diff options
author | Richard Lowe <richlowe@richlowe.net> | 2021-06-04 15:15:12 -0500 |
---|---|---|
committer | Richard Lowe <richlowe@richlowe.net> | 2021-08-16 12:46:39 -0500 |
commit | f0089e391b2bc4be2755f1a1b51fb4cd9b8f3988 (patch) | |
tree | c4ac2f5e703ed459d50bcee7ddb38a993d961520 /usr/src/uts/intel/os/sundep.c | |
parent | d083fed0c91296a88878f7a468910ad5b5c888ea (diff) | |
download | illumos-gate-f0089e391b2bc4be2755f1a1b51fb4cd9b8f3988.tar.gz |
13941 intel code and headers should not look ia32 specific
Reviewed by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Reviewed by: Toomas Soome <tsoome@me.com>
Reviewed by: Patrick Mooney <pmooney@pfmooney.com>
Approved by: Garret D'Amore <garrett@damore.org>
Diffstat (limited to 'usr/src/uts/intel/os/sundep.c')
-rw-r--r-- | usr/src/uts/intel/os/sundep.c | 1012 |
1 files changed, 1012 insertions, 0 deletions
diff --git a/usr/src/uts/intel/os/sundep.c b/usr/src/uts/intel/os/sundep.c new file mode 100644 index 0000000000..80e149f01b --- /dev/null +++ b/usr/src/uts/intel/os/sundep.c @@ -0,0 +1,1012 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. + * Copyright 2021 Joyent, Inc. + */ + +/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */ +/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */ +/* All Rights Reserved */ + +#include <sys/types.h> +#include <sys/param.h> +#include <sys/sysmacros.h> +#include <sys/signal.h> +#include <sys/systm.h> +#include <sys/user.h> +#include <sys/mman.h> +#include <sys/class.h> +#include <sys/proc.h> +#include <sys/procfs.h> +#include <sys/buf.h> +#include <sys/kmem.h> +#include <sys/cred.h> +#include <sys/archsystm.h> +#include <sys/vmparam.h> +#include <sys/prsystm.h> +#include <sys/reboot.h> +#include <sys/uadmin.h> +#include <sys/vfs.h> +#include <sys/vnode.h> +#include <sys/file.h> +#include <sys/session.h> +#include <sys/ucontext.h> +#include <sys/dnlc.h> +#include <sys/var.h> +#include <sys/cmn_err.h> +#include <sys/debugreg.h> +#include <sys/thread.h> +#include <sys/vtrace.h> +#include <sys/consdev.h> +#include <sys/psw.h> +#include <sys/regset.h> +#include <sys/privregs.h> +#include <sys/cpu.h> +#include <sys/stack.h> +#include <sys/swap.h> +#include <vm/hat.h> +#include <vm/anon.h> +#include <vm/as.h> +#include <vm/page.h> +#include <vm/seg.h> +#include <vm/seg_kmem.h> +#include <vm/seg_map.h> +#include <vm/seg_vn.h> +#include <sys/exec.h> +#include <sys/acct.h> +#include <sys/core.h> +#include <sys/corectl.h> +#include <sys/modctl.h> +#include <sys/tuneable.h> +#include <c2/audit.h> +#include <sys/bootconf.h> +#include <sys/brand.h> +#include <sys/dumphdr.h> +#include <sys/promif.h> +#include <sys/systeminfo.h> +#include <sys/kdi.h> +#include <sys/contract_impl.h> +#include <sys/x86_archext.h> +#include <sys/segments.h> +#include <sys/ontrap.h> +#include <sys/cpu.h> +#ifdef __xpv +#include <sys/hypervisor.h> +#endif + +/* + * Compare the version of boot that boot says it is against + * the version of boot the kernel expects. + */ +int +check_boot_version(int boots_version) +{ + if (boots_version == BO_VERSION) + return (0); + + prom_printf("Wrong boot interface - kernel needs v%d found v%d\n", + BO_VERSION, boots_version); + prom_panic("halting"); + /*NOTREACHED*/ +} + +/* + * Process the physical installed list for boot. + * Finds: + * 1) the pfn of the highest installed physical