summaryrefslogtreecommitdiff
path: root/usr/src
diff options
context:
space:
mode:
authorxy150489 <none@none>2008-01-07 15:27:37 -0800
committerxy150489 <none@none>2008-01-07 15:27:37 -0800
commitc869993e79c1eafbec61a56bf6cea848fe754c71 (patch)
tree75c8fdcbf99f8d83e6e2affc8148afaf6f4ec8a1 /usr/src
parentb96e88d7982efdf721857ee071c9e6739bab83e9 (diff)
downloadillumos-gate-c869993e79c1eafbec61a56bf6cea848fe754c71.tar.gz
PSARC 2007/624 Intel 82575 1Gb PCI Express NIC Driver
6591981 A new driver is needed to support Intel Zoar gigabit NIC
Diffstat (limited to 'usr/src')
-rw-r--r--usr/src/pkgdefs/Makefile3
-rw-r--r--usr/src/pkgdefs/SUNWigb/Makefile38
-rw-r--r--usr/src/pkgdefs/SUNWigb/pkginfo.tmpl47
-rw-r--r--usr/src/pkgdefs/SUNWigb/postinstall135
-rw-r--r--usr/src/pkgdefs/SUNWigb/postremove39
-rw-r--r--usr/src/pkgdefs/SUNWigb/prototype_com52
-rw-r--r--usr/src/pkgdefs/SUNWigb/prototype_i38649
-rw-r--r--usr/src/pkgdefs/SUNWigb/prototype_sparc48
-rw-r--r--usr/src/uts/common/Makefile.files9
-rw-r--r--usr/src/uts/common/Makefile.rules9
-rw-r--r--usr/src/uts/common/io/igb/igb.conf162
-rw-r--r--usr/src/uts/common/io/igb/igb_82575.c1464
-rw-r--r--usr/src/uts/common/io/igb/igb_82575.h326
-rw-r--r--usr/src/uts/common/io/igb/igb_api.c1091
-rw-r--r--usr/src/uts/common/io/igb/igb_api.h161
-rw-r--r--usr/src/uts/common/io/igb/igb_buf.c871
-rw-r--r--usr/src/uts/common/io/igb/igb_debug.c297
-rw-r--r--usr/src/uts/common/io/igb/igb_debug.h83
-rw-r--r--usr/src/uts/common/io/igb/igb_defines.h1474
-rw-r--r--usr/src/uts/common/io/igb/igb_gld.c888
-rw-r--r--usr/src/uts/common/io/igb/igb_hw.h626
-rw-r--r--usr/src/uts/common/io/igb/igb_log.c93
-rw-r--r--usr/src/uts/common/io/igb/igb_mac.c2071
-rw-r--r--usr/src/uts/common/io/igb/igb_mac.h96
-rw-r--r--usr/src/uts/common/io/igb/igb_main.c4012
-rw-r--r--usr/src/uts/common/io/igb/igb_manage.c393
-rw-r--r--usr/src/uts/common/io/igb/igb_manage.h92
-rw-r--r--usr/src/uts/common/io/igb/igb_ndd.c368
-rw-r--r--usr/src/uts/common/io/igb/igb_nvm.c916
-rw-r--r--usr/src/uts/common/io/igb/igb_nvm.h71
-rw-r--r--usr/src/uts/common/io/igb/igb_osdep.c116
-rw-r--r--usr/src/uts/common/io/igb/igb_osdep.h167
-rw-r--r--usr/src/uts/common/io/igb/igb_phy.c2556
-rw-r--r--usr/src/uts/common/io/igb/igb_phy.h197
-rw-r--r--usr/src/uts/common/io/igb/igb_regs.h367
-rw-r--r--usr/src/uts/common/io/igb/igb_rx.c364
-rw-r--r--usr/src/uts/common/io/igb/igb_stat.c268
-rw-r--r--usr/src/uts/common/io/igb/igb_sw.h829
-rw-r--r--usr/src/uts/common/io/igb/igb_tx.c1297
-rw-r--r--usr/src/uts/intel/Makefile.intel.shared1
-rw-r--r--usr/src/uts/intel/igb/Makefile90
-rw-r--r--usr/src/uts/sparc/Makefile.sparc.shared1
-rw-r--r--usr/src/uts/sparc/igb/Makefile106
43 files changed, 22341 insertions, 2 deletions
diff --git a/usr/src/pkgdefs/Makefile b/usr/src/pkgdefs/Makefile
index 50133d0158..1209b6f594 100644
--- a/usr/src/pkgdefs/Makefile
+++ b/usr/src/pkgdefs/Makefile
@@ -20,7 +20,7 @@
#
#
-# Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+# Copyright 2008 Sun Microsystems, Inc. All rights reserved.
# Use is subject to license terms.
#
# ident "%Z%%M% %I% %E% SMI"
@@ -232,6 +232,7 @@ COMMON_SUBDIRS= \
SUNWib \
SUNWibsdpu \
SUNWibsdp \
+ SUNWigb \
SUNWintgige \
SUNWiotu \
SUNWioth \
diff --git a/usr/src/pkgdefs/SUNWigb/Makefile b/usr/src/pkgdefs/SUNWigb/Makefile
new file mode 100644
index 0000000000..19df9a110b
--- /dev/null
+++ b/usr/src/pkgdefs/SUNWigb/Makefile
@@ -0,0 +1,38 @@
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms.
