diff options
author | stevel@tonic-gate <none@none> | 2005-06-14 00:00:00 -0700 |
---|---|---|
committer | stevel@tonic-gate <none@none> | 2005-06-14 00:00:00 -0700 |
commit | 7c478bd95313f5f23a4c958a745db2134aa03244 (patch) | |
tree | c871e58545497667cbb4b0a4f2daf204743e1fe7 /usr/src/uts/sparc/dtrace/dtrace_isa.c | |
download | illumos-gate-7c478bd95313f5f23a4c958a745db2134aa03244.tar.gz |
OpenSolaris Launch
Diffstat (limited to 'usr/src/uts/sparc/dtrace/dtrace_isa.c')
-rw-r--r-- | usr/src/uts/sparc/dtrace/dtrace_isa.c | 780 |
1 files changed, 780 insertions, 0 deletions
diff --git a/usr/src/uts/sparc/dtrace/dtrace_isa.c b/usr/src/uts/sparc/dtrace/dtrace_isa.c new file mode 100644 index 0000000000..615738c8ea --- /dev/null +++ b/usr/src/uts/sparc/dtrace/dtrace_isa.c @@ -0,0 +1,780 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License, Version 1.0 only + * (the "License"). You may not use this file except in compliance + * with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2005 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#pragma ident "%Z%%M% %I% %E% SMI" + +#include <sys/dtrace_impl.h> +#include <sys/atomic.h> +#include <sys/model.h> +#include <sys/frame.h> +#include <sys/stack.h> +#include <sys/machpcb.h> +#include <sys/procfs_isa.h> +#include <sys/cmn_err.h> + +#define DTRACE_FMT3OP3_MASK 0x81000000 +#define DTRACE_FMT3OP3 0x80000000 +#define DTRACE_FMT3RS1_SHIFT 14 +#define DTRACE_FMT3RD_SHIFT 25 +#define DTRACE_RMASK 0x1f +#define DTRACE_REG_L0 16 +#define DTRACE_REG_O7 15 +#define DTRACE_REG_I0 24 +#define DTRACE_REG_I6 30 +#define DTRACE_RET 0x81c7e008 +#define DTRACE_RETL 0x81c3e008 +#define DTRACE_SAVE_MASK 0xc1f80000 +#define DTRACE_SAVE 0x81e00000 +#define DTRACE_RESTORE 0x81e80000 +#define DTRACE_CALL_MASK 0xc0000000 +#define DTRACE_CALL 0x40000000 +#define DTRACE_JMPL_MASK 0x81f10000 +#define DTRACE_JMPL 0x81c00000 + +extern int dtrace_getupcstack_top(uint64_t *, int, uintptr_t *); +extern ulong_t dtrace_getreg_win(uint_t, uint_t); +extern void dtrace_putreg_win(uint_t, ulong_t); +extern int dtrace_fish(int, int, uintptr_t *); + +/* + * This is similar in principle to getpcstack(), but there are several marked + * differences in implementation: + * + * (a) dtrace_getpcstack() is called from probe context. Thus, the call + * to flush_windows() from getpcstack() is a call to the probe-safe + * equivalent here. + * + * (b) dtrace_getpcstack() is willing to sacrifice some performance to get + * a correct stack. While consumers of getpcstack() are largely + * subsystem-specific in-kernel debugging facilities, DTrace consumers + * are arbitrary user-level analysis tools; dtrace_getpcstack() must + * deliver as correct a stack as possible. Details on the issues + * surrounding stack correctness are found below. + * + * (c) dtrace_getpcstack() _always_ fills in pstack_limit pc_t's -- filling + * in the difference between the stack depth and pstack_limit with NULLs. + * Due to this behavior dtrace_getpcstack() returns void. + * + * (d) dtrace_getpcstack() takes a third parameter, aframes, that + * denotes the number of _artificial frames_ on the bottom of the + * stack. An artificial frame is one induced by the provider; all + * artificial frames are stripped off before frames are stored to + * pcstack. + * + * (e) dtrace_getpcstack() takes a fourth parameter, pc, that