (A2 + ((A3 * s) * (A4 + s) + w * (A5 + s)))) *
+ ((A6 + (s * (A7 + s) + w * (A8 + s))) *
+ (A9 + (r + w * (A12 + s)))));
+ } else {
+ i = (ix - 0x3fb80000) >> 15;
+ tb = (double *)_TBL_log + (i + i + i);
+ s = (x - tb[0]) * tb[1];
+ return (tb[2] + ((B1 * s) * (B2 + s * (B3 + s))) *
+ (((B4 + s * B5) + (s * s) * (B6 + s)) *
+ (B7 + s * (B8 + s))));
+ }
+ } else {
+ dn = (double)(n + ((ix >> 20) - 0x3ff));
+ dn1 = dn * LN2HI;
+ i = (ix & 0x000fffff) | 0x3ff00000; /* scale x to [1,2] */
+ ((int *)&x)[HIWORD] = i;
+ i = (i - 0x3fb80000) >> 15;
+ tb = (double *)_TBL_log + (i + i + i);
+ s = (x - tb[0]) * tb[1];
+ dn = dn * LN2LO + tb[2];
+ return (dn1 + (dn + ((B1 * s) * (B2 + s * (B3 + s))) *
+ (((B4 + s * B5) + (s * s) * (B6 + s)) *
+ (B7 + s * (B8 + s)))));
+ }
+}