page, + * 2) the number of pages installed + * 3) the number of distinct contiguous regions these pages fall into. + * 4) the number of contiguous memory ranges + */ +void +installed_top_size_ex( + struct memlist *list, /* pointer to start of installed list */ + pfn_t *high_pfn, /* return ptr for top value */ + pgcnt_t *pgcnt, /* return ptr for sum of installed pages */ + int *ranges) /* return ptr for the count of contig. ranges */ +{ + pfn_t top = 0; + pgcnt_t sumpages = 0; + pfn_t highp; /* high page in a chunk */ + int cnt = 0; + + for (; list; list = list->ml_next) { + ++cnt; + highp = (list->ml_address + list->ml_size - 1) >> PAGESHIFT; + if (top < highp) + top = highp; + sumpages += btop(list->ml_size); + } + + *high_pfn = top; + *pgcnt = sumpages; + *ranges = cnt; +} + +void +installed_top_size( + struct memlist *list, /* pointer to start of installed list */ + pfn_t *high_pfn, /* return ptr for top value */ + pgcnt_t *pgcnt) /* return ptr for sum of installed pages */ +{ + int ranges; + + installed_top_size_ex(list, high_pfn, pgcnt, &ranges); +} + +void +phys_install_has_changed(void) +{} + +/* + * Copy in a memory list from boot to kernel, with a filter function + * to remove pages. The filter function can increase the address and/or + * decrease the size to filter out pages. It will also align addresses and + * sizes to PAGESIZE. + */ +void +copy_memlist_filter( + struct memlist *src, + struct memlist **dstp, + void (*filter)(uint64_t *, uint64_t *)) +{ + struct memlist *dst, *prev; + uint64_t addr; + uint64_t size; + uint64_t eaddr; + + dst = *dstp; + prev = dst; + + /* + * Move through the memlist applying a filter against + * each range of memory. Note that we may apply the + * filter multiple times against each memlist entry. + */ + for (; src; src = src->ml_next) { + addr = P2ROUNDUP(src->ml_address, PAGESIZE); + eaddr = P2ALIGN(src->ml_address + src->ml_size, PAGESIZE); + while (addr < eaddr) { + size = eaddr - addr; + if (filter != NULL) + filter(&addr, &size); + if (size == 0) + break; + dst->ml_address = addr; + dst->ml_size = size; + dst->ml_next = 0; + if (prev == dst) { + dst->ml_prev = 0; + dst++; + } else { + dst->ml_prev = prev; + prev->ml_next = dst; + dst++; + prev++; + } + addr += size; + } + } + + *dstp = dst; +} + +/* + * Kernel setup code, called from startup(). + */ +void +kern_setup1(void) +{ + proc_t *pp; + + pp = &p0; + + proc_sched = pp; + + /* + * Initialize process 0 data structures + */ + pp->p_stat = SRUN; + pp->p_flag = SSYS; + + pp->p_pidp = &pid0; + pp->p_pgidp = &pid0; + pp->p_sessp = &session0; + pp->p_tlist = &t0; + pid0.pid_pglink = pp; + pid0.pid_pgtail = pp; + + /* + * XXX - we asssume that the u-area is zeroed out except for + * ttolwp(curthread)->lwp_regs. + */ + PTOU(curproc)->u_cmask = (mode_t)CMASK; + + thread_init(); /* init thread_free list */ + pid_init(); /* initialize pid (proc) table */ + contract_init(); /* initialize contracts */ + + init_pages_pp_maximum(); +} + +/* + * Load a procedure into a thread. + */ +void +thread_load(kthread_t *t, void (*start)(), caddr_t arg, size_t len) +{ + caddr_t sp; + size_t framesz; + caddr_t argp; + long *p; + extern void thread_start(); + + /* + * Push a "c" call frame onto the stack to represent + * the caller of "start". + */ + sp = t->t_stk; + ASSERT(((uintptr_t)t->t_stk & (STACK_ENTRY_ALIGN - 1)) == 