+#
+# ident "%Z%%M% %I% %E% SMI"
+#
+
+include ../Makefile.com
+
+DATAFILES += depend i.renamenew
+
+.KEEP_STATE:
+
+all: $(FILES) postinstall postremove
+install: all pkg
+
+include ../Makefile.targ
diff --git a/usr/src/pkgdefs/SUNWigb/pkginfo.tmpl b/usr/src/pkgdefs/SUNWigb/pkginfo.tmpl
new file mode 100644
index 0000000000..0d546fa557
--- /dev/null
+++ b/usr/src/pkgdefs/SUNWigb/pkginfo.tmpl
@@ -0,0 +1,47 @@
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms.
+#
+# ident "%Z%%M% %I% %E% SMI"
+#
+
+PKG=SUNWigb
+NAME=Intel 82575 1Gb PCI Express NIC Driver
+ARCH="ISA"
+VERSION="ONVERS,REV=0.0.0"
+SUNW_PRODNAME="SunOS"
+SUNW_PRODVERS="RELEASE/VERSION"
+SUNW_PKGVERS="1.0"
+SUNW_PKGTYPE="root"
+MAXINST="1000"
+CATEGORY=system
+VENDOR="Sun Microsystems, Inc."
+DESC="Intel 82575 1Gb PCI Express NIC Driver"
+CLASSES="none renamenew"
+HOTLINE="Please contact your local service provider"
+EMAIL=""
+BASEDIR=/
+SUNW_PKG_ALLZONES="true"
+SUNW_PKG_HOLLOW="true"
+SUNW_PKG_THISZONE="false"
diff --git a/usr/src/pkgdefs/SUNWigb/postinstall b/usr/src/pkgdefs/SUNWigb/postinstall
new file mode 100644
index 0000000000..f5284bfbe6
--- /dev/null
+++ b/usr/src/pkgdefs/SUNWigb/postinstall
@@ -0,0 +1,135 @@
+#!/sbin/sh
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms.
+#
+# ident "%Z%%M% %I% %E% SMI"
+#
+
+# Function: check_add_drv()
+#
+# This function will check if the module has an entry in etc/name_to_major
+# If not simply calls add_drv with the arguments given. If there is
+# such an entry in name_to_major file, it adds entries in driver_aliases
+# driver_classes and minor_perm if necessary.
+# The syntax of this function is the same as add_drv.
+
+check_add_drv()
+{
+ if [ "$BASEDIR" = "" ]
+ then
+ BASEDIR=/
+ fi
+ alias=""
+ class=""
+ ADD_ALIAS=0
+ ADD_CLASS=0
+ ADD_MINOR=0
+ OPTIND=1
+ IS_NET_DRIVER=0
+
+ cmd="add_drv"
+
+ NO_CMD=
+ while getopts i:b:m:c:N opt
+ do
+ case $opt in
+ N ) NO_CMD=1;;
+ i ) ADD_ALIAS=1
+ alias=$OPTARG
+ cmd=$cmd" -i '$alias'"
+ ;;
+ m ) ADD_MINOR=1
+ minor=$OPTARG
+ cmd=$cmd" -m '$minor'"
+ ;;
+ c) ADD_CLASS=1
+ class=$OPTARG
+ cmd=$cmd" -c $class"
+ ;;
+ b) BASEDIR=$OPTARG
+ cmd=$cmd" -b $BASEDIR"
+ ;;
+ \?) echo "check_add_drv can not handle this option"
+ return
+ ;;
+ esac
+ done
+ shift `/usr/bin/expr $OPTIND - 1`
+
+ drvname=$1
+
+ cmd=$cmd" "$drvname
+
+ drvname=`echo $drvname | /usr/bin/sed 's;.*/;;g'`
+
+ /usr/bin/grep "^$drvname[ ]" $BASEDIR/etc/name_to_major > /dev/null 2>&1
+
+ if [ "$NO_CMD" = "" -a $? -ne 0 ]
+ then
+ eval $cmd
+ else
+ # entry already in name_to_major, add alias, class, minorperm
+ # if necessary
+ if [ $ADD_ALIAS = 1 ]
+ then
+ for i in $alias
+ do
+ /usr/bin/egrep "^$drvname[ ]+$i" $BASEDIR/etc/driver_aliases>/dev/null 2>&1
+ if [ $? -ne 0 ]
+ then
+ echo "$drvname $i" >> $BASEDIR/etc/driver_aliases
+ fi
+ done
+ fi
+
+ if [ $ADD_CLASS = 1 ]
+ then
+ /usr/bin/egrep "^$drvname[ ]+$class( | |$)" $BASEDIR/etc/driver_classes > /dev/null 2>&1
+ if [ $? -ne 0 ]
+ then
+ echo "$drvname\t$class" >> $BASEDIR/etc/driver_classes
+ fi
+ fi
+
+ if [ $ADD_MINOR = 1 ]
+ then
+ /usr/bin/grep "^$drvname:" $BASEDIR/etc/minor_perm > /dev/null 2>&1
+ if [ $? -ne 0 ]
+ then
+ minorentry="$drvname:$minor"
+ echo $minorentry >> $BASEDIR/etc/minor_perm
+ fi
+ fi
+
+ fi
+
+
+}
+
+check_add_drv -i \
+ '"pciex8086,10a7"
+ "pciex8086,10a9"
+ "pciex8086,10d6"' \
+ -b "$BASEDIR" igb
diff --git a/usr/src/pkgdefs/SUNWigb/postremove b/usr/src/pkgdefs/SUNWigb/postremove
new file mode 100644
index 0000000000..0b7379f595
--- /dev/null
+++ b/usr/src/pkgdefs/SUNWigb/postremove
@@ -0,0 +1,39 @@
+#!/sbin/sh
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms.
