diff options
author | April Chin <April.Chin@Sun.COM> | 2008-12-27 14:59:38 -0800 |
---|---|---|
committer | April Chin <April.Chin@Sun.COM> | 2008-12-27 14:59:38 -0800 |
commit | 7c2fbfb345896881c631598ee3852ce9ce33fb07 (patch) | |
tree | 4b173b5657508562dfc0aa05f7d056d1e9add505 /usr/src/lib/libsum/common/sum-sha2.c | |
parent | 6071ac1de68fed78e1e10052045bbb5f1732a263 (diff) | |
download | illumos-gate-7c2fbfb345896881c631598ee3852ce9ce33fb07.tar.gz |
PSARC/2008/094 ksh93 Update 1
PSARC/2008/344 ksh93 Integration Update 1 Amendments 1
PSARC/2008/589 Remove /usr/bin/printf from PSARC case 2008 094
6619428 *ksh93* RFE: Update ksh93 in Solaris to ast-ksh.2008-11-04
6788659 RFE: Update libpp in Solaris to ast-open.2008-07-25
6561901 RFE: Add "shcomp" (shell script compiler) + kernel module to exec binary sh code
6599668 RFE: Move consumers of alias.sh over to ksh93
6595183 *ksh93* RFE: Update ksh93-integration demo code
6775901 *ksh93* no C message catalogs are generated for ksh93
6451262 *sleep* RFE: /usr/bin/sleep should support floating-point values
6687139 *ksh93* command substitution, exec, and stdout redirection cause allocation loop
6703761 *ksh93* crashes in script containing uncommon output redirections
6715496 *ksh93* SEGVs on array reinitialization
6713682 *ksh93* Creating a compound variable in a subshell "bleeds through" to the calling subshell
6672350 *ksh93* causes parent shell to die when child shell is suspended
6745015 *ksh93* VARIABLE=`command substitution` assignment is not reliable on OpenSolaris
6710205 *ksh93* problem with command substitution (within back quotes) containing \$'
6737600 *ksh93* exits debugger when user presses ctrl-c
6748645 *ksh93* fc -l -e - is mis-parsed, outputs wrong error message "-e - requires single argument"
6754020 *ksh93* does weird '[' expansion
6753538 *ksh93* umask modification leaks out of a ksh93 subshell
6766246 *ksh93* bug in pattern matching
6763594 *ksh93* executes command after "command" builtin twice on failure
6762665 *ksh93* Difficult-to-reproduce SIGSEGV in ksh93
Diffstat (limited to 'usr/src/lib/libsum/common/sum-sha2.c')
-rw-r--r-- | usr/src/lib/libsum/common/sum-sha2.c | 1248 |
1 files changed, 1248 insertions, 0 deletions
diff --git a/usr/src/lib/libsum/common/sum-sha2.c b/usr/src/lib/libsum/common/sum-sha2.c new file mode 100644 index 0000000000..bfcd31f6ee --- /dev/null +++ b/usr/src/lib/libsum/common/sum-sha2.c @@ -0,0 +1,1248 @@ +/*********************************************************************** +* * +* This software is part of the ast package * +* Copyright (c) 1996-2008 AT&T Intellectual Property * +* and is licensed under the * +* Common Public License, Version 1.0 * +* by AT&T Intellectual Property * +* * +* A copy of the License is available at * +* http://www.opensource.org/licenses/cpl1.0.txt * +* (with md5 checksum 059e8cd6165cb4c31e351f2b69388fd9) * +* * +* Information and Software Systems Research * +* AT&T Research * +* Florham Park NJ * +* * +* Glenn Fowler <gsf@research.att.com> * +* * +***********************************************************************/ +#pragma prototyped + +#if _typ_int64_t + +/* + * Aaron D. Gifford's SHA {256,384,512} code transcribed into a -lsum method + */ + +/* + * Copyright (c) 2000-2001, Aaron D. Gifford + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the copyright holder nor the names of contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + */ + +/* + * ASSERT NOTE: + * Some sanity checking code is included using assert(). On my FreeBSD + * system, this additional code can be removed by compiling with NDEBUG + * defined. Check your own systems manpage on assert() to see how to + * compile WITHOUT the sanity checking code on your system. + * + * UNROLLED TRANSFORM LOOP NOTE: + * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform + * loop version for the hash transform rounds (defined using macros + * later in this file). Either define on the command line, for example: + * + * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c + * + * or define below: + * + * #define SHA2_UNROLL_TRANSFORM + * + */ + +/*** SHA-256/384/512 Machine Architecture Definitions *****************/ + +#if _PACKAGE_ast + +#ifndef __USE_BSD +#define __undef__USE_BSD +#define __USE_BSD +#endif +#include <endian.h> +#ifdef __undef__USE_BSD +#undef __undef__USE_BSD +#undef __USE_BSD +#endif + +typedef uint8_t sha2_byte; /* Exactly 1 byte */ +typedef uint32_t sha2_word32; /* Exactly 4 bytes */ +typedef uint64_t sha2_word64; /* Exactly 8 bytes */ + +#define assert(x) + +#undef R +#undef S32 +#undef S64 + +#else /* _PACKAGE_ast */ + +/* + * BYTE_ORDER NOTE: + * + * Please make sure that your system defines BYTE_ORDER. If your + * architecture is little-endian, make sure it also defines + * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are + * equivilent. + * + * If your system does not define the above, then you can do so by + * hand like this: + * + * #define LITTLE_ENDIAN 1234 + * #define BIG_ENDIAN 4321 + * + * And for little-endian machines, add: + * + * #define BYTE_ORDER LITTLE_ENDIAN + * + * Or for big-endian machines: + * + * #define BYTE_ORDER BIG_ENDIAN + * + * The FreeBSD machine this was written on defines BYTE_ORDER + * appropriately by including <sys/types.h> (which in turn includes + * <machine/endian.h> where the appropriate definitions are actually + * made). + */ + +#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) +#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN +#endif + +/* + * Define the following sha2_* types to types of the correct length on + * the native archtecture. Most BSD systems and Linux define u_intXX_t + * types. Machines with very recent ANSI C headers, can use the + * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H + * during compile or in the sha.h header file. + * + * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t + * will need to define these three typedefs below (and the appropriate + * ones in sha.h too) by hand according to their system architecture. + * + * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t + * types and pointing out recent ANSI C support for uintXX_t in inttypes.h. + */ + +#ifdef SHA2_USE_INTTYPES_H + +typedef uint8_t sha2_byte; /* Exactly 1 byte */ +typedef uint32_t sha2_word32; /* Exactly 4 bytes */ +typedef uint64_t sha2_word64; /* Exactly 8 bytes */ + +#else /* SHA2_USE_INTTYPES_H */ + +typedef u_int8_t sha2_byte; /* Exactly 1 byte */ +typedef u_int32_t sha2_word32; /* Exactly 4 bytes */ +typedef u_int64_t sha2_word64; /* Exactly 8 bytes */ + +#endif /* SHA2_USE_INTTYPES_H */ + +#endif /* _PACKAGE_ast */ + +/*** SHA-256/384/512 Various Length Definitions ***********************/ + +#define SHA256_BLOCK_LENGTH 64 +#define SHA256_DIGEST_LENGTH 32 +#define SHA384_BLOCK_LENGTH 128 +#define SHA384_DIGEST_LENGTH 48 +#define SHA512_BLOCK_LENGTH 128 +#define SHA512_DIGEST_LENGTH 64 + +#define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) +#define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) +#define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) + +/*** ENDIAN REVERSAL MACROS *******************************************/ +#if BYTE_ORDER == LITTLE_ENDIAN +#define REVERSE32(w,x) { \ + sha2_word32 tmp = (w); \ + tmp = (tmp >> 16) | (tmp << 16); \ + (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ +} +#if _ast_LL +#define REVERSE64(w,x) { \ + sha2_word64 tmp = (w); \ + tmp = (tmp >> 32) | (tmp << 32); \ + tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ + ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ + (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ + ((tmp & 0x0000ffff0000ffffULL) << 16); \ +} +#else +#define REVERSE64(w,x) { \ + sha2_word64 tmp = (w); \ + tmp = (tmp >> 32) | (tmp << 32); \ + tmp = ((tmp & ((sha2_word64)0xff00ff00ff00ff00)) >> 8) | \ + ((tmp & ((sha2_word64)0x00ff00ff00ff00ff)) << 8); \ + (x) = ((tmp & ((sha2_word64)0xffff0000ffff0000)) >> 16) | \ + ((tmp & ((sha2_word64)0x0000ffff0000ffff)) << 16); \ +} +#endif +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + +/* + * Macro for incrementally adding the unsigned 64-bit integer n to the + * unsigned 128-bit integer (represented using a two-element array of + * 64-bit words): + */ + +#define ADDINC128(w,n) { \ + (w)[0] += (sha2_word64)(n); \ + if ((w)[0] < (n)) { \ + (w)[1]++; \ + } \ +} + +/* + * Macros for copying blocks of memory and for zeroing out ranges + * of memory. Using these macros makes it easy to switch from + * using memset()/memcpy() and using bzero()/bcopy(). + * + * Please define either SHA2_USE_MEMSET_MEMCPY or define + * SHA2_USE_BZERO_BCOPY depending on which function set you + * choose to use: + */ + +#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY) +/* Default to memset()/memcpy() if no option is specified */ +#define SHA2_USE_MEMSET_MEMCPY 1 +#endif +#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY) +/* Abort with an error if BOTH options are defined */ +#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both! +#endif + +#ifdef SHA2_USE_MEMSET_MEMCPY +#define MEMSET_BZERO(p,l) memset((p), 0, (l)) +#define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) +#endif +#ifdef SHA2_USE_BZERO_BCOPY +#define