0); + if (len != 0) { + /* + * the object that arg points at is copied into the + * caller's frame. + */ + framesz = SA(len); + sp -= framesz; + ASSERT(sp > t->t_stkbase); + argp = sp + SA(MINFRAME); + bcopy(arg, argp, len); + arg = argp; + } + /* + * Set up arguments (arg and len) on the caller's stack frame. + */ + p = (long *)sp; + + *--p = 0; /* fake call */ + *--p = 0; /* null frame pointer terminates stack trace */ + *--p = (long)len; + *--p = (intptr_t)arg; + *--p = (intptr_t)start; + + /* + * initialize thread to resume at thread_start() which will + * turn around and invoke (*start)(arg, len). + */ + t->t_pc = (uintptr_t)thread_start; + t->t_sp = (uintptr_t)p; + + ASSERT((t->t_sp & (STACK_ENTRY_ALIGN - 1)) == 0); +} + +/* + * load user registers into lwp. + */ +/*ARGSUSED2*/ +void +lwp_load(klwp_t *lwp, gregset_t grp, uintptr_t thrptr) +{ + struct regs *rp = lwptoregs(lwp); + + setgregs(lwp, grp); + rp->r_ps = PSL_USER; + + /* + * For 64-bit lwps, we allow one magic %fs selector value, and one + * magic %gs selector to point anywhere in the address space using + * %fsbase and %gsbase behind the scenes. libc uses %fs to point + * at the ulwp_t structure. + * + * For 32-bit lwps, libc wedges its lwp thread pointer into the + * ucontext ESP slot (which is otherwise irrelevant to setting a + * ucontext) and LWPGS_SEL value into gregs[REG_GS]. This is so + * syslwp_create() can atomically setup %gs. + * + * See setup_context() in libc. + */ +#ifdef _SYSCALL32_IMPL + if (lwp_getdatamodel(lwp) == DATAMODEL_ILP32) { + if (grp[REG_GS] == LWPGS_SEL) + (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr); + } else { + /* + * See lwp_setprivate in kernel and setup_context in libc. + * + * Currently libc constructs a ucontext from whole cloth for + * every new (not main) lwp created. For 64 bit processes + * %fsbase is directly set to point to current thread pointer. + * In the past (solaris 10) %fs was also set LWPFS_SEL to + * indicate %fsbase. Now we use the null GDT selector for + * this purpose. LWP[FS|GS]_SEL are only intended for 32 bit + * processes. To ease transition we support older libcs in + * the newer kernel by forcing %fs or %gs selector to null + * by calling lwp_setprivate if LWP[FS|GS]_SEL is passed in + * the ucontext. This is should be ripped out at some future + * date. Another fix would be for libc to do a getcontext + * and inherit the null %fs/%gs from the current context but + * that means an extra system call and could hurt performance. + */ + if (grp[REG_FS] == 0x1bb) /* hard code legacy LWPFS_SEL */ + (void) lwp_setprivate(lwp, _LWP_FSBASE, + (uintptr_t)grp[REG_FSBASE]); + + if (grp[REG_GS] == 0x1c3) /* hard code legacy LWPGS_SEL */ + (void) lwp_setprivate(lwp, _LWP_GSBASE, + (uintptr_t)grp[REG_GSBASE]); + } +#else + if (grp[GS] == LWPGS_SEL) + (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr); +#endif + + lwp->lwp_eosys = JUSTRETURN; + lwptot(lwp)->t_post_sys = 1; +} + +/* + * set syscall()'s return values for a lwp. + */ +void +lwp_setrval(klwp_t *lwp, int v1, int v2) +{ + lwptoregs(lwp)->r_ps &= ~PS_C; + lwptoregs(lwp)->r_r0 = v1; + lwptoregs(lwp)->r_r1 = v2; +} + +/* + * set syscall()'s return values for a lwp. + */ +void +lwp_setsp(klwp_t *lwp, caddr_t sp) +{ + lwptoregs(lwp)->r_sp = (intptr_t)sp; +} + +/* + * Copy regs from parent to child. + */ +void +lwp_forkregs(klwp_t *lwp, klwp_t *clwp) +{ + struct pcb *pcb = &clwp->lwp_pcb; + struct regs *rp = lwptoregs(lwp); + + if (!PCB_NEED_UPDATE_SEGS(pcb)) { + pcb->pcb_ds = rp->r_ds; + pcb->pcb_es = rp->r_es; + pcb->pcb_fs = rp->r_fs; + pcb->pcb_gs = rp->r_gs; + PCB_SET_UPDATE_SEGS(pcb); + lwptot(clwp)->t_post_sys = 1; + } + ASSERT(lwptot(clwp)->t_post_sys); + + fp_lwp_dup(clwp); + + bcopy(lwp->lwp_regs, clwp->lwp_regs, sizeof (struct regs)); +} + +/* + * This function is currently unused on x86. + */ +/*ARGSUSED*/ +void +lwp_freeregs(klwp_t *lwp, int isexec) +{} + +/* + * This function is currently unused on x86. + */ +void +lwp_pcb_exit(void) +{} + +/* + * Lwp context ops for segment registers. + */ + +/* + * Every time we come into the kernel (syscall, interrupt or trap + * but not fast-traps) we capture the current values of the user's + * segment registers into the lwp's reg structure. This includes + * lcall for i386 generic system call support since it is handled + * as a segment-not-present trap. + * + * Here we save the current values from the lwp regs into the pcb + * and or PCB_UPDATE_SEGS (1) in pcb->pcb_rupdate to tell the rest + * of the kernel that the pcb copy of the segment registers is the + * current one. This ensures the lwp's next trip to user land via + * update_sregs. Finally we set t_post_sys to ensure that no + * system call fast-path's its way out of the kernel via sysret. + * + * (This means that we need to have interrupts disabled when we + * test t->t_post_sys in the syscall handlers; if the test fails, + * we need to keep interrupts disabled until we return to userland + * so we can't be switched away.) + * + * As a result of all this, we don't really have to do a whole lot + * if the thread is just mucking about in the kernel, switching on + * and off the cpu for whatever reason it feels like. And yet we + * still preserve fast syscalls, cause if we -don't- get + * descheduled, we never come here either. + */ + +#define VALID_LWP_DESC(udp) ((udp)->usd_type == SDT_MEMRWA && \ + (udp)->usd_p == 1 && (udp)->usd_dpl == SEL_UPL) + +/*ARGSUSED*/ +void +lwp_segregs_save(klwp_t *lwp) +{ + pcb_t *pcb = &lwp->lwp_pcb; + struct regs *rp; + + ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc)); + ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc)); + + if (!PCB_NEED_UPDATE_SEGS(pcb)) { + rp = lwptoregs(lwp); + + /* + * If there's no update already pending, capture the current + * %ds/%es/%fs/%gs values from lwp's regs in case the user + * changed them; %fsbase and %gsbase are privileged so the + * kernel versions of these registers in pcb_fsbase and + * pcb_gsbase are always up-to-date. + */ + pcb->pcb_ds = rp->r_ds; + pcb->pcb_es = rp->r_es; + pcb->pcb_fs = rp->r_fs; + pcb->pcb_gs = rp->r_gs; + PCB_SET_UPDATE_SEGS(pcb); + lwp->lwp_thread->t_post_sys = 1; + } + +#if !defined(__xpv) /* XXPV not sure if we can re-read gdt? */ + ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPFS], &lwp->lwp_pcb.pcb_fsdesc, + sizeof (lwp->lwp_pcb.pcb_fsdesc)) == 0); + ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPGS], &lwp->lwp_pcb.pcb_gsdesc, + sizeof (lwp->lwp_pcb.pcb_gsdesc)) == 0); +#endif +} + +/* + * Update the segment registers with new values from the pcb. + * + * We have to do this carefully, and in the following order, + * in case any of the selectors points at a