+#
+# ident "%Z%%M% %I% %E% SMI"
+#
+
+BD=${BASEDIR:-/}
+if grep -w igb $BD/etc/name_to_major > /dev/null 2>&1
+then
+ rem_drv -b ${BD} igb
+ if [ $? -ne 0 ]
+ then
+ exit 1
+ fi
+fi
+exit 0
diff --git a/usr/src/pkgdefs/SUNWigb/prototype_com b/usr/src/pkgdefs/SUNWigb/prototype_com
new file mode 100644
index 0000000000..0873cc9174
--- /dev/null
+++ b/usr/src/pkgdefs/SUNWigb/prototype_com
@@ -0,0 +1,52 @@
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms.
+#
+# ident "%Z%%M% %I% %E% SMI"
+#
+
+#
+# This required package information file contains a list of package contents.
+# The 'pkgmk' command uses this file to identify the contents of a package
+# and their location on the development machine when building the package.
+# Can be created via a text editor or through use of the 'pkgproto' command.
+
+#!search <pathname pathname ...> # where to find pkg objects
+#!include <filename> # include another 'prototype' file
+#!default <mode> <owner> <group> # default used if not specified on entry
+#!<param>=<value> # puts parameter in pkg environment
+
+# packaging files
+i pkginfo
+i copyright
+i depend
+i postinstall
+i postremove
+i i.renamenew
+#
+# Intel 1Gb Ethernet Driver common files
+#
+d none kernel 0755 root sys
+d none kernel/drv 0755 root sys
+e renamenew kernel/drv/igb.conf 0644 root sys
diff --git a/usr/src/pkgdefs/SUNWigb/prototype_i386 b/usr/src/pkgdefs/SUNWigb/prototype_i386
new file mode 100644
index 0000000000..c3f83de3d8
--- /dev/null
+++ b/usr/src/pkgdefs/SUNWigb/prototype_i386
@@ -0,0 +1,49 @@
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms.
+#
+# ident "%Z%%M% %I% %E% SMI"
+#
+
+#
+# This required package information file contains a list of package contents.
+# The 'pkgmk' command uses this file to identify the contents of a package
+# and their location on the development machine when building the package.
+# Can be created via a text editor or through use of the 'pkgproto' command.
+
+#!search <pathname pathname ...> # where to find pkg objects
+#!include <filename> # include another 'prototype' file
+#!default <mode> <owner> <group> # default used if not specified on entry
+#!<param>=<value> # puts parameter in pkg environment
+
+#
+# Include ISA independent files (prototype_com)
+#
+!include prototype_com
+#
+# Intel 1Gb Ethernet Driver i386 specific files
+#
+f none kernel/drv/igb 0755 root sys
+d none kernel/drv/amd64 0755 root sys
+f none kernel/drv/amd64/igb 0755 root sys
diff --git a/usr/src/pkgdefs/SUNWigb/prototype_sparc b/usr/src/pkgdefs/SUNWigb/prototype_sparc
new file mode 100644
index 0000000000..bb65939cc0
--- /dev/null
+++ b/usr/src/pkgdefs/SUNWigb/prototype_sparc
@@ -0,0 +1,48 @@
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+
+#
+# Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms.
+#
+# ident "%Z%%M% %I% %E% SMI"
+#
+
+#
+# This required package information file contains a list of package contents.
+# The 'pkgmk' command uses this file to identify the contents of a package
+# and their location on the development machine when building the package.
+# Can be created via a text editor or through use of the 'pkgproto' command.