indicates + * an interrupted program counter (if any). This should be a non-NULL + * value if and only if the hit probe is unanchored. (Anchored probes + * don't fire through an interrupt source.) This parameter is used to + * assure (b), above. + */ +void +dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes, uint32_t *pc) +{ + struct frame *fp, *nextfp, *minfp, *stacktop; + int depth = 0; + int on_intr, j = 0; + uint32_t i, r; + + fp = (struct frame *)((caddr_t)dtrace_getfp() + STACK_BIAS); + dtrace_flush_windows(); + + if (pc != NULL) { + /* + * If we've been passed a non-NULL pc, we need to determine + * whether or not the specified program counter falls in a leaf + * function. If it falls within a leaf function, we know that + * %o7 is valid in its frame (and we can just drive on). If + * it's a non-leaf, however, we know that %o7 is garbage in the + * bottom frame. To trim this frame, we simply increment + * aframes and drop into the stack-walking loop. + * + * To quickly determine if the specified program counter is in + * a leaf function, we exploit the fact that leaf functions + * tend to be short and non-leaf functions tend to frequently + * perform operations that are only permitted in a non-leaf + * function (e.g., using the %i's or %l's; calling a function; + * performing a restore). We exploit these tendencies by + * simply scanning forward from the specified %pc -- if we see + * an operation only permitted in a non-leaf, we know we're in + * a non-leaf; if we see a retl, we know we're in a leaf. + * Fortunately, one need not perform anywhere near full + * disassembly to effectively determine the former: determining + * that an instruction is a format-3 instruction and decoding + * its rd and rs1 fields, for example, requires very little + * manipulation. Overall, this method of leaf determination + * performs quite well: on average, we only examine between + * 1.5 and 2.5 instructions before making the determination. + * (Outliers do exist, however; of note is the non-leaf + * function ip_sioctl_not_ours() which -- as of this writing -- + * has a whopping 455 straight instructions that manipulate + * only %g's and %o's.) + */ + int delay = 0; + + if (depth < pcstack_limit) + pcstack[depth++] = (pc_t)pc; + + for (;;) { + i = pc[j++]; + + if ((i & DTRACE_FMT3OP3_MASK) == DTRACE_FMT3OP3) { + /* + * This is a format-3 instruction. We can + * look at rd and rs1. + */ + r = (i >> DTRACE_FMT3RS1_SHIFT) & DTRACE_RMASK; + + if (r >= DTRACE_REG_L0) + goto nonleaf; + + r = (i >> DTRACE_FMT3RD_SHIFT) & DTRACE_RMASK; + + if (r >= DTRACE_REG_L0) + goto nonleaf; + + if ((i & DTRACE_JMPL_MASK) == DTRACE_JMPL) { + delay = 1; + continue; + } + + /* + * If we see explicit manipulation with %o7 + * as a destination register, we know that + * %o7 is likely bogus -- and we treat this + * function as a non-leaf. + */ + if (r == DTRACE_REG_O7) { + if (delay) + goto leaf; + + i &= DTRACE_JMPL_MASK; + + if (i == DTRACE_JMPL) { + delay = 1; + continue; + } + + goto nonleaf; + } + } else { + /* + * If this is a call, it may or may not be + * a leaf; we need to check the delay slot. + */ + if ((i & DTRACE_CALL_MASK) == DTRACE_CALL) { + delay = 1; + continue; + } + + /* + * If we see a ret it's not a leaf; if we + * see a retl, it is a leaf. + */ + if (i == DTRACE_RET) + goto nonleaf; + + if (i == DTRACE_RETL) + goto leaf; + + /* + * Finally, if it's a save, it should be + * treated as a leaf; if it's a restore it + * should not be treated as a leaf. + */ + if ((i & DTRACE_SAVE_MASK) == DTRACE_SAVE) + goto leaf; + + if ((i & DTRACE_SAVE_MASK) == DTRACE_RESTORE) + goto nonleaf; + } + + if (delay) { + /* + * If this was a delay slot instruction and + * we didn't pick it up elsewhere, this is a + * non-leaf. + */ + goto nonleaf; + } + } +nonleaf: + aframes++; +leaf: + ; + } + + if ((on_intr = CPU_ON_INTR(CPU)) != 0) + stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); + else + stacktop = (struct frame *)curthread->t_stk; + minfp = fp; + + while (depth < pcstack_limit) { + nextfp = (struct frame *)((caddr_t)fp->fr_savfp + STACK_BIAS); + if (nextfp <= minfp || nextfp >= stacktop) { + if (!on_intr && nextfp == stacktop && aframes != 0) { + /* + * If we are exactly at the top of the stack + * with a non-zero number of artificial frames, + * it must be that the stack is filled with + * nothing _but_ artificial frames. In this + * case, we assert that this is so, zero + * pcstack, and return. + */ + ASSERT(aframes == 1); + ASSERT(depth == 0); + + while (depth < pcstack_limit) + pcstack[depth++] = NULL; + return; + } + + if (on_intr) { + /* + * Hop from interrupt stack to thread stack. + */ + stacktop = (struct frame *)curthread->t_stk; + minfp = (struct frame *)curthread->t_stkbase; + + on_intr = 0; + + if (nextfp > minfp && nextfp < stacktop) + continue; + } else { + /* + * High-level interrupts may occur when %sp is + * not necessarily contained in the stack + * bounds implied by %g7 -- interrupt thread + * management runs with %pil at DISP_LEVEL, + * and high-level interrupts may thus occur + * in windows when %sp and %g7 are not self- + * consistent. If we call dtrace_getpcstack() + * from a high-level interrupt that has occurred + * in such a window, we will fail the above test + * of nextfp against minfp/stacktop. If the + * high-level interrupt has in turn interrupted + * a non-passivated interrupt thread, we + * will execute the below code with non-zero + * aframes. We therefore want to assert that + * aframes is zero _or_ we are in a high-level + * interrupt -- but because cpu_intr_actv is + * updated with high-level interrupts enabled, + * we must reduce this to only asserting that + * %pil is greater than DISP_LEVEL. + */ + ASSERT(aframes == 0 || + dtrace_getipl() > DISP_LEVEL); + pcstack[depth++] = (pc_t)fp->fr_savpc; + } + + while (depth < pcstack_limit) + pcstack[depth++] = NULL; + return; + } + + if (aframes > 0) { + aframes--; + } else { + pcstack[depth++] = (pc_t)fp->fr_savpc; + } + + fp = nextfp; + minfp = fp; + } +} + +void +dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit) +{ + klwp_t *lwp = ttolwp(curthread); + proc_t *p = ttoproc(curthread); + struct regs *rp; + uintptr_t sp; + int n; + + if (lwp == NULL || p == NULL || lwp->lwp_regs == NULL) + return; + + if (pcstack_limit <= 0) + return; + + *pcstack++ = (uint64_t)p->p_pid; + pcstack_limit--; + + if (pcstack_limit <= 0) + return; + + rp = lwp->lwp_regs; + *pcstack++ = (uint64_t)rp->r_pc; + pcstack_limit--; + + if (pcstack_limit <= 0) + return; + + if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { + *pcstack++ = (uint64_t)rp->r_o7; + pcstack_limit--; + if (pcstack_limit <= 0) + return; + } + + sp = rp->r_sp; + + n = dtrace_getupcstack_top(pcstack, pcstack_limit, &sp); + ASSERT(n >= 0); + ASSERT(n <= pcstack_limit); + + pcstack += n; + pcstack_limit -= n; + + if (p->p_model == DATAMODEL_NATIVE) { + while (pcstack_limit > 0) { + struct frame *fr = (struct frame *)(sp + STACK_BIAS); + uintptr_t pc; + + if (sp == 0 || fr == NULL || + ((uintptr_t)&fr->fr_savpc & 3) != 0 || + ((uintptr_t)&fr->fr_savfp & 3) != 0) + break; + + pc = dtrace_fulword(&fr->fr_savpc); + sp = dtrace_fulword(&fr->fr_savfp); + + if (pc == 0) + break; + + *pcstack++ = pc; + pcstack_limit--; + } + } else { + while (pcstack_limit > 0) { + struct frame32 *fr = (struct frame32 *)sp; + uint32_t pc; + + if (sp == 0 || + ((uintptr_t)&fr->fr_savpc & 3) != 0 || + ((uintptr_t)&fr->fr_savfp & 3) != 0) + break; + + pc = dtrace_fuword32(&fr->fr_savpc); + sp = dtrace_fuword32(&fr->fr_savfp); + + *pcstack++ = pc; + pcstack_limit--; + } + } + + while (pcstack_limit-- > 0) + *pcstack++ = NULL; +} + +void +dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit) +{ + klwp_t *lwp = ttolwp(curthread); + proc_t *p = ttoproc(curthread); + struct regs *rp; + uintptr_t sp; + + if (lwp == NULL || p == NULL || lwp->lwp_regs == NULL) + return; + + if (pcstack_limit <= 0) + return; + + *pcstack++ = (uint64_t)p->p_pid; + pcstack_limit--; + + if (pcstack_limit <= 0) + return; + + rp = lwp->lwp_regs; + + if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { + *fpstack++ = 0; + *pcstack++ = (uint64_t)rp->r_pc; + pcstack_limit--; + if (pcstack_limit <= 0) + return; + + *fpstack++ = (uint64_t)rp->r_sp; + *pcstack++ = (uint64_t)rp->r_o7; + pcstack_limit--; + } else { + *fpstack++ = (uint64_t)rp->r_sp; + *pcstack++ = (uint64_t)rp->r_pc; + pcstack_limit--; + } + + if (pcstack_limit <= 0) + return; + + sp = rp->r_sp; + + dtrace_flush_user_windows(); + + if (p->p_model == DATAMODEL_NATIVE) { + while (pcstack_limit > 0) { + struct frame *fr = (struct frame *)(sp + STACK_BIAS); + uintptr_t pc; + + if (sp == 0 || fr == NULL || + ((uintptr_t)&fr->fr_savpc & 3) != 0 || + ((uintptr_t)&fr->fr_savfp & 3) != 0) + break; + + pc = dtrace_fulword(&fr->fr_savpc); + sp = dtrace_fulword(&fr->fr_savfp); + + if (pc == 0) + break; + + *fpstack++ = sp; + *pcstack++ = pc; + pcstack_limit--; + } + } else { + while (pcstack_limit > 0) { + struct frame32 *fr = (struct frame32 *)sp; + uint32_t pc; + + if (sp == 0 || + ((uintptr_t)&fr->fr_savpc & 3) != 0 || + ((uintptr_t)&fr->fr_savfp & 3) != 0) + break; + + pc = dtrace_fuword32(&fr->fr_savpc); + sp = dtrace_fuword32(&fr->fr_savfp); + + *fpstack++ = sp; + *pcstack++ = pc; + pcstack_limit--; + } + } + + while (pcstack_limit-- > 0) + *pcstack++ = NULL; +} + +uint64_t +dtrace_getarg(int arg, int aframes) +{ + uintptr_t val; + struct frame *fp; + uint64_t rval; + + /* + * Account for the fact that dtrace_getarg() consumes an additional + * stack frame. + */ + aframes++; + + if (arg < 6) { + if (dtrace_fish(aframes, DTRACE_REG_I0 + arg, &val) == 0) + return (val); + } else { + if (dtrace_fish(aframes, DTRACE_REG_I6, &val) == 0) { + /* + * We have a stack pointer; grab the argument. + */ + fp = (struct frame *)(val + STACK_BIAS); + + DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); + rval = fp->fr_argx[arg - 6]; + DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); + + return (rval); + } + } + + /* + * There are other