bogus descriptor. + * If they do, we'll catch trap with on_trap and return 1. + * returns 0 on success. + * + * This is particularly tricky for %gs. + * This routine must be executed under a cli. + */ +int +update_sregs(struct regs *rp, klwp_t *lwp) +{ + pcb_t *pcb = &lwp->lwp_pcb; + ulong_t kgsbase; + on_trap_data_t otd; + int rc = 0; + + if (!on_trap(&otd, OT_SEGMENT_ACCESS)) { + +#if defined(__xpv) + /* + * On the hyervisor this is easy. The hypercall below will + * swapgs and load %gs with the user selector. If the user + * selector is bad the hypervisor will catch the fault and + * load %gs with the null selector instead. Either way the + * kernel's gsbase is not damaged. + */ + kgsbase = (ulong_t)CPU; + if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, + pcb->pcb_gs) != 0) { + no_trap(); + return (1); + } + + rp->r_gs = pcb->pcb_gs; + ASSERT((cpu_t *)kgsbase == CPU); + +#else /* __xpv */ + + /* + * A little more complicated running native. + */ + kgsbase = (ulong_t)CPU; + __set_gs(pcb->pcb_gs); + + /* + * If __set_gs fails it's because the new %gs is a bad %gs, + * we'll be taking a trap but with the original %gs and %gsbase + * undamaged (i.e. pointing at curcpu). + * + * We've just mucked up the kernel's gsbase. Oops. In + * particular we can't take any traps at all. Make the newly + * computed gsbase be the hidden gs via swapgs, and fix + * the kernel's gsbase back again. Later, when we return to + * userland we'll swapgs again restoring gsbase just loaded + * above. + */ + __asm__ __volatile__("mfence; swapgs"); + + rp->r_gs = pcb->pcb_gs; + + /* + * Restore kernel's gsbase. Note that this also serializes any + * attempted speculation from loading the user-controlled + * %gsbase. + */ + wrmsr(MSR_AMD_GSBASE, kgsbase); + +#endif /* __xpv */ + + /* + * Only override the descriptor base address if + * r_gs == LWPGS_SEL or if r_gs == NULL. A note on + * NULL descriptors -- 32-bit programs take faults + * if they deference NULL descriptors; however, + * when 64-bit programs load them into %fs or %gs, + * they DONT fault -- only the base address remains + * whatever it was from the last load. Urk. + * + * XXX - note that lwp_setprivate now sets %fs/%gs to the + * null selector for 64 bit processes. Whereas before + * %fs/%gs were set to LWP(FS|GS)_SEL regardless of + * the process's data model. For now we check for both + * values so that the kernel can also support the older + * libc. This should be ripped out at some point in the + * future. + */ + if (pcb->pcb_gs == LWPGS_SEL || pcb->pcb_gs == 0) { +#if defined(__xpv) + if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER, + pcb->pcb_gsbase)) { + no_trap(); + return (1); + } +#else + wrmsr(MSR_AMD_KGSBASE, pcb->pcb_gsbase); +#endif + } + + __set_ds(pcb->pcb_ds); + rp->r_ds = pcb->pcb_ds; + + __set_es(pcb->pcb_es); + rp->r_es = pcb->pcb_es; + + __set_fs(pcb->pcb_fs); + rp->r_fs = pcb->pcb_fs; + + /* + * Same as for %gs + */ + if (pcb->pcb_fs == LWPFS_SEL || pcb->pcb_fs == 0) { +#if defined(__xpv) + if (HYPERVISOR_set_segment_base(SEGBASE_FS, + pcb->pcb_fsbase)) { + no_trap(); + return (1); + } +#else + wrmsr(MSR_AMD_FSBASE, pcb->pcb_fsbase); +#endif + } + + } else { + cli(); + rc = 1; + } + no_trap(); + return (rc); +} + +/* + * Make sure any stale selectors are cleared from the segment registers + * by putting KDS_SEL (the kernel's