+
+#!search <pathname pathname ...> # where to find pkg objects
+#!include <filename> # include another 'prototype' file
+#!default <mode> <owner> <group> # default used if not specified on entry
+#!<param>=<value> # puts parameter in pkg environment
+
+#
+# Include ISA independent files (prototype_com)
+#
+!include prototype_com
+#
+# Intel 1Gb Ethernet Driver SPARC specific files
+#
+d none kernel/drv/sparcv9 0755 root sys
+f none kernel/drv/sparcv9/igb 0755 root sys
diff --git a/usr/src/uts/common/Makefile.files b/usr/src/uts/common/Makefile.files
index 916735e982..8adce7c1b1 100644
--- a/usr/src/uts/common/Makefile.files
+++ b/usr/src/uts/common/Makefile.files
@@ -1543,6 +1543,15 @@ E1000G_OBJS += e1000_80003es2lan.o e1000_82540.o e1000_82541.o e1000_82542.o \
e1000_mac.o e1000_manage.o e1000_nvm.o e1000_osdep.o \
e1000_phy.o e1000g_debug.o e1000g_main.o e1000g_alloc.o \
e1000g_tx.o e1000g_rx.o e1000g_stat.o e1000g_ndd.o
+
+#
+# Intel 82575 1G NIC driver module
+#
+IGB_OBJS = igb_82575.o igb_api.o igb_mac.o igb_manage.o \
+ igb_nvm.o igb_osdep.o igb_phy.o igb_buf.o \
+ igb_debug.o igb_gld.o igb_log.o igb_main.o \
+ igb_ndd.o igb_rx.o igb_stat.o igb_tx.o
+
#
# NIU 10G/1G driver module
#
diff --git a/usr/src/uts/common/Makefile.rules b/usr/src/uts/common/Makefile.rules
index 35a9c003b6..4b2282b3ef 100644
--- a/usr/src/uts/common/Makefile.rules
+++ b/usr/src/uts/common/Makefile.rules
@@ -20,7 +20,7 @@
#
#
-# Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+# Copyright 2008 Sun Microsystems, Inc. All rights reserved.
# Use is subject to license terms.
#
# ident "%Z%%M% %I% %E% SMI"
@@ -887,6 +887,10 @@ $(OBJS_DIR)/%.o: $(UTSBASE)/common/io/e1000g/%.c
$(COMPILE.c) -o $@ $<
$(CTFCONVERT_O)
+$(OBJS_DIR)/%.o: $(UTSBASE)/common/io/igb/%.c
+ $(COMPILE.c) -o $@ $<
+ $(CTFCONVERT_O)
+
$(OBJS_DIR)/%.o: $(UTSBASE)/common/ipp/%.c
$(COMPILE.c) -o $@ $<
$(CTFCONVERT_O)
@@ -1691,6 +1695,9 @@ $(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/xge/hal/xgehal/%.c
$(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/e1000g/%.c
@($(LHEAD) $(LINT.c) $< $(LTAIL))
+$(LINTS_DIR)/%.ln: $(UTSBASE)/common/io/igb/%.c
+ @($(LHEAD) $(LINT.c) $< $(LTAIL))
+
$(LINTS_DIR)/%.ln: $(UTSBASE)/common/ipp/%.c
@($(LHEAD) $(LINT.c) $< $(LTAIL))
diff --git a/usr/src/uts/common/io/igb/igb.conf b/usr/src/uts/common/io/igb/igb.conf
new file mode 100644
index 0000000000..c2ae8d4cd3
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb.conf
@@ -0,0 +1,162 @@
+#
+# CDDL HEADER START
+#
+# Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at:
+# http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When using or redistributing this file, you may do so under the
+# License only. No other modification of this header is permitted.
+#
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+#
+# Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms of the CDDL.
+#
+#
+# ident "%Z%%M% %I% %E% SMI"
+#
+#
+# Driver.conf file for Intel 1Gb ethernet driver (igb)
+#
+# -------------------- Link Configuration --------------------
+# The parameters of link configuration:
+#
+# adv_cap_autoneg
+# Advertise capability of auto-negotiation.
+# Allowed values: 0, 1
+# Default value: 1
+#
+# adv_cap_1000fdx
+# Advertise capability of 1000Mbps full duplex
+# Allowed values: 0, 1
+# Default value: 1
+#
+# adv_cap_100fdx
+# Advertise capability of 100Mbps full duplex
+# Allowed values: 0, 1
+# Default value: 1
+#
+# adv_cap_100hdx
+# Advertise capability of 100Mbps half duplex
+# Allowed values: 0, 1
+# Default value: 1
+#
+# adv_cap_10fdx
+# Advertise capability of 10Mbps full duplex
+# Allowed values: 0, 1
+# Default value: 1
+#
+# adv_cap_10hdx
+# Advertise capability of 10Mbps half duplex
+# Allowed values: 0, 1
+# Default value: 1
+#
+# There are two methods to configure the link:
+# autonegotiation or forced link
+#
+# The parameter "adv_cap_autoneg" is used to enable autonegotiation or disable
+# it (forced link mode).
+#
+# If autonegotiation is enabled (the default mode), all the "adv_cap_*"
+# parameters control which capabilities are advertised to the partner. The
+# default is to advertise all the capabilities that the hardware supports.
+# The advertised capabilities can also be restricted to a subset. It is not
+# possible to advertise a capability that the hardware does not support.
+#
+# The autonegotiation process will then automatically select the fastest speed/
+# duplex mode supported by both partners.
+#
+# If autonegotiation is disabled (forced link mode), the link speed/duplex is
+# determined by the first link capability that is enabled, in highest-to-lowest
+# speed/duplex order.