ways to do this. But the slow, painful way works + * just fine. Because this requires some loads, we need to set + * CPU_DTRACE_NOFAULT to protect against looking for an argument that + * isn't there. + */ + fp = (struct frame *)((caddr_t)dtrace_getfp() + STACK_BIAS); + dtrace_flush_windows(); + + DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); + + for (aframes -= 1; aframes; aframes--) + fp = (struct frame *)((caddr_t)fp->fr_savfp + STACK_BIAS); + + if (arg < 6) { + rval = fp->fr_arg[arg]; + } else { + fp = (struct frame *)((caddr_t)fp->fr_savfp + STACK_BIAS); + rval = fp->fr_argx[arg - 6]; + } + + DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); + + return (rval); +} + +int +dtrace_getstackdepth(int aframes) +{ + struct frame *fp, *nextfp, *minfp, *stacktop; + int depth = 0; + int on_intr; + + fp = (struct frame *)((caddr_t)dtrace_getfp() + STACK_BIAS); + dtrace_flush_windows(); + + if ((on_intr = CPU_ON_INTR(CPU)) != 0) + stacktop = (struct frame *)CPU->cpu_intr_stack + SA(MINFRAME); + else + stacktop = (struct frame *)curthread->t_stk; + minfp = fp; + + for (;;) { + nextfp = (struct frame *)((caddr_t)fp->fr_savfp + STACK_BIAS); + if (nextfp <= minfp || nextfp >= stacktop) { + if (on_intr) { + /* + * Hop from interrupt stack to thread stack. + */ + stacktop = (struct frame *)curthread->t_stk; + minfp = (struct frame *)curthread->t_stkbase; + on_intr = 0; + continue; + } + + return (++depth); + } + + if (aframes > 0) { + aframes--; + } else { + depth++; + } + + fp = nextfp; + minfp = fp; + } +} + +/* + * This uses the same register numbering scheme as in sys/procfs_isa.h. + */ +ulong_t +dtrace_getreg(struct regs *rp, uint_t reg) +{ + ulong_t value; + uintptr_t fp; + struct machpcb *mpcb; + + if (reg == R_G0) + return (0); + + if (reg <= R_G7) + return ((&rp->r_g1)[reg - 1]); + + if (reg > R_I7) { + switch (reg) { + case R_CCR: + return ((rp->r_tstate >> TSTATE_CCR_SHIFT) & + TSTATE_CCR_MASK); + case R_PC: + return (rp->r_pc); + case R_nPC: + return (rp->r_npc); + case R_Y: + return (rp->r_y); + case R_ASI: + return ((rp->r_tstate >> TSTATE_ASI_SHIFT) & + TSTATE_ASI_MASK); + case R_FPRS: + return (dtrace_getfprs()); + default: + DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); + return (0); + } + } + + /* + * We reach go to the fake restore case if the probe we hit was a pid + * return probe on a restore instruction. We partially emulate the + * restore in the kernel and then execute a simple restore + * instruction that we've secreted away to do the actual register + * window manipulation. We need to go one register window further + * down to get at the %ls, and %is and we need to treat %os like %is + * to pull them out of the topmost user frame. + */ + if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAKERESTORE)) { + if (reg > R_O7) + goto fake_restore; + else + reg += R_I0 - R_O0; + + } else if (reg <= R_O7) { + return ((&rp->r_g1)[reg - 1]); + } + + if (dtrace_getotherwin() > 0) + return (dtrace_getreg_win(reg, 1)); + + mpcb = (struct machpcb *)((caddr_t)rp - REGOFF); + + if (curproc->p_model == DATAMODEL_NATIVE) { + struct frame *fr = (void *)(rp->r_sp + STACK_BIAS); + + if (mpcb->mpcb_wbcnt > 0) { + struct rwindow *rwin = (void *)mpcb->mpcb_wbuf; + int i = mpcb->mpcb_wbcnt; + do { + i--; + if ((long)mpcb->mpcb_spbuf[i] == rp->r_sp) + return (rwin[i].rw_local[reg - 16]); + } while (i > 0); + } + + DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); + value = dtrace_fulword(&fr->fr_local[reg - 16]); + DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); + } else { + struct frame32 *fr = (void *)(caddr32_t)rp->r_sp; + + if (mpcb->mpcb_wbcnt > 0) { + struct rwindow32 *rwin = (void *)mpcb->mpcb_wbuf; + int i = mpcb->mpcb_wbcnt; + do { + i--; + if ((long)mpcb->mpcb_spbuf[i] == rp->r_sp) + return (rwin[i].rw_local[reg - 16]); + } while (i > 0); + } + + DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); + value = dtrace_fuword32(&fr->fr_local[reg - 16]); + DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); + } + + return (value); + +fake_restore: + ASSERT(R_L0 <= reg && reg <= R_I7); + + /* + * We first look two user windows down to see if we can dig out + * the register we're looking for. + */ + if (dtrace_getotherwin() > 1) + return (dtrace_getreg_win(reg, 2)); + + /* + * First we need to get the frame pointer and then we perform + * the same computation as in the non-fake-o-restore case. + */ + + mpcb = (struct machpcb *)((caddr_t)rp - REGOFF); + + if (dtrace_getotherwin() > 0) { + fp = dtrace_getreg_win(R_FP, 1); + goto got_fp; + } + + if (curproc->p_model == DATAMODEL_NATIVE) { + struct frame *fr = (void *)(rp->r_sp + STACK_BIAS); + + if (mpcb->mpcb_wbcnt > 0) { + struct rwindow *rwin = (void *)mpcb->mpcb_wbuf; + int i = mpcb->mpcb_wbcnt; + do { + i--; + if ((long)mpcb->mpcb_spbuf[i] == rp->r_sp) { + fp = rwin[i].rw_fp; + goto got_fp; + } + } while (i > 0); + } + + DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); + fp = dtrace_fulword(&fr->fr_savfp); + DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); + if (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & CPU_DTRACE_FAULT) + return (0); + } else { + struct frame32 *fr = (void *)(caddr32_t)rp->r_sp; + + if (mpcb->mpcb_wbcnt > 0) { + struct rwindow32 *rwin = (void *)mpcb->mpcb_wbuf; + int i = mpcb->mpcb_wbcnt; + do { + i--; + if ((long)mpcb->mpcb_spbuf[i] == rp->r_sp) { + fp = rwin[i].rw_fp; + goto got_fp; + } + } while (i > 0); + } + + DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); + fp = dtrace_fuword32(&fr->fr_savfp); + DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); + if (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & CPU_DTRACE_FAULT) + return (0); + } +got_fp: + + if (curproc->p_model == DATAMODEL_NATIVE) { + struct frame *fr = (void *)(fp + STACK_BIAS); + + if (mpcb->mpcb_wbcnt > 0) { + struct rwindow *rwin = (void *)mpcb->mpcb_wbuf; + int i = mpcb->mpcb_wbcnt; + do { + i--; + if ((long)mpcb->mpcb_spbuf[i] == fp) + return (rwin[i].rw_local[reg - 16]); + } while (i > 0); + } + + DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); + value = dtrace_fulword(&fr->fr_local[reg - 16]); + DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); + } else { + struct frame32 *fr = (void *)(caddr32_t)fp; + + if (mpcb->mpcb_wbcnt > 0) { + struct rwindow32 *rwin = (void *)mpcb->mpcb_wbuf; + int i = mpcb->mpcb_wbcnt; + do { + i--; + if ((long)mpcb->mpcb_spbuf[i] == fp) + return (rwin[i].rw_local[reg - 16]); + } while (i > 0); + } + + DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); + value = dtrace_fuword32(&fr->fr_local[reg - 16]); + DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); + } + + return (value); +} |