summaryrefslogtreecommitdiff
path: root/usr/src/uts/sparc/dtrace/dtrace_isa.c
diff options
context:
space:
mode:
authorstevel@tonic-gate <none@none>2005-06-14 00:00:00 -0700
committerstevel@tonic-gate <none@none>2005-06-14 00:00:00 -0700
commit7c478bd95313f5f23a4c958a745db2134aa03244 (patch)
treec871e58545497667cbb4b0a4f2daf204743e1fe7 /usr/src/uts/sparc/dtrace/dtrace_isa.c
downloadillumos-gate-7c478bd95313f5f23a4c958a745db2134aa03244.tar.gz
OpenSolaris Launch
Diffstat (limited to 'usr/src/uts/sparc/dtrace/dtrace_isa.c')
-rw-r--r--usr/src/uts/sparc/dtrace/dtrace_isa.c780
1 files changed, 780 insertions, 0 deletions
diff --git a/usr/src/uts/sparc/dtrace/dtrace_isa.c b/usr/src/uts/sparc/dtrace/dtrace_isa.c
new file mode 100644
index 0000000000..615738c8ea
--- /dev/null
+++ b/usr/src/uts/sparc/dtrace/dtrace_isa.c
@@ -0,0 +1,780 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License, Version 1.0 only
+ * (the "License"). You may not use this file except in compliance
+ * with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include <sys/dtrace_impl.h>
+#include <sys/atomic.h>
+#include <sys/model.h>
+#include <sys/frame.h>
+#include <sys/stack.h>
+#include <sys/machpcb.h>
+#include <sys/procfs_isa.h>
+#include <sys/cmn_err.h>
+
+#define DTRACE_FMT3OP3_MASK 0x81000000
+#define DTRACE_FMT3OP3 0x80000000
+#define DTRACE_FMT3RS1_SHIFT 14
+#define DTRACE_FMT3RD_SHIFT 25
+#define DTRACE_RMASK 0x1f
+#define DTRACE_REG_L0 16
+#define DTRACE_REG_O7 15
+#define DTRACE_REG_I0 24
+#define DTRACE_REG_I6 30
+#define DTRACE_RET 0x81c7e008
+#define DTRACE_RETL 0x81c3e008
+#define DTRACE_SAVE_MASK 0xc1f80000
+#define DTRACE_SAVE 0x81e00000
+#define DTRACE_RESTORE 0x81e80000
+#define DTRACE_CALL_MASK 0xc0000000
+#define DTRACE_CALL 0x40000000
+#define DTRACE_JMPL_MASK 0x81f10000
+#define DTRACE_JMPL 0x81c00000
+
+extern int dtrace_getupcstack_top(uint64_t *, int, uintptr_t *);
+extern ulong_t dtrace_getreg_win(uint_t, uint_t);
+extern void dtrace_putreg_win(uint_t, ulong_t);
+extern int dtrace_fish(int, int, uintptr_t *);
+
+/*
+ * This is similar in principle to getpcstack(), but there are several marked
+ * differences in implementation:
+ *
+ * (a) dtrace_getpcstack() is called from probe context. Thus, the call
+ * to flush_windows() from getpcstack() is a call to the probe-safe
+ * equivalent here.
+ *
+ * (b) dtrace_getpcstack() is willing to sacrifice some performance to get
+ * a correct stack. While consumers of getpcstack() are largely
+ * subsystem-specific in-kernel debugging facilities, DTrace consumers
+ * are arbitrary user-level analysis tools; dtrace_getpcstack() must
+ * deliver as correct a stack as possible. Details on the issues
+ * surrounding stack correctness are found below.
+ *
+ * (c) dtrace_getpcstack() _always_ fills in pstack_limit pc_t's -- filling
+ * in the difference between the stack depth and pstack_limit with NULLs.
+ * Due to this behavior dtrace_getpcstack() returns void.
+ *
+ * (d) dtrace_getpcstack() takes a third parameter, aframes, that
+ * denotes the number of _artificial frames_ on the bottom of the
+ * stack. An artificial frame is one induced by the provider; all
+ * artificial frames are stripped off before frames are stored to
+ * pcstack.
+ *
+ * (e) dtrace_getpcstack() takes a fourth parameter, pc, that indicates
+ * an interrupted program counter (if any). This should be a non-NULL
+ * value if and only if the hit probe is unanchored. (Anchored probes
+ * don't fire through an interrupt source.) This parameter is used to
+ * assure (b), above.