default %ds gdt selector) into them. + * This is necessary because the kernel itself does not use %es, %fs, nor + * %ds. (%cs and %ss are necessary, and are set up by the kernel - along with + * %gs - to point to the current cpu struct.) If we enter kmdb while in the + * kernel and resume with a stale ldt or brandz selector sitting there in a + * segment register, kmdb will #gp fault if the stale selector points to, + * for example, an ldt in the context of another process. + * + * WARNING: Intel and AMD chips behave differently when storing + * the null selector into %fs and %gs while in long mode. On AMD + * chips fsbase and gsbase are not cleared. But on Intel chips, storing + * a null selector into %fs or %gs has the side effect of clearing + * fsbase or gsbase. For that reason we use KDS_SEL, which has + * consistent behavor between AMD and Intel. + * + * Caller responsible for preventing cpu migration. + */ +void +reset_sregs(void) +{ + ulong_t kgsbase = (ulong_t)CPU; + + ASSERT(curthread->t_preempt != 0 || getpil() >= DISP_LEVEL); + + cli(); + __set_gs(KGS_SEL); + + /* + * restore kernel gsbase + */ +#if defined(__xpv) + xen_set_segment_base(SEGBASE_GS_KERNEL, kgsbase); +#else + wrmsr(MSR_AMD_GSBASE, kgsbase); +#endif + + sti(); + + __set_ds(KDS_SEL); + __set_es(0 | SEL_KPL); /* selector RPL not ring 0 on hypervisor */ + __set_fs(KFS_SEL); +} + + +#ifdef _SYSCALL32_IMPL + +/* + * Make it impossible for a process to change its data model. + * We do this by toggling the present bits for the 32 and + * 64-bit user code descriptors. That way if a user lwp attempts + * to change its data model (by using the wrong code descriptor in + * %cs) it will fault immediately. This also allows us to simplify + * assertions and checks in the kernel. + */ + +static void +gdt_ucode_model(model_t model) +{ + kpreempt_disable(); + if (model == DATAMODEL_NATIVE) { + gdt_update_usegd(GDT_UCODE, &ucs_on); + gdt_update_usegd(GDT_U32CODE, &ucs32_off); + } else { + gdt_update_usegd(GDT_U32CODE, &ucs32_on); + gdt_update_usegd(GDT_UCODE, &ucs_off); + } + kpreempt_enable(); +} + +#endif /* _SYSCALL32_IMPL */ + +/* + * Restore lwp private fs and gs segment descriptors + * on current cpu's GDT. + */ +static void +lwp_segregs_restore(klwp_t *lwp) +{ + pcb_t *pcb = &lwp->lwp_pcb; + + ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc)); + ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc)); + +#ifdef _SYSCALL32_IMPL + gdt_ucode_model(DATAMODEL_NATIVE); +#endif + + gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc); + gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc); + +} + +#ifdef _SYSCALL32_IMPL + +static void +lwp_segregs_restore32(klwp_t *lwp) +{ + /*LINTED*/ + cpu_t *cpu = CPU; + pcb_t *pcb = &lwp->lwp_pcb; + + ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_fsdesc)); + ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_gsdesc)); + + gdt_ucode_model(DATAMODEL_ILP32); + gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc); + gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc); +} + +#endif /* _SYSCALL32_IMPL */ + +/* + * If this is a process in a branded zone, then we want it to use the brand + * syscall entry points instead of the standard Solaris entry points. This + * routine must be called when a new lwp is created within a branded zone + * or when an existing lwp moves