+#
+# For example, if adv_cap_1000fdx is enabled, all other values will be ignored;
+# to force 10hdx mode, all the faster modes must be explicitly disabled.
+#
+# Note:
+# 1. 1000M half duplex is not supported with igb.
+# 2. 1000M speed is not supported with the forced link mode (the value of
+# adv_cap_1000fdx will be ignored).
+# 3. The forced link mode may result in a non-working link or a half duplex
+# link. If forced link mode is used, both the partners should be forced to
+# the same link/speed mode.
+#
+# adv_cap_autoneg = 1;
+# adv_cap_1000fdx = 1;
+# adv_cap_100fdx = 1;
+# adv_cap_100hdx = 1;
+# adv_cap_10fdx = 1;
+# adv_cap_10hdx = 1;
+#
+# -------------------- Jumbo Frame --------------------
+# default_mtu
+# The size of the default MTU (payload without the ethernet header)
+# Allowed values: 1500 - 9000
+# Default value: 1500
+#
+# default_mtu = 1500;
+#
+# -------------------- Flow Control --------------------
+# flow_control
+# Ethernet flow control
+# Allowed values: 0 - Disable
+# 1 - Receive only
+# 2 - Transmit only
+# 3 - Receive and transmit
+# 4 - Use NVROM-programmed factory default setting
+# default value: 3
+#
+# flow_control = 3;
+#
+# -------------------- Transmit/Receive Queues --------------------
+# tx_queue_number
+# The number of the transmit queues
+# Allowed values: 1 - 4
+# Default value: 1
+#
+# tx_ring_size
+# The number of the transmit descriptors per transmit queue
+# Allowed values: 64 - 4096
+# Default value: 512
+#
+# rx_queue_number
+# The number of the receive queues
+# Allowed values: 1 - 4
+# Default value: 1
+#
+# rx_ring_size
+# The number of the receive descriptors per receive queue
+# Allowed values: 64 - 4096
+# Default value: 512
+#
+# Note: The final values of tx_queue_number and rx_queue_number are decided
+# by the number of interrupt vectors obtained by the driver. They could be
+# less than the specified values because of limited interrupt vector number.
+#
+# -------- How to set parameters for a particular interface ---------
+# The example below shows how to locate the device path and set a parameter
+# for a particular igb interface. (Using flow_control as an example)
+#
+# Use the following command to find out the device paths for igb,
+# more /etc/path_to_inst | grep igb
+#
+# For example, if you see,
+# "/pci@0,0/pci10de,5d@d/pci8086,0@0" 0 "igb"
+# "/pci@0,0/pci10de,5d@d/pci8086,0@0,1" 1 "igb"
+#
+# name = "pciex8086,10a7" parent = "/pci@0,0/pci10de,5d@d" unit-address = "0"
+# flow_control = 1;
+# name = "pciex8086,10a7" parent = "/pci@0,0/pci10de,5d@d" unit-address = "0,1"
+# flow_control = 3;
diff --git a/usr/src/uts/common/io/igb/igb_82575.c b/usr/src/uts/common/io/igb/igb_82575.c
new file mode 100644
index 0000000000..c00cdc7582
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_82575.c
@@ -0,0 +1,1464 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+/*
+ * e1000_82575
+ * e1000_82576
+ */
+
+#include "igb_api.h"
+#include "igb_82575.h"
+
+static s32 e1000_init_phy_params_82575(struct e1000_hw *hw);
+static s32 e1000_init_nvm_params_82575(struct e1000_hw *hw);
+static s32 e1000_init_mac_params_82575(struct e1000_hw *hw);
+static s32 e1000_acquire_phy_82575(struct e1000_hw *hw);
+static void e1000_release_phy_82575(struct e1000_hw *hw);
+static s32 e1000_acquire_nvm_82575(struct e1000_hw *hw);
+static void e1000_release_nvm_82575(struct e1000_hw *hw);
+static s32 e1000_check_for_link_82575(struct e1000_hw *hw);
+static s32 e1000_get_cfg_done_82575(struct e1000_hw *hw);
+static s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+static s32 e1000_init_hw_82575(struct e1000_hw *hw);
+static s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw);
+static s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
+ u16 *data);
+static void e1000_rar_set_82575(struct e1000_hw *hw, u8 *addr, u32 index);
+static s32 e1000_reset_hw_82575(struct e1000_hw *hw);
+static s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw,
+ bool active);
+static s32 e1000_setup_copper_link_82575(struct e1000_hw *hw);
+static s32 e1000_setup_fiber_serdes_link_82575(struct e1000_hw *hw);
+static s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw,
+ u32 offset, u16 data);
+static void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw);
+static s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+static s32 e1000_configure_pcs_link_82575(struct e1000_hw *hw);
+static s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex);
+static s32 e1000_get_phy_id_82575(struct e1000_hw *hw);
+static void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask);
+static bool e1000_sgmii_active_82575(struct e1000_hw *hw);
+static s32 e1000_reset_init_script_82575(struct e1000_hw *hw);