+ */
+void
+dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes, uint32_t *pc)
+{
+ struct frame *fp, *nextfp, *minfp, *stacktop;
+ int depth = 0;
+ int on_intr, j = 0;
+ uint32_t i, r;
+
+ fp = (struct frame *)((caddr_t)dtrace_getfp() + STACK_BIAS);
+ dtrace_flush_windows();
+
+ if (pc != NULL) {
+ /*
+ * If we've been passed a non-NULL pc, we need to determine
+ * whether or not the specified program counter falls in a leaf
+ * function. If it falls within a leaf function, we know that
+ * %o7 is valid in its frame (and we can just drive on). If
+ * it's a non-leaf, however, we know that %o7 is garbage in the
+ * bottom frame. To trim this frame, we simply increment
+ * aframes and drop into the stack-walking loop.
+ *
+ * To quickly determine if the specified program counter is in
+ * a leaf function, we exploit the fact that leaf functions
+ * tend to be short and non-leaf functions tend to frequently
+ * perform operations that are only permitted in a non-leaf
+ * function (e.g., using the %i's or %l's; calling a function;
+ * performing a restore). We exploit these tendencies by
+ * simply scanning forward from the specified %pc -- if we see
+ * an operation only permitted in a non-leaf, we know we're in
+ * a non-leaf; if we see a retl, we know we're in a leaf.
+ * Fortunately, one need not perform anywhere near full
+ * disassembly to effectively determine the former: determining
+ * that an instruction is a format-3 instruction and decoding
+ * its rd and rs1 fields, for example, requires very little
+ * manipulation. Overall, this method of leaf determination
+ * performs quite well: on average, we only examine between
+ * 1.5 and 2.5 instructions before making the determination.
+ * (Outliers do exist, however; of note is the non-leaf
+ * function ip_sioctl_not_ours() which -- as of this writing --
+ * has a whopping 455 straight instructions that manipulate
+ * only %g's and %o's.)
+ */
+ int delay = 0;
+
+ if (depth < pcstack_limit)
+ pcstack[depth++] = (pc_t)pc;
+
+ for (;;) {
+ i = pc[j++];
+
+ if ((i & DTRACE_FMT3OP3_MASK) == DTRACE_FMT3OP3) {
+ /*
+ * This is a format-3 instruction. We can
+ * look at rd and rs1.
+ */
+ r = (i >> DTRACE_FMT3RS1_SHIFT) & DTRACE_RMASK;
+
+ if (r >= DTRACE_REG_L0)
+ goto nonleaf;
+
+ r = (i >> DTRACE_FMT3RD_SHIFT) & DTRACE_RMASK;
+
+ if (r >= DTRACE_REG_L0)
+ goto nonleaf;
+
+ if ((i & DTRACE_JMPL_MASK) == DTRACE_JMPL) {
+ delay = 1;
+ continue;
+ }
+
+ /*
+ * If we see explicit manipulation with %o7
+ * as a destination register, we know that
+ * %o7 is likely bogus -- and we treat this
+ * function as a non-leaf.
+ */
+ if (r == DTRACE_REG_O7) {
+ if (delay)
+ goto leaf;
+
+ i &= DTRACE_JMPL_MASK;
+
+ if (i == DTRACE_JMPL) {
+ delay = 1;
+ continue;
+ }
+
+ goto nonleaf;
+ }
+ } else {
+ /*
+ * If this is a call, it may or may not be
+ * a leaf; we need to check the delay slot.
+ */
+ if ((i & DTRACE_CALL_MASK) == DTRACE_CALL) {
+ delay = 1;
+ continue;
+ }
+
+ /*
+ * If we see a ret it's not a leaf; if we
+ * see a retl, it is a leaf.
+ */
+ if (i == DTRACE_RET)
+ goto nonleaf;
+
+ if (i == DTRACE_RETL)
+ goto leaf;
+
+ /*
+ * Finally, if it's a save, it should be
+ * treated as a leaf; if it's a restore it
+ * should not be treated as a leaf.
+ */
+ if ((i & DTRACE_SAVE_MASK) == DTRACE_SAVE)
+ goto leaf;
+
+ if ((i & DTRACE_SAVE_MASK) == DTRACE_RESTORE)
+ goto nonleaf;
+ }
+
+ if (delay) {
+ /*
+ * If this was a delay slot instruction and
+ * we didn't pick it up elsewhere, this is a
+ * non-leaf.