MEMSET_BZERO(p,l) bzero((p), (l)) +#define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l)) +#endif + + +/*** THE SIX LOGICAL FUNCTIONS ****************************************/ +/* + * Bit shifting and rotation (used by the six SHA-XYZ logical functions: + * + * NOTE: The naming of R and S appears backwards here (R is a SHIFT and + * S is a ROTATION) because the SHA-256/384/512 description document + * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this + * same "backwards" definition. + */ + +/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ +#define R(b,x) ((x) >> (b)) +/* 32-bit Rotate-right (used in SHA-256): */ +#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) +/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ +#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) + +/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ +#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) +#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) + +/* Four of six logical functions used in SHA-256: */ +#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) +#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) +#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) +#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) + +/* Four of six logical functions used in SHA-384 and SHA-512: */ +#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) +#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) +#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) +#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) + +/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ +/* Hash constant words K for SHA-256: */ +static const sha2_word32 K256[64] = { + 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, + 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, + 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, + 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, + 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, + 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, + 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, + 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, + 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, + 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, + 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, + 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, + 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, + 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, + 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, + 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL +}; + +/* Initial hash value H for SHA-256: */ +static const sha2_word32 sha256_initial_hash_value[8] = { + 0x6a09e667UL, + 0xbb67ae85UL, + 0x3c6ef372UL, + 0xa54ff53aUL, + 0x510e527fUL, + 0x9b05688cUL, + 0x1f83d9abUL, + 0x5be0cd19UL +}; + +/* Hash constant words K for SHA-384 and SHA-512: */ +static const sha2_word64 K512[80] = { +#if _ast_LL + 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, + 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, + 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, + 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, + 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, + 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, + 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, + 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, + 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, + 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, + 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, + 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, + 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, + 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, + 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, + 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, + 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, + 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, + 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, + 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, + 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, + 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, + 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, + 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, + 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, + 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, + 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, + 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, + 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, + 