into a branded zone via a zone_enter() + * operation. + */ +void +lwp_attach_brand_hdlrs(klwp_t *lwp) +{ + kthread_t *t = lwptot(lwp); + + ASSERT(PROC_IS_BRANDED(lwptoproc(lwp))); + + ASSERT(removectx(t, NULL, brand_interpositioning_disable, + brand_interpositioning_enable, NULL, NULL, + brand_interpositioning_disable, NULL) == 0); + installctx(t, NULL, brand_interpositioning_disable, + brand_interpositioning_enable, NULL, NULL, + brand_interpositioning_disable, NULL, NULL); + + if (t == curthread) { + kpreempt_disable(); + brand_interpositioning_enable(); + kpreempt_enable(); + } +} + +/* + * If this is a process in a branded zone, then we want it to disable the + * brand syscall entry points. This routine must be called when the last + * lwp in a process is exiting in proc_exit(). + */ +void +lwp_detach_brand_hdlrs(klwp_t *lwp) +{ + kthread_t *t = lwptot(lwp); + + ASSERT(PROC_IS_BRANDED(lwptoproc(lwp))); + if (t == curthread) + kpreempt_disable(); + + /* Remove the original context handlers */ + VERIFY(removectx(t, NULL, brand_interpositioning_disable, + brand_interpositioning_enable, NULL, NULL, + brand_interpositioning_disable, NULL) != 0); + + if (t == curthread) { + /* Cleanup our MSR and IDT entries. */ + brand_interpositioning_disable(); + kpreempt_enable(); + } +} + +/* + * Add any lwp-associated context handlers to the lwp at the beginning + * of the lwp's useful life. + * + * All paths which create lwp's invoke lwp_create(); lwp_create() + * invokes lwp_stk_init() which initializes the stack, sets up + * lwp_regs, and invokes this routine. + * + * All paths which destroy lwp's invoke lwp_exit() to rip the lwp + * apart and put it on 'lwp_deathrow'; if the lwp is destroyed it + * ends up in thread_free() which invokes freectx(t, 0) before + * invoking lwp_stk_fini(). When the lwp is recycled from death + * row, lwp_stk_fini() is invoked, then thread_free(), and thus + * freectx(t, 0) as before. + * + * In the case of exec, the surviving lwp is thoroughly scrubbed + * clean; exec invokes freectx(t, 1) to destroy associated contexts. + * On the way back to the new image, it invokes setregs() which + * in turn invokes this routine. + */ +void +lwp_installctx(klwp_t *lwp) +{ + kthread_t *t = lwptot(lwp); + int thisthread = t == curthread; +#ifdef _SYSCALL32_IMPL + void (*restop)(klwp_t *) = lwp_getdatamodel(lwp) == DATAMODEL_NATIVE ? + lwp_segregs_restore : lwp_segregs_restore32; +#else + void (*restop)(klwp_t *) = lwp_segregs_restore; +#endif + struct ctxop *ctx; + + /* + * Install the basic lwp context handlers on each lwp. + * + * On the amd64 kernel, the context handlers are responsible for + * virtualizing %ds, %es, %fs, and %gs to the lwp. The register + * values are only ever changed via sys_rtt when the + * PCB_UPDATE_SEGS bit (1) is set in pcb->pcb_rupdate. Only + * sys_rtt gets to clear the bit. + * + * On the i386 kernel, the context handlers are responsible for + * virtualizing %gs/%fs to the lwp by updating the per-cpu GDTs + */ + ASSERT(removectx(t, lwp, lwp_segregs_save, restop, + NULL, NULL, NULL, NULL) == 0); + if (thisthread) { + ctx = installctx_preallocate(); + kpreempt_disable(); + } else { + ctx = NULL; + } + installctx(t, lwp, lwp_segregs_save, restop, + NULL, NULL, NULL, NULL, ctx); + if (thisthread) { + /* + * Since we're the right thread, set the values in the