+ */
+ goto nonleaf;
+ }
+ }
+nonleaf:
+ aframes++;
+leaf:
+ ;
+ }
+
+ if ((on_intr = CPU_ON_INTR(CPU)) != 0)
+ stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
+ else
+ stacktop = (struct frame *)curthread->t_stk;
+ minfp = fp;
+
+ while (depth < pcstack_limit) {
+ nextfp = (struct frame *)((caddr_t)fp->fr_savfp + STACK_BIAS);
+ if (nextfp <= minfp || nextfp >= stacktop) {
+ if (!on_intr && nextfp == stacktop && aframes != 0) {
+ /*
+ * If we are exactly at the top of the stack
+ * with a non-zero number of artificial frames,
+ * it must be that the stack is filled with
+ * nothing _but_ artificial frames. In this
+ * case, we assert that this is so, zero
+ * pcstack, and return.
+ */
+ ASSERT(aframes == 1);
+ ASSERT(depth == 0);
+
+ while (depth < pcstack_limit)
+ pcstack[depth++] = NULL;
+ return;
+ }
+
+ if (on_intr) {
+ /*
+ * Hop from interrupt stack to thread stack.
+ */
+ stacktop = (struct frame *)curthread->t_stk;
+ minfp = (struct frame *)curthread->t_stkbase;
+
+ on_intr = 0;
+
+ if (nextfp > minfp && nextfp < stacktop)
+ continue;
+ } else {
+ /*
+ * High-level interrupts may occur when %sp is
+ * not necessarily contained in the stack
+ * bounds implied by %g7 -- interrupt thread
+ * management runs with %pil at DISP_LEVEL,
+ * and high-level interrupts may thus occur
+ * in windows when %sp and %g7 are not self-
+ * consistent. If we call dtrace_getpcstack()
+ * from a high-level interrupt that has occurred
+ * in such a window, we will fail the above test
+ * of nextfp against minfp/stacktop. If the
+ * high-level interrupt has in turn interrupted
+ * a non-passivated interrupt thread, we
+ * will execute the below code with non-zero
+ * aframes. We therefore want to assert that
+ * aframes is zero _or_ we are in a high-level
+ * interrupt -- but because cpu_intr_actv is
+ * updated with high-level interrupts enabled,
+ * we must reduce this to only asserting that
+ * %pil is greater than DISP_LEVEL.
+ */
+ ASSERT(aframes == 0 ||
+ dtrace_getipl() > DISP_LEVEL);
+ pcstack[depth++] = (pc_t)fp->fr_savpc;
+ }
+
+ while (depth < pcstack_limit)
+ pcstack[depth++] = NULL;
+ return;
+ }
+
+ if (aframes > 0) {
+ aframes--;
+ } else {
+ pcstack[depth++] = (pc_t)fp->fr_savpc;
+ }
+
+ fp = nextfp;
+ minfp = fp;
+ }
+}
+
+void
+dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit)
+{
+ klwp_t *lwp = ttolwp(curthread);
+ proc_t *p = ttoproc(curthread);
+ struct regs *rp;
+ uintptr_t sp;
+ int n;
+
+ if (lwp == NULL || p == NULL || lwp->lwp_regs == NULL)
+ return;
+
+ if (pcstack_limit <= 0)
+ return;
+
+ *pcstack++ = (uint64_t)p->p_pid;
+ pcstack_limit--;
+
+ if (pcstack_limit <= 0)
+ return;
+
+ rp = lwp->lwp_regs;
+ *pcstack++ = (uint64_t)rp->r_pc;
+ pcstack_limit--;
+
+ if (pcstack_limit <= 0)
+ return;
+
+ if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
+ *pcstack++ = (uint64_t)rp->r_o7;
+ pcstack_limit--;
+ if (pcstack_limit <= 0)
+ return;
+ }
+
+ sp = rp->r_sp;
+
+ n = dtrace_getupcstack_top(pcstack, pcstack_limit, &sp);
+ ASSERT(n >= 0);