+static s32 e1000_read_mac_addr_82575(struct e1000_hw *hw);
+static void e1000_power_down_phy_copper_82575(struct e1000_hw *hw);
+
+
+struct e1000_dev_spec_82575 {
+ bool sgmii_active;
+};
+
+/*
+ * e1000_init_phy_params_82575 - Init PHY func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_phy_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_phy_params_82575");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ phy->type = e1000_phy_none;
+ goto out;
+ } else {
+ func->power_up_phy = e1000_power_up_phy_copper;
+ func->power_down_phy = e1000_power_down_phy_copper_82575;
+ }
+
+ phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
+ phy->reset_delay_us = 100;
+
+ func->acquire_phy = e1000_acquire_phy_82575;
+ func->check_reset_block = e1000_check_reset_block_generic;
+ func->commit_phy = e1000_phy_sw_reset_generic;
+ func->get_cfg_done = e1000_get_cfg_done_82575;
+ func->release_phy = e1000_release_phy_82575;
+
+ if (e1000_sgmii_active_82575(hw)) {
+ func->reset_phy = e1000_phy_hw_reset_sgmii_82575;
+ func->read_phy_reg = e1000_read_phy_reg_sgmii_82575;
+ func->write_phy_reg = e1000_write_phy_reg_sgmii_82575;
+ } else {
+ func->reset_phy = e1000_phy_hw_reset_generic;
+ func->read_phy_reg = e1000_read_phy_reg_igp;
+ func->write_phy_reg = e1000_write_phy_reg_igp;
+ }
+
+ /* Set phy->phy_addr and phy->id. */
+ ret_val = e1000_get_phy_id_82575(hw);
+
+ /* Verify phy id and set remaining function pointers */
+ switch (phy->id) {
+ case M88E1111_I_PHY_ID:
+ phy->type = e1000_phy_m88;
+ func->check_polarity = e1000_check_polarity_m88;
+ func->get_phy_info = e1000_get_phy_info_m88;
+ func->get_cable_length = e1000_get_cable_length_m88;
+ func->force_speed_duplex = e1000_phy_force_speed_duplex_m88;
+ break;
+ case IGP03E1000_E_PHY_ID:
+ phy->type = e1000_phy_igp_3;
+ func->check_polarity = e1000_check_polarity_igp;
+ func->get_phy_info = e1000_get_phy_info_igp;
+ func->get_cable_length = e1000_get_cable_length_igp_2;
+ func->force_speed_duplex = e1000_phy_force_speed_duplex_igp;
+ func->set_d0_lplu_state = e1000_set_d0_lplu_state_82575;
+ func->set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_init_nvm_params_82575 - Init NVM func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_nvm_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ struct e1000_functions *func = &hw->func;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u16 size;
+
+ DEBUGFUNC("e1000_init_nvm_params_82575");
+
+ nvm->opcode_bits = 8;
+ nvm->delay_usec = 1;
+ switch (nvm->override) {
+ case e1000_nvm_override_spi_large:
+ nvm->page_size = 32;
+ nvm->address_bits = 16;
+ break;
+ case e1000_nvm_override_spi_small:
+ nvm->page_size = 8;
+ nvm->address_bits = 8;
+ break;
+ default:
+ nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
+ nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
+ break;
+ }
+
+ nvm->type = e1000_nvm_eeprom_spi;
+
+ size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
+ E1000_EECD_SIZE_EX_SHIFT);
+
+ /*
+ * Added to a constant, "size" becomes the left-shift value
+ * for setting word_size.
+ */
+ size += NVM_WORD_SIZE_BASE_SHIFT;
+
+ /* EEPROM access above 16k is unsupported */
+ if (size > 14)
+ size = 14;
+ nvm->word_size = 1 << size;
+
+ /* Function Pointers */
+ func->acquire_nvm = e1000_acquire_nvm_82575;
+ func->read_nvm = e1000_read_nvm_eerd;
+ func->release_nvm = e1000_release_nvm_82575;
+ func->update_nvm = e1000_update_nvm_checksum_generic;
+ func->valid_led_default = e1000_valid_led_default_generic;
+ func->validate_nvm = e1000_validate_nvm_checksum_generic;
+ func->write_nvm = e1000_write_nvm_spi;
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_init_mac_params_82575 - Init MAC func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * This is a function pointer entry point called by the api module.
+ */
+static s32
+e1000_init_mac_params_82575(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ struct e1000_functions *func = &hw->func;
+ struct e1000_dev_spec_82575 *dev_spec;
+ u32 ctrl_ext = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_init_mac_params_82575");
+
+ hw->dev_spec_size = sizeof (struct e1000_dev_spec_82575);
+
+ /* Device-specific structure allocation */
+ ret_val = e1000_alloc_zeroed_dev_spec_struct(hw, hw->dev_spec_size);
+ if (ret_val)
+ goto out;
+
+ dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
+
+ /* Set media type */
+ /*
+ * The 82575 uses bits 22:23 for link mode. The mode can be changed
+ * based on the EEPROM. We cannot rely upon device ID. There
+ * is no distinguishable difference between fiber and internal
+ * SerDes mode on the 82575. There can be an external PHY attached
+ * on the SGMII interface. For this, we'll set sgmii_active to TRUE.