GDT + */ + restop(lwp); + kpreempt_enable(); + } + + /* + * If we have sysenter/sysexit instructions enabled, we need + * to ensure that the hardware mechanism is kept up-to-date with the + * lwp's kernel stack pointer across context switches. + * + * sep_save zeros the sysenter stack pointer msr; sep_restore sets + * it to the lwp's kernel stack pointer (kstktop). + */ + if (is_x86_feature(x86_featureset, X86FSET_SEP)) { + caddr_t kstktop = (caddr_t)lwp->lwp_regs; + ASSERT(removectx(t, kstktop, + sep_save, sep_restore, NULL, NULL, NULL, NULL) == 0); + + if (thisthread) { + ctx = installctx_preallocate(); + kpreempt_disable(); + } else { + ctx = NULL; + } + installctx(t, kstktop, + sep_save, sep_restore, NULL, NULL, NULL, NULL, ctx); + if (thisthread) { + /* + * We're the right thread, so set the stack pointer + * for the first sysenter instruction to use + */ + sep_restore(kstktop); + kpreempt_enable(); + } + } + + if (PROC_IS_BRANDED(ttoproc(t))) + lwp_attach_brand_hdlrs(lwp); +} + +/* + * Clear registers on exec(2). + */ +void +setregs(uarg_t *args) +{ + struct regs *rp; + kthread_t *t = curthread; + klwp_t *lwp = ttolwp(t); + pcb_t *pcb = &lwp->lwp_pcb; + greg_t sp; + + /* + * Initialize user registers + */ + (void) save_syscall_args(); /* copy args from registers first */ + rp = lwptoregs(lwp); + sp = rp->r_sp; + bzero(rp, sizeof (*rp)); + + rp->r_ss = UDS_SEL; + rp->r_sp = sp; + rp->r_pc = args->entry; + rp->r_ps = PSL_USER; + + pcb->pcb_fs = pcb->pcb_gs = 0; + pcb->pcb_fsbase = pcb->pcb_gsbase = 0; + + if (ttoproc(t)->p_model == DATAMODEL_NATIVE) { + + rp->r_cs = UCS_SEL; + + /* + * Only allow 64-bit user code descriptor to be present. + */ + gdt_ucode_model(DATAMODEL_NATIVE); + + /* + * Arrange that the virtualized %fs and %gs GDT descriptors + * have a well-defined initial state (present, ring 3 + * and of type data). + */ + pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; + + /* + * thrptr is either NULL or a value used by DTrace. + * 64-bit processes use %fs as their "thread" register. + */ + if (args->thrptr) + (void) lwp_setprivate(lwp, _LWP_FSBASE, args->thrptr); + + } else { + + rp->r_cs = U32CS_SEL; + rp->r_ds = rp->r_es = UDS_SEL; + + /* + * only allow 32-bit user code selector to be present. + */ + gdt_ucode_model(DATAMODEL_ILP32); + + pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; + + /* + * thrptr is either NULL or a value used by DTrace. + * 32-bit processes use %gs as their "thread" register. + */ + if (args->thrptr) + (void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr); + + } + + pcb->pcb_ds = rp->r_ds; + pcb->pcb_es = rp->r_es; + PCB_SET_UPDATE_SEGS(pcb); + + lwp->lwp_eosys = JUSTRETURN; + t->t_post_sys = 1; + + /* + * Add the lwp context handlers that virtualize segment registers, + * and/or system call stacks etc. + */ + lwp_installctx(lwp); + + /* + * Reset the FPU flags and then initialize the FPU for this lwp. + */ + fp_exec(); +} + +user_desc_t * +cpu_get_gdt(void) +{ + return (CPU->cpu_gdt); +} + + +#if !defined(lwp_getdatamodel) + +/* + * Return the datamodel of the given lwp. + */ +/*ARGSUSED*/ +model_t +lwp_getdatamodel(klwp_t *lwp) +{ + return (lwp->lwp_procp->p_model); +} + +#endif /* !lwp_getdatamodel */ + +#if !defined(get_udatamodel) + +model_t +get_udatamodel(void) +{ + return (curproc->p_model); +} + +#endif /* !get_udatamodel */ |