+ ASSERT(n <= pcstack_limit);
+
+ pcstack += n;
+ pcstack_limit -= n;
+
+ if (p->p_model == DATAMODEL_NATIVE) {
+ while (pcstack_limit > 0) {
+ struct frame *fr = (struct frame *)(sp + STACK_BIAS);
+ uintptr_t pc;
+
+ if (sp == 0 || fr == NULL ||
+ ((uintptr_t)&fr->fr_savpc & 3) != 0 ||
+ ((uintptr_t)&fr->fr_savfp & 3) != 0)
+ break;
+
+ pc = dtrace_fulword(&fr->fr_savpc);
+ sp = dtrace_fulword(&fr->fr_savfp);
+
+ if (pc == 0)
+ break;
+
+ *pcstack++ = pc;
+ pcstack_limit--;
+ }
+ } else {
+ while (pcstack_limit > 0) {
+ struct frame32 *fr = (struct frame32 *)sp;
+ uint32_t pc;
+
+ if (sp == 0 ||
+ ((uintptr_t)&fr->fr_savpc & 3) != 0 ||
+ ((uintptr_t)&fr->fr_savfp & 3) != 0)
+ break;
+
+ pc = dtrace_fuword32(&fr->fr_savpc);
+ sp = dtrace_fuword32(&fr->fr_savfp);
+
+ *pcstack++ = pc;
+ pcstack_limit--;
+ }
+ }
+
+ while (pcstack_limit-- > 0)
+ *pcstack++ = NULL;
+}
+
+void
+dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit)
+{
+ klwp_t *lwp = ttolwp(curthread);
+ proc_t *p = ttoproc(curthread);
+ struct regs *rp;
+ uintptr_t sp;
+
+ if (lwp == NULL || p == NULL || lwp->lwp_regs == NULL)
+ return;
+
+ if (pcstack_limit <= 0)
+ return;
+
+ *pcstack++ = (uint64_t)p->p_pid;
+ pcstack_limit--;
+
+ if (pcstack_limit <= 0)
+ return;
+
+ rp = lwp->lwp_regs;
+
+ if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) {
+ *fpstack++ = 0;
+ *pcstack++ = (uint64_t)rp->r_pc;
+ pcstack_limit--;
+ if (pcstack_limit <= 0)
+ return;
+
+ *fpstack++ = (uint64_t)rp->r_sp;
+ *pcstack++ = (uint64_t)rp->r_o7;
+ pcstack_limit--;
+ } else {
+ *fpstack++ = (uint64_t)rp->r_sp;
+ *pcstack++ = (uint64_t)rp->r_pc;
+ pcstack_limit--;
+ }
+
+ if (pcstack_limit <= 0)
+ return;
+
+ sp = rp->r_sp;
+
+ dtrace_flush_user_windows();
+
+ if (p->p_model == DATAMODEL_NATIVE) {
+ while (pcstack_limit > 0) {
+ struct frame *fr = (struct frame *)(sp + STACK_BIAS);
+ uintptr_t pc;
+
+ if (sp == 0 || fr == NULL ||
+ ((uintptr_t)&fr->fr_savpc & 3) != 0 ||
+ ((uintptr_t)&fr->fr_savfp & 3) != 0)
+ break;
+
+ pc = dtrace_fulword(&fr->fr_savpc);
+ sp = dtrace_fulword(&fr->fr_savfp);
+
+ if (pc == 0)
+ break;
+
+ *fpstack++ = sp;
+ *pcstack++ = pc;
+ pcstack_limit--;
+ }
+ } else {
+ while (pcstack_limit > 0) {
+ struct frame32 *fr = (struct frame32 *)sp;
+ uint32_t pc;
+
+ if (sp == 0 ||
+ ((uintptr_t)&fr->fr_savpc & 3) != 0 ||
+ ((uintptr_t)&fr->fr_savfp & 3) != 0)
+ break;
+
+ pc = dtrace_fuword32(&fr->fr_savpc);
+ sp = dtrace_fuword32(&fr->fr_savfp);
+
+ *fpstack++ = sp;
+ *pcstack++ = pc;
+ pcstack_limit--;
+ }
+ }
+
+ while (pcstack_limit-- > 0)
+ *pcstack++ = NULL;
+}
+
+uint64_t
+dtrace_getarg(int arg, int aframes)
+{
+ uintptr_t val;
+ struct frame *fp;
+ uint64_t rval;
+
+ /*
+ * Account for the fact that dtrace_getarg() consumes an additional
+ * stack frame.
+ */
+ aframes++;
+
+ if (arg < 6) {
+ if (dtrace_fish(aframes, DTRACE_REG_I0 + arg, &val) == 0)
+ return (val);
+ } else {
+ if (dtrace_fish(aframes, DTRACE_REG_I6, &val) == 0) {
+ /*
+ * We have a stack pointer; grab the argument.