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, + 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, + 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, + 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, + 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, + 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, + 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, + 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, + 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, + 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, + 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL +#else + ((sha2_word64)0x428a2f98d728ae22), ((sha2_word64)0x7137449123ef65cd), + ((sha2_word64)0xb5c0fbcfec4d3b2f), ((sha2_word64)0xe9b5dba58189dbbc), + ((sha2_word64)0x3956c25bf348b538), ((sha2_word64)0x59f111f1b605d019), + ((sha2_word64)0x923f82a4af194f9b), ((sha2_word64)0xab1c5ed5da6d8118), + ((sha2_word64)0xd807aa98a3030242), ((sha2_word64)0x12835b0145706fbe), + ((sha2_word64)0x243185be4ee4b28c), ((sha2_word64)0x550c7dc3d5ffb4e2), + ((sha2_word64)0x72be5d74f27b896f), ((sha2_word64)0x80deb1fe3b1696b1), + ((sha2_word64)0x9bdc06a725c71235), ((sha2_word64)0xc19bf174cf692694), + ((sha2_word64)0xe49b69c19ef14ad2), ((sha2_word64)0xefbe4786384f25e3), + ((sha2_word64)0x0fc19dc68b8cd5b5), ((sha2_word64)0x240ca1cc77ac9c65), + ((sha2_word64)0x2de92c6f592b0275), ((sha2_word64)0x4a7484aa6ea6e483), + ((sha2_word64)0x5cb0a9dcbd41fbd4), ((sha2_word64)0x76f988da831153b5), + ((sha2_word64)0x983e5152ee66dfab), ((sha2_word64)0xa831c66d2db43210), + ((sha2_word64)0xb00327c898fb213f), ((sha2_word64)0xbf597fc7beef0ee4), + ((sha2_word64)0xc6e00bf33da88fc2), ((sha2_word64)0xd5a79147930aa725), + ((sha2_word64)0x06ca6351e003826f), ((sha2_word64)0x142929670a0e6e70), + ((sha2_word64)0x27b70a8546d22ffc), ((sha2_word64)0x2e1b21385c26c926), + ((sha2_word64)0x4d2c6dfc5ac42aed), ((sha2_word64)0x53380d139d95b3df), + ((sha2_word64)0x650a73548baf63de), ((sha2_word64)0x766a0abb3c77b2a8), + ((sha2_word64)0x81c2c92e47edaee6), ((sha2_word64)0x92722c851482353b), + ((sha2_word64)0xa2bfe8a14cf10364), ((sha2_word64)0xa81a664bbc423001), + ((sha2_word64)0xc24b8b70d0f89791), ((sha2_word64)0xc76c51a30654be30), + ((sha2_word64)0xd192e819d6ef5218), ((sha2_word64)0xd69906245565a910), + ((sha2_word64)0xf40e35855771202a), ((sha2_word64)0x106aa07032bbd1b8), + ((sha2_word64)0x19a4c116b8d2d0c8), ((sha2_word64)0x1e376c085141ab53), + ((sha2_word64)0x2748774cdf8eeb99), ((sha2_word64)0x34b0bcb5e19b48a8), + ((sha2_word64)0x391c0cb3c5c95a63), ((sha2_word64)0x4ed8aa4ae3418acb), + ((sha2_word64)0x5b9cca4f7763e373), ((sha2_word64)0x682e6ff3d6b2b8a3), + ((sha2_word64)0x748f82ee5defb2fc), ((sha2_word64)0x78a5636f43172f60), + ((sha2_word64)0x84c87814a1f0ab72), ((sha2_word64)0x8cc702081a6439ec), + ((sha2_word64)0x90befffa23631e28), ((sha2_word64)0xa4506cebde82bde9), + ((sha2_word64)0xbef9a3f7b2c67915), ((sha2_word64)0xc67178f2e372532b), + ((sha2_word64)0xca273eceea26619c), ((sha2_word64)0xd186b8c721c0c207), + ((sha2_word64)0xeada7dd6cde0eb1e), ((sha2_word64)0xf57d4f7fee6ed178), + ((sha2_word64)0x06f067aa72176fba), ((sha2_word64)0x0a637dc5a2c898a6), + ((sha2_word64)0x113f9804bef90dae), ((sha2_word64)0x1b710b35131c471b), + ((sha2_word64)0x28db77f523047d84), ((sha2_word64)0x32caab7b40c72493), + ((sha2_word64)0x3c9ebe0a15c9bebc), ((sha2_word64)0x431d67c49c100d4c), + ((sha2_word64)0x4cc5d4becb3e42b6), ((sha2_word64)0x597f299cfc657e2a), + ((sha2_word64)0x5fcb6fab3ad6faec), ((sha2_word64)0x6c44198c4a475817) +#endif +}; + +/* Initial hash value H for SHA-384 */ +static const sha2_word64 sha384_initial_hash_value[8] = { +#if _ast_LL + 0xcbbb9d5dc1059ed8ULL, + 0x629a292a367cd507ULL, + 0x9159015a3070dd17ULL, + 0x152fecd8f70e5939ULL, + 0x67332667ffc00b31ULL, + 0x8eb44a8768581511ULL, + 0xdb0c2e0d64f98fa7ULL, + 0x47b5481dbefa4fa4ULL +#else + ((sha2_word64)0xcbbb9d5dc1059ed8), + ((sha2_word64)0x629a292a367cd507), + ((sha2_word64)0x9159015a3070dd17), + ((sha2_word64)0x152fecd8f70e5939), + ((sha2_word64)0x67332667ffc00b31), + ((sha2_word64)0x8eb44a8768581511), + ((sha2_word64)0xdb0c2e0d64f98fa7), + ((sha2_word64)0x47b5481dbefa4fa4) +#endif +}; + +/* Initial hash value H for SHA-512 */ +static const sha2_word64 sha512_initial_hash_value[8] = { +#if _ast_LL + 0x6a09e667f3bcc908ULL, + 0xbb67ae8584caa73bULL, + 0x3c6ef372fe94f82bULL, + 0xa54ff53a5f1d36f1ULL, + 0x510e527fade682d1ULL, + 0x9b05688c2b3e6c1fULL, + 0x1f83d9abfb41bd6bULL, + 0x5be0cd19137e2179ULL +#else + ((sha2_word64)0x6a09e667f3bcc908), + ((sha2_word64)0xbb67ae8584caa73b), + ((sha2_word64)0x3c6ef372fe94f82b), + ((sha2_word64)0xa54ff53a5f1d36f1), + ((sha2_word64)0x510e527fade682d1), + ((sha2_word64)0x9b05688c2b3e6c1f), + ((sha2_word64)0x1f83d9abfb41bd6b), + ((sha2_word64)0x5be0cd19137e2179) +#endif +}; + +/*** SHA-256: *********************************************************/ + +#define sha256_description "FIPS SHA-256 secure hash algorithm." +#define sha256_options "\ +[+(version)?sha-256 (FIPS) 2000-01-01]\ +[+(author)?Aaron D. Gifford]\ +" +#define sha256_match "sha256|sha-256|SHA256|SHA-256" +#define sha256_scale 0 + +#define sha256_padding md5_pad + +#define SHA256_CTX Sha256_t + +typedef struct Sha256_s +{ + _SUM_PUBLIC_ + _SUM_PRIVATE_ + sha2_byte digest[SHA256_DIGEST_LENGTH]; + sha2_byte digest_sum[SHA256_DIGEST_LENGTH]; + sha2_word32 state[8]; + sha2_word64 bitcount; + sha2_byte buffer[SHA256_BLOCK_LENGTH]; +} Sha256_t; + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-256 round macros: */ + +#if BYTE_ORDER == LITTLE_ENDIAN + +#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ + REVERSE32(*data++, W256[j]); \ + T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ + K256[j] + W256[j]; \ + (d) += T1; \ + (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ + j++ + + +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ + T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ + K256[j] + (W256[j] = *data++); \ + (d) += T1; \ + (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ + j++ + +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND256(a,b,c,d,e,f,g,h) \ + s0 = W256[(j+1)&0x0f]; \ + s0 = sigma0_256(s0); \ + s1 = W256[(j+14)&0x0f]; \ + s1 = sigma1_256(s1); \ + T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ + j++ + +static void SHA256_Transform(SHA256_CTX* sha, const sha2_word32* data) { + sha2_word32 a, b, c, d, e, f, g, h, s0, s1; + sha2_word32 T1, *W256; + int j; + + W256 = (sha2_word32*)sha->buffer; + + /* Initialize registers with the prev. intermediate value */ + a = sha->state[0]; + b = sha->state[1]; + c = sha->state[2]; + d = sha->state[3]; + e = sha->state[4]; + f = sha->state[5]; + g = sha->state[6]; + h = sha->state[7]; + + j = 0; + do { + /* Rounds 0 to 15 (unrolled): */ + ROUND256_0_TO_15(a,b,c,d,e,f,g,h); + ROUND256_0_TO_15(h,a,b,c,d,e,f,g); + ROUND256_0_TO_15(g,h,a,b,c,d,e,f); + ROUND256_0_TO_15(f,g,h,a,b,c,d,e); + ROUND256_0_TO_15(e,f,g,h,a,b,c,d); + ROUND256_0_TO_15(d,e,f,g,h,a,b,c); + ROUND256_0_TO_15(c,d,e,f,g,h,a,b); + ROUND256_0_TO_15(b,c,d,e,f,g,h,a); + } while (j < 16); + + /* Now for the remaining rounds to 64: */ + do { + ROUND256(a,b,c,d,e,f,g,h); + ROUND256(h,a,b,c,d,e,f,g); + ROUND256(g,h,a,b,c,d,e,f); + ROUND256(f,g,h,a,b,c,d,e); + ROUND256(e,f,g,h,a,b,c,d); + ROUND256(d,e,f,g,h,a,b,c); + ROUND256(c,d,e,f,g,h,a,b); + ROUND256(b,c,d,e,f,g,h,a); + } while (j < 64); + + /* Compute the current intermediate hash value */ + sha->state[0] += a; + sha->state[1] += b; + sha->state[2] += c; + sha->state[3] += d; + sha->state[4] += e; + sha->state[5] += f; + sha->state[6] += g; + sha->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} + +#else /* SHA2_UNROLL_TRANSFORM */ + +static void SHA256_Transform(SHA256_CTX* sha, const sha2_word32* data) { + sha2_word32 a, b, c, d, e, f, g, h, s0, s1; + sha2_word32 T1, T2, *W256; + int j; + + W256 = (sha2_word32*)sha->buffer; + + /* Initialize registers with the prev. intermediate value */ + a = sha->state[0]; + b = sha->state[1]; + c = sha->state[2]; + d = sha->state[3]; + e = sha->state[4]; + f = sha->state[5]; + g = sha->state[6]; + h = sha->state[7]; + + j = 0; + do { +#if BYTE_ORDER == LITTLE_ENDIAN + /* Copy data while converting to host byte order */ + REVERSE32(*data++,W256[j]); + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + /* Apply the SHA-256 compression function to update a..h with copy */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do { + /* Part of the message block expansion: */ + s0 = W256[(j+1)&0x0f]; + s0 = sigma0_256(s0); + s1 = W256[(j+14)&0x0f]; + s1 = sigma1_256(s1); + + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 64); + + /* Compute the current intermediate hash value */ + sha->state[0] += a; + sha->state[1] += b; + sha->state[2] += c; + sha->state[3] += d; + sha->state[4] += e; + sha->state[5] += f; + sha->state[6] += g; + sha->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} + +#endif /* SHA2_UNROLL_TRANSFORM */ + +static int +sha256_block(register Sum_t* p, const void* s, size_t len) +{ + Sha256_t* sha = (Sha256_t*)p; + sha2_byte* data = (sha2_byte*)s; + unsigned int freespace, usedspace; + + if (!len) + return 0; + usedspace = (sha->bitcount >> 3) % SHA256_BLOCK_LENGTH; + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = SHA256_BLOCK_LENGTH - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + MEMCPY_BCOPY(&sha->buffer[usedspace], data, freespace); + sha->bitcount += freespace << 3; + len -= freespace; + data += freespace; + SHA256_Transform(sha, (sha2_word32*)sha->buffer); + } else { + /* The buffer is not yet full */ + MEMCPY_BCOPY(&sha->buffer[usedspace], data, len); + sha->bitcount += len << 3; + /* Clean up: */ + usedspace = freespace = 0; + return 0; + } + } + while (len >= SHA256_BLOCK_LENGTH) { + /* Process as many complete blocks as we can */ + SHA256_Transform(sha, (sha2_word32*)data); + sha->bitcount += SHA256_BLOCK_LENGTH << 3; + len -= SHA256_BLOCK_LENGTH; + data += SHA256_BLOCK_LENGTH; + } + if (len > 0) { + /* There's left-overs, so save 'em */ + MEMCPY_BCOPY(sha->buffer, data, len); + sha->bitcount += len << 3; + } + /* Clean up: */ + usedspace = freespace = 0; + + return 0; +} + +static int +sha256_init(Sum_t* p) +{ + register Sha256_t* sha = (Sha256_t*)p; + + MEMCPY_BCOPY(sha->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH); + MEMSET_BZERO(sha->buffer, SHA256_BLOCK_LENGTH); + sha->bitcount = 0; + + return 0; +} + +static Sum_t* +sha256_open(const Method_t* method, const char* name) +{ + Sha256_t* sha; + + if (sha = newof(0, Sha256_t, 1, 0)) + { + sha->method = (Method_t*)method; + sha->name = name; + sha256_init((Sum_t*)sha); + } + return (Sum_t*)sha; +} + +static int +sha256_done(Sum_t* p) +{ + Sha256_t* sha = (Sha256_t*)p; + unsigned int usedspace; + register int i; + + /* Sanity check: */ + assert(sha != (SHA256_CTX*)0); + + usedspace = (sha->bitcount >> 3) % SHA256_BLOCK_LENGTH; +#if BYTE_ORDER == LITTLE_ENDIAN + /* Convert FROM host byte order */ + REVERSE64(sha->bitcount,sha->bitcount); +#endif + if (usedspace > 0) { + /* Begin padding with a 1 bit: */ + sha->buffer[usedspace++] = 0x80; + + if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { + /* Set-up for the last transform: */ + MEMSET_BZERO(&sha->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace); + } else { + if (usedspace < SHA256_BLOCK_LENGTH) { + MEMSET_BZERO(&sha->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace); + } + /* Do second-to-last transform: */ + SHA256_Transform(sha, (sha2_word32*)sha->buffer); + + /* And set-up for the last transform: */ + MEMSET_BZERO(sha->buffer, SHA256_SHORT_BLOCK_LENGTH); + } + } else { + /* Set-up for the last transform: */ + MEMSET_BZERO(sha->buffer, SHA256_SHORT_BLOCK_LENGTH); + + /* Begin padding with a 1 bit: */ + *sha->buffer = 0x80; + } + /* Set the bit count: */ + *(sha2_word64*)&sha->buffer[SHA256_SHORT_BLOCK_LENGTH] = sha->bitcount; + + /* Final transform: */ + SHA256_Transform(sha, (sha2_word32*)sha->buffer); + +#if BYTE_ORDER == LITTLE_ENDIAN + { + /* Convert TO host byte order */ + int j; + sha2_word32* d = (sha2_word32*)sha->digest; + for (j = 0; j < 8; j++) { + REVERSE32(sha->state[j],sha->state[j]); + *d++ = sha->state[j]; + } + } +#else + MEMCPY_BCOPY(sha->digest, sha->state, SHA256_DIGEST_LENGTH); +#endif + + /* accumulate the digests */ + for (i = 0; i < SHA256_DIGEST_LENGTH; i++) + sha->digest_sum[i] ^= sha->digest[i]; + + /* Clean up state data: */ + MEMSET_BZERO(&sha->state, sizeof(*sha) - offsetof(Sha256_t, state)); + usedspace = 0; + + return 0; +} + +static int +sha256_print(Sum_t* p, Sfio_t* sp, register int flags, size_t scale) +{ + register Sha256_t* sha = (Sha256_t*)p; + register sha2_byte* d; + register sha2_byte* e; + + d = (flags & SUM_TOTAL) ? sha->digest_sum : sha->digest; + e = d + SHA256_DIGEST_LENGTH; + while (d < e) + sfprintf(sp, "%02x", *d++); + return 0; +} + +static int +sha256_data(Sum_t* p, Sumdata_t* data) +{ + register Sha256_t* sha = (Sha256_t*)p; + + data->size = SHA256_DIGEST_LENGTH; + data->num = 0; + data->buf = sha->digest; + return 0; +} + +/*** SHA-512: *********************************************************/ + +#define sha512_description "FIPS SHA-512 secure hash algorithm." +#define sha512_options "\ +[+(version)?sha-512 (FIPS) 2000-01-01]\ +[+(author)?Aaron D. Gifford]\ +" +#define sha512_match "sha512|sha-512|SHA512|SHA-512" +#define sha512_scale 0 + +#define sha512_padding md5_pad + +#define SHA512_CTX Sha512_t + +typedef struct Sha512_s +{ + _SUM_PUBLIC_ + _SUM_PRIVATE_ + sha2_byte digest[SHA512_DIGEST_LENGTH]; + sha2_byte digest_sum[SHA512_DIGEST_LENGTH]; + sha2_word64 state[8]; + sha2_word64 bitcount[2]; + sha2_byte buffer[SHA512_BLOCK_LENGTH]; +} Sha512_t; + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-512 round macros: */ +#if BYTE_ORDER == LITTLE_ENDIAN + +#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ + REVERSE64(*data++, W512[j]); \ + T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ + K512[j] + W512[j]; \ + (d) += T1, \ + (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ + j++ + + +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ + T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ + K512[j] + (W512[j] = *data++); \ + (d) += T1; \ + (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ + j++ + +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + +#define ROUND512(a,b,c,d,e,f,g,h) \ + s0 = W512[(j+1)&0x0f]; \ + s0 = sigma0_512(s0); \ + s1 = W512[(j+14)&0x0f]; \ + s1 = sigma1_512(s1); \ + T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ + j++ + +static void SHA512_Transform(SHA512_CTX* sha, const sha2_word64* data) { + sha2_word64 a, b, c, d, e, f, g, h, s0, s1; + sha2_word64 T1, *W512 = (sha2_word64*)sha->buffer; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = sha->state[0]; + b = sha->state[1]; + c = sha->state[2]; + d = sha->state[3]; + e = sha->state[4]; + f = sha->state[5]; + g = sha->state[6]; + h = sha->state[7]; + + j = 0; + do { + ROUND512_0_TO_15(a,b,c,d,e,f,g,h); + ROUND512_0_TO_15(h,a,b,c,d,e,f,g); + ROUND512_0_TO_15(g,h,a,b,c,d,e,f); + ROUND512_0_TO_15(f,g,h,a,b,c,d,e); + ROUND512_0_TO_15(e,f,g,h,a,b,c,d); + ROUND512_0_TO_15(d,e,f,g,h,a,b,c); + ROUND512_0_TO_15(c,d,e,f,g,h,a,b); + ROUND512_0_TO_15(b,c,d,e,f,g,h,a); + } while (j < 16); + + /* Now for the remaining rounds up to 79: */ + do { + ROUND512(a,b,c,d,e,f,g,h); + ROUND512(h,a,b,c,d,e,f,g); + ROUND512(g,h,a,b,c,d,e,f); + ROUND512(f,g,h,a,b,c,d,e); + ROUND512(e,f,g,h,a,b,c,d); + ROUND512(d,e,f,g,h,a,b,c); + ROUND512(c,d,e,f,g,h,a,b); + ROUND512(b,c,d,e,f,g,h,a); + } while (j < 80); + + /* Compute the current intermediate hash value */ + sha->state[0] += a; + sha->state[1] += b; + sha->state[2] += c; + sha->state[3] += d; + sha->state[4] += e; + sha->state[5] += f; + sha->state[6] += g; + sha->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} + +#else /* SHA2_UNROLL_TRANSFORM */ + +static void SHA512_Transform(SHA512_CTX* sha, const sha2_word64* data) { + sha2_word64 a, b, c, d, e, f, g, h, s0, s1; + sha2_word64 T1, T2, *W512 = (sha2_word64*)sha->buffer; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = sha->state[0]; + b = sha->state[1]; + c = sha->state[2]; + d = sha->state[3]; + e = sha->state[4]; + f = sha->state[5]; + g = sha->state[6]; + h = sha->state[7]; + + j = 0; + do { +#if BYTE_ORDER == LITTLE_ENDIAN + /* Convert TO host byte order */ + REVERSE64(*data++, W512[j]); + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; +#else /* BYTE_ORDER == LITTLE_ENDIAN */ + /* Apply the SHA-512 compression function to update a..h with copy */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); +#endif /* BYTE_ORDER == LITTLE_ENDIAN */ + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do { + /* Part of the message block expansion: */ + s0 = W512[(j+1)&0x0f]; + s0 = sigma0_512(s0); + s1 = W512[(j+14)&0x0f]; + s1 = sigma1_512(s1); + + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 80); + + /* Compute the current intermediate hash value */ + sha->state[0] += a; + sha->state[1] += b; + sha->state[2] += c; + sha->state[3] += d; + sha->state[4] += e; + sha->state[5] += f; + sha->state[6] += g; + sha->state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} + +#endif /* SHA2_UNROLL_TRANSFORM */ + +static int +sha512_block(register Sum_t* p, const void* s, size_t len) +{ + Sha512_t* sha = (Sha512_t*)p; + sha2_byte* data = (sha2_byte*)s; + unsigned int freespace, usedspace; + + if (!len) + return 0; + usedspace = (sha->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = SHA512_BLOCK_LENGTH - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + MEMCPY_BCOPY(&sha->buffer[usedspace], data, freespace); + ADDINC128(sha->bitcount, freespace << 3); + len -= freespace; + data += freespace; + SHA512_Transform(sha, (sha2_word64*)sha->buffer); + } else { + /* The buffer is not yet full */ + MEMCPY_BCOPY(&sha->buffer[usedspace], data, len); + ADDINC128(sha->bitcount, len << 3); + /* Clean up: */ + usedspace = freespace = 0; + return 0; + } + } + while (len >= SHA512_BLOCK_LENGTH) { + /* Process as many complete blocks as we can */ + SHA512_Transform(sha, (sha2_word64*)data); + ADDINC128(sha->bitcount, SHA512_BLOCK_LENGTH << 3); + len -= SHA512_BLOCK_LENGTH; + data += SHA512_BLOCK_LENGTH; + } + if (len > 0) { + /* There's left-overs, so save 'em */ + MEMCPY_BCOPY(sha->buffer, data, len); + ADDINC128(sha->bitcount, len << 3); + } + /* Clean up: */ + usedspace = freespace = 0; + + return 0; +} + +static int +sha512_init(Sum_t* p) +{ + register Sha512_t* sha = (Sha512_t*)p; + + MEMCPY_BCOPY(sha->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH); + MEMSET_BZERO(sha->buffer, SHA512_BLOCK_LENGTH); + sha->bitcount[0] = sha->bitcount[1] = 0; + + return 0; +} + +static Sum_t* +sha512_open(const Method_t* method, const char* name) +{ + Sha512_t* sha; + + if (sha = newof(0, Sha512_t, 1, 0)) + { + sha->method = (Method_t*)method; + sha->name = name; + sha512_init((Sum_t*)sha); + } + return (Sum_t*)sha; +} + +static int +sha512_done(Sum_t* p) +{ + Sha512_t* sha = (Sha512_t*)p; + unsigned int usedspace; + register int i; + + usedspace = (sha->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; +#if BYTE_ORDER == LITTLE_ENDIAN + /* Convert FROM host byte order */ + REVERSE64(sha->bitcount[0],sha->bitcount[0]); + REVERSE64(sha->bitcount[1],sha->bitcount[1]); +#endif + if (usedspace > 0) { + /* Begin padding with a 1 bit: */ + sha->buffer[usedspace++] = 0x80; + + if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { + /* Set-up for the last transform: */ + MEMSET_BZERO(&sha->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace); + } else { + if (usedspace < SHA512_BLOCK_LENGTH) { + MEMSET_BZERO(&sha->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace); + } + /* Do second-to-last transform: */ + SHA512_Transform(sha, (sha2_word64*)sha->buffer); + + /* And set-up for the last transform: */ + MEMSET_BZERO(sha->buffer, SHA512_BLOCK_LENGTH - 2); + } + } else { + /* Prepare for final transform: */ + MEMSET_BZERO(sha->buffer, SHA512_SHORT_BLOCK_LENGTH); + + /* Begin padding with a 1 bit: */ + *sha->buffer = 0x80; + } + /* Store the length of input data (in bits): */ + *(sha2_word64*)&sha->buffer[SHA512_SHORT_BLOCK_LENGTH] = sha->bitcount[1]; + *(sha2_word64*)&sha->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = sha->bitcount[0]; + + /* Final transform: */ + SHA512_Transform(sha, (sha2_word64*)sha->buffer); + +#if BYTE_ORDER == LITTLE_ENDIAN + { + /* Convert TO host byte order */ + sha2_word64* d = (sha2_word64*)sha->digest; + int j; + for (j = 0; j < 8; j++) { + REVERSE64(sha->state[j],sha->state[j]); + *d++ = sha->state[j]; + } + } +#else + MEMCPY_BCOPY(sha->digest, sha->state, SHA512_DIGEST_LENGTH); +#endif + + /* accumulate the digests */ + for (i = 0; i < SHA512_DIGEST_LENGTH; i++) + sha->digest_sum[i] ^= sha->digest[i]; + + /* Clean up state data: */ + MEMSET_BZERO(&sha->state, sizeof(*sha) - offsetof(Sha512_t, state)); + usedspace = 0; + + return 0; +} + +static int +sha512_print(Sum_t* p, Sfio_t* sp, register int flags, size_t scale) +{ + register Sha512_t* sha = (Sha512_t*)p; + register sha2_byte* d; + register sha2_byte* e; + + d = (flags & SUM_TOTAL) ? sha->digest_sum : sha->digest; + e = d + SHA512_DIGEST_LENGTH; + while (d < e) + sfprintf(sp, "%02x", *d++); + return 0; +} + +static int +sha512_data(Sum_t* p, Sumdata_t* data) +{ + register Sha512_t* sha = (Sha512_t*)p; + + data->size = SHA512_DIGEST_LENGTH; + data->num = 0; + data->buf = sha->digest; + return 0; +} + +/*** SHA-384: *********************************************************/ + +#define sha384_description "FIPS SHA-384 secure hash algorithm." +#define sha384_options "\ +[+(version)?sha-384 (FIPS) 2000-01-01]\ +[+(author)?Aaron D. Gifford]\ +" +#define sha384_match "sha384|sha-384|SHA384|SHA-384" +#define sha384_scale 0 +#define sha384_block sha512_block +#define sha384_done sha512_done + +#define sha384_padding md5_pad + +#define Sha384_t Sha512_t +#define SHA384_CTX Sha384_t +#define SHA384_DIGEST_LENGTH 48 + +static int +sha384_init(Sum_t* p) +{ + register Sha384_t* sha = (Sha384_t*)p; + + MEMCPY_BCOPY(sha->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH); + MEMSET_BZERO(sha->buffer, SHA384_BLOCK_LENGTH); + sha->bitcount[0] = sha->bitcount[1] = 0; + + return 0; +} + +static Sum_t* +sha384_open(const Method_t* method, const char* name) +{ + Sha384_t* sha; + + if (sha = newof(0, Sha384_t, 1, 0)) + { + sha->method = (Method_t*)method; + sha->name = name; + sha384_init((Sum_t*)sha); + } + return (Sum_t*)sha; +} + +static int +sha384_print(Sum_t* p, Sfio_t* sp, register int flags, size_t scale) +{ + register Sha384_t* sha = (Sha384_t*)p; + register sha2_byte* d; + register sha2_byte* e; + + d = (flags & SUM_TOTAL) ? sha->digest_sum : sha->digest; + e = d + SHA384_DIGEST_LENGTH; + while (d < e) + sfprintf(sp, "%02x", *d++); + return 0; +} + +static int +sha384_data(Sum_t* p, Sumdata_t* data) +{ + register Sha384_t* sha = (Sha384_t*)p; + + data->size = SHA384_DIGEST_LENGTH; + data->num = 0; + data->buf = sha->digest; + return 0; +} + +#endif /* _typ_int64_t */ |