+ */
+ hw->phy.media_type = e1000_media_type_copper;
+ dev_spec->sgmii_active = FALSE;
+
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
+ E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
+ hw->phy.media_type = e1000_media_type_internal_serdes;
+ ctrl_ext |= E1000_CTRL_I2C_ENA;
+ } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
+ dev_spec->sgmii_active = TRUE;
+ ctrl_ext |= E1000_CTRL_I2C_ENA;
+ } else {
+ ctrl_ext &= ~E1000_CTRL_I2C_ENA;
+ }
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ /* Set mta register count */
+ mac->mta_reg_count = 128;
+ /* Set rar entry count */
+ mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
+ /* Set if part includes ASF firmware */
+ mac->asf_firmware_present = TRUE;
+ /* Set if manageability features are enabled. */
+ mac->arc_subsystem_valid =
+ (E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK)
+ ? TRUE : FALSE;
+
+ /* Function pointers */
+
+ /* bus type/speed/width */
+ func->get_bus_info = e1000_get_bus_info_pcie_generic;
+ /* reset */
+ func->reset_hw = e1000_reset_hw_82575;
+ /* hw initialization */
+ func->init_hw = e1000_init_hw_82575;
+ /* link setup */
+ func->setup_link = e1000_setup_link_generic;
+ /* physical interface link setup */
+ func->setup_physical_interface =
+ (hw->phy.media_type == e1000_media_type_copper)
+ ? e1000_setup_copper_link_82575
+ : e1000_setup_fiber_serdes_link_82575;
+ /* check for link */
+ func->check_for_link = e1000_check_for_link_82575;
+ /* receive address register setting */
+ func->rar_set = e1000_rar_set_82575;
+ /* read mac address */
+ func->read_mac_addr = e1000_read_mac_addr_82575;
+ /* multicast address update */
+ func->update_mc_addr_list = e1000_update_mc_addr_list_generic;
+ /* writing VFTA */
+ func->write_vfta = e1000_write_vfta_generic;
+ /* clearing VFTA */
+ func->clear_vfta = e1000_clear_vfta_generic;
+ /* setting MTA */
+ func->mta_set = e1000_mta_set_generic;
+ /* blink LED */
+ func->blink_led = e1000_blink_led_generic;
+ /* setup LED */
+ func->setup_led = e1000_setup_led_generic;
+ /* cleanup LED */
+ func->cleanup_led = e1000_cleanup_led_generic;
+ /* turn on/off LED */
+ func->led_on = e1000_led_on_generic;
+ func->led_off = e1000_led_off_generic;
+ /* remove device */
+ func->remove_device = e1000_remove_device_generic;
+ /* clear hardware counters */
+ func->clear_hw_cntrs = e1000_clear_hw_cntrs_82575;
+ /* link info */
+ func->get_link_up_info = e1000_get_link_up_info_82575;
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_init_function_pointers_82575 - Init func ptrs.
+ * @hw: pointer to the HW structure
+ *
+ * The only function explicitly called by the api module to initialize
+ * all function pointers and parameters.
+ */
+void
+e1000_init_function_pointers_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_init_function_pointers_82575");
+
+ hw->func.init_mac_params = e1000_init_mac_params_82575;
+ hw->func.init_nvm_params = e1000_init_nvm_params_82575;
+ hw->func.init_phy_params = e1000_init_phy_params_82575;
+}
+
+/*
+ * e1000_acquire_phy_82575 - Acquire rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * Acquire access rights to the correct PHY. This is a
+ * function pointer entry point called by the api module.
+ */
+static s32
+e1000_acquire_phy_82575(struct e1000_hw *hw)
+{
+ u16 mask;
+
+ DEBUGFUNC("e1000_acquire_phy_82575");
+
+ mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+
+ return (e1000_acquire_swfw_sync_82575(hw, mask));
+}
+
+/*
+ * e1000_release_phy_82575 - Release rights to access PHY
+ * @hw: pointer to the HW structure
+ *
+ * A wrapper to release access rights to the correct PHY. This is a
+ * function pointer entry point called by the api module.
+ */
+static void
+e1000_release_phy_82575(struct e1000_hw *hw)
+{
+ u16 mask;
+
+ DEBUGFUNC("e1000_release_phy_82575");
+
+ mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
+ e1000_release_swfw_sync_82575(hw, mask);
+}
+
+/*
+ * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the PHY register at offset using the serial gigabit media independent
+ * interface and stores the retrieved information in data.