+ */
+ fp = (struct frame *)(val + STACK_BIAS);
+
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ rval = fp->fr_argx[arg - 6];
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+
+ return (rval);
+ }
+ }
+
+ /*
+ * There are other ways to do this. But the slow, painful way works
+ * just fine. Because this requires some loads, we need to set
+ * CPU_DTRACE_NOFAULT to protect against looking for an argument that
+ * isn't there.
+ */
+ fp = (struct frame *)((caddr_t)dtrace_getfp() + STACK_BIAS);
+ dtrace_flush_windows();
+
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+
+ for (aframes -= 1; aframes; aframes--)
+ fp = (struct frame *)((caddr_t)fp->fr_savfp + STACK_BIAS);
+
+ if (arg < 6) {
+ rval = fp->fr_arg[arg];
+ } else {
+ fp = (struct frame *)((caddr_t)fp->fr_savfp + STACK_BIAS);
+ rval = fp->fr_argx[arg - 6];
+ }
+
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+
+ return (rval);
+}
+
+int
+dtrace_getstackdepth(int aframes)
+{
+ struct frame *fp, *nextfp, *minfp, *stacktop;
+ int depth = 0;
+ int on_intr;
+
+ fp = (struct frame *)((caddr_t)dtrace_getfp() + STACK_BIAS);
+ dtrace_flush_windows();
+
+ if ((on_intr = CPU_ON_INTR(CPU)) != 0)
+ stacktop = (struct frame *)CPU->cpu_intr_stack + SA(MINFRAME);
+ else
+ stacktop = (struct frame *)curthread->t_stk;
+ minfp = fp;
+
+ for (;;) {
+ nextfp = (struct frame *)((caddr_t)fp->fr_savfp + STACK_BIAS);
+ if (nextfp <= minfp || nextfp >= stacktop) {
+ if (on_intr) {
+ /*
+ * Hop from interrupt stack to thread stack.
+ */
+ stacktop = (struct frame *)curthread->t_stk;
+ minfp = (struct frame *)curthread->t_stkbase;
+ on_intr = 0;
+ continue;
+ }
+
+ return (++depth);
+ }
+
+ if (aframes > 0) {
+ aframes--;
+ } else {
+ depth++;
+ }
+
+ fp = nextfp;
+ minfp = fp;
+ }
+}
+
+/*
+ * This uses the same register numbering scheme as in sys/procfs_isa.h.
+ */
+ulong_t
+dtrace_getreg(struct regs *rp, uint_t reg)
+{
+ ulong_t value;
+ uintptr_t fp;
+ struct machpcb *mpcb;
+
+ if (reg == R_G0)
+ return (0);
+
+ if (reg <= R_G7)
+ return ((&rp->r_g1)[reg - 1]);
+
+ if (reg > R_I7) {
+ switch (reg) {
+ case R_CCR:
+ return ((rp->r_tstate >> TSTATE_CCR_SHIFT) &
+ TSTATE_CCR_MASK);
+ case R_PC:
+ return (rp->r_pc);
+ case R_nPC:
+ return (rp->r_npc);
+ case R_Y:
+ return (rp->r_y);
+ case R_ASI:
+ return ((rp->r_tstate >> TSTATE_ASI_SHIFT) &
+ TSTATE_ASI_MASK);
+ case R_FPRS:
+ return (dtrace_getfprs());
+ default:
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
+ return (0);
+ }
+ }
+
+ /*
+ * We reach go to the fake restore case if the probe we hit was a pid
+ * return probe on a restore instruction. We partially emulate the
+ * restore in the kernel and then execute a simple restore
+ * instruction that we've secreted away to do the actual register
+ * window manipulation. We need to go one register window further
+ * down to get at the %ls, and %is and we need to treat %os like %is
+ * to pull them out of the topmost user frame.
+ */
+ if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAKERESTORE)) {
+ if (reg > R_O7)
+ goto fake_restore;
+ else
+ reg += R_I0 - R_O0;
+
+ } else if (reg <= R_O7) {
+ return ((&rp->r_g1)[reg - 1]);
+ }
+
+ if (dtrace_getotherwin() > 0)
+ return (dtrace_getreg_win(reg, 1));
+
+ mpcb = (struct machpcb *)((caddr_t)rp - REGOFF);
+
+ if (curproc->p_model == DATAMODEL_NATIVE) {
+ struct frame *fr = (void *)(rp->r_sp + STACK_BIAS);
+
+ if (mpcb->mpcb_wbcnt > 0) {
+ struct rwindow *rwin = (void *)mpcb->mpcb_wbuf;
+ int i = mpcb->mpcb_wbcnt;
+ do {
+ i--;
+ if ((long)mpcb->mpcb_spbuf[i] == rp->r_sp)
+ return (rwin[i].rw_local[reg - 16]);
+ } while (i > 0);
+ }
+
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ value = dtrace_fulword(&fr->fr_local[reg - 16]);
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+ } else {
+ struct frame32 *fr = (void *)(caddr32_t)rp->r_sp;
+
+ if (mpcb->mpcb_wbcnt > 0) {
+ struct rwindow32 *rwin = (void *)mpcb->mpcb_wbuf;
+ int i = mpcb->mpcb_wbcnt;
+ do {
+ i--;
+ if ((long)mpcb->mpcb_spbuf[i] == rp->r_sp)
+ return (rwin[i].rw_local[reg - 16]);
+ } while (i > 0);
+ }
+
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ value = dtrace_fuword32(&fr->fr_local[reg - 16]);
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+ }
+
+ return (value);
+
+fake_restore:
+ ASSERT(R_L0 <= reg && reg <= R_I7);
+
+ /*
+ * We first look two user windows down to see if we can dig out
+ * the register we're looking for.
+ */
+ if (dtrace_getotherwin() > 1)
+ return (dtrace_getreg_win(reg, 2));
+
+ /*
+ * First we need to get the frame pointer and then we perform
+ * the same computation as in the non-fake-o-restore case.
+ */
+
+ mpcb = (struct machpcb *)((caddr_t)rp - REGOFF);
+
+ if (dtrace_getotherwin() > 0) {
+ fp = dtrace_getreg_win(R_FP, 1);
+ goto got_fp;
+ }
+
+ if (curproc->p_model == DATAMODEL_NATIVE) {
+ struct frame *fr = (void *)(rp->r_sp + STACK_BIAS);
+
+ if (mpcb->mpcb_wbcnt > 0) {
+ struct rwindow *rwin = (void *)mpcb->mpcb_wbuf;
+ int i = mpcb->mpcb_wbcnt;
+ do {
+ i--;
+ if ((long)mpcb->mpcb_spbuf[i] == rp->r_sp) {
+ fp = rwin[i].rw_fp;
+ goto got_fp;
+ }
+ } while (i > 0);
+ }
+
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ fp = dtrace_fulword(&fr->fr_savfp);
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+ if (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & CPU_DTRACE_FAULT)
+ return (0);
+ } else {
+ struct frame32 *fr = (void *)(caddr32_t)rp->r_sp;
+
+ if (mpcb->mpcb_wbcnt > 0) {
+ struct rwindow32 *rwin = (void *)mpcb->mpcb_wbuf;
+ int i = mpcb->mpcb_wbcnt;
+ do {
+ i--;
+ if ((long)mpcb->mpcb_spbuf[i] == rp->r_sp) {
+ fp = rwin[i].rw_fp;
+ goto got_fp;
+ }
+ } while (i > 0);
+ }
+
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ fp = dtrace_fuword32(&fr->fr_savfp);
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+ if (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & CPU_DTRACE_FAULT)
+ return (0);
+ }
+got_fp:
+
+ if (curproc->p_model == DATAMODEL_NATIVE) {
+ struct frame *fr = (void *)(fp + STACK_BIAS);
+
+ if (mpcb->mpcb_wbcnt > 0) {
+ struct rwindow *rwin = (void *)mpcb->mpcb_wbuf;
+ int i = mpcb->mpcb_wbcnt;
+ do {
+ i--;
+ if ((long)mpcb->mpcb_spbuf[i] == fp)
+ return (rwin[i].rw_local[reg - 16]);
+ } while (i > 0);
+ }
+
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ value = dtrace_fulword(&fr->fr_local[reg - 16]);
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+ } else {
+ struct frame32 *fr = (void *)(caddr32_t)fp;
+
+ if (mpcb->mpcb_wbcnt > 0) {
+ struct rwindow32 *rwin = (void *)mpcb->mpcb_wbuf;
+ int i = mpcb->mpcb_wbcnt;
+ do {
+ i--;
+ if ((long)mpcb->mpcb_spbuf[i] == fp)
+ return (rwin[i].rw_local[reg - 16]);
+ } while (i > 0);
+ }
+
+ DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
+ value = dtrace_fuword32(&fr->fr_local[reg - 16]);
+ DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
+ }
+
+ return (value);
+}