+ */
+static s32
+e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, i2ccmd = 0;
+
+ DEBUGFUNC("e1000_read_phy_reg_sgmii_82575");
+
+ if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
+ DEBUGOUT1("PHY Address %u is out of range\n", offset);
+ return (-E1000_ERR_PARAM);
+ }
+
+ /*
+ * Set up Op-code, Phy Address, and register address in the I2CCMD
+ * register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+ (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+ (E1000_I2CCMD_OPCODE_READ));
+
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+ /* Poll the ready bit to see if the I2C read completed */
+ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+ usec_delay(50);
+ i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+ if (i2ccmd & E1000_I2CCMD_READY)
+ break;
+ }
+ if (!(i2ccmd & E1000_I2CCMD_READY)) {
+ DEBUGOUT("I2CCMD Read did not complete\n");
+ return (-E1000_ERR_PHY);
+ }
+ if (i2ccmd & E1000_I2CCMD_ERROR) {
+ DEBUGOUT("I2CCMD Error bit set\n");
+ return (-E1000_ERR_PHY);
+ }
+
+ /* Need to byte-swap the 16-bit value. */
+ *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes the data to PHY register at the offset using the serial gigabit
+ * media independent interface.
+ */
+static s32
+e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, i2ccmd = 0;
+ u16 phy_data_swapped;
+
+ DEBUGFUNC("e1000_write_phy_reg_sgmii_82575");
+
+ if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ return (-E1000_ERR_PARAM);
+ }
+
+ /* Swap the data bytes for the I2C interface */
+ phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
+
+ /*
+ * Set up Op-code, Phy Address, and register address in the I2CCMD
+ * register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+ (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+ E1000_I2CCMD_OPCODE_WRITE |
+ phy_data_swapped);
+
+ E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+ /* Poll the ready bit to see if the I2C read completed */
+ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+ usec_delay(50);
+ i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+ if (i2ccmd & E1000_I2CCMD_READY)
+ break;
+ }
+ if (!(i2ccmd & E1000_I2CCMD_READY)) {
+ DEBUGOUT("I2CCMD Write did not complete\n");
+ return (-E1000_ERR_PHY);
+ }
+ if (i2ccmd & E1000_I2CCMD_ERROR) {
+ DEBUGOUT("I2CCMD Error bit set\n");
+ return (-E1000_ERR_PHY);
+ }
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_get_phy_id_82575 - Retreive PHY addr and id
+ * @hw: pointer to the HW structure
+ *
+ * Retreives the PHY address and ID for both PHY's which do and do not use
+ * sgmi interface.
+ */
+static s32
+e1000_get_phy_id_82575(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_id;
+
+ DEBUGFUNC("e1000_get_phy_id_82575");
+
+ /*
+ * For SGMII PHYs, we try the list of possible addresses until
+ * we find one that works. For non-SGMII PHYs
+ * (e.g. integrated copper PHYs), an address of 1 should
+ * work. The result of this function should mean phy->phy_addr
+ * and phy->id are set correctly.
+ */
+ if (!(e1000_sgmii_active_82575(hw))) {
+ phy->addr = 1;
+ ret_val = e1000_get_phy_id(hw);
+ goto out;
+ }
+
+ /*
+ * The address field in the I2CCMD register is 3 bits and 0 is invalid.
+ * Therefore, we need to test 1-7
+ */
+ for (phy->addr = 1; phy->addr < 8; phy->addr++) {
+ ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
+ if (ret_val == E1000_SUCCESS) {
+ DEBUGOUT2("Vendor ID 0x%08X read at address %u\n",
+ phy_id,
+ phy->addr);
+ /*
+ * At the time of this writing, The M88 part is
+ * the only supported SGMII PHY product.
+ */
+ if (phy_id == M88_VENDOR)
+ break;
+ } else {
+ DEBUGOUT1("PHY address %u was unreadable\n",
+ phy->addr);
+ }
+ }
+
+ /* A valid PHY type couldn't be found. */
+ if (phy->addr == 8) {
+ phy->addr = 0;
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ ret_val = e1000_get_phy_id(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Resets the PHY using the serial gigabit media independent interface.
+ */
+static s32
+e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575");
+
+ /*
+ * This isn't a true "hard" reset, but is the only reset
+ * available to us at this time.
+ */
+
+ DEBUGOUT("Soft resetting SGMII attached PHY...\n");
+
+ /*
+ * SFP documentation requires the following to configure the SPF module
+ * to work on SGMII. No further documentation is given.
+ */
+ ret_val = e1000_write_phy_reg(hw, 0x1B, 0x8084);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_phy_commit(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
+ * @hw: pointer to the HW structure
+ * @active: TRUE to enable LPLU, FALSE to disable
+ *
+ * Sets the LPLU D0 state according to the active flag. When
+ * activating LPLU this function also disables smart speed
+ * and vice versa. LPLU will not be activated unless the
+ * device autonegotiation advertisement meets standards of
+ * either 10 or 10/100 or 10/100/1000 at all duplexes.
+ * This is a function pointer entry point only called by
+ * PHY setup routines.
+ */
+static s32
+e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d0_lplu_state_82575");
+
+ ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ if (ret_val)
+ goto out;
+
+ if (active) {
+ data |= IGP02E1000_PM_D0_LPLU;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else {
+ data &= ~IGP02E1000_PM_D0_LPLU;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT,
+ data);
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_acquire_nvm_82575 - Request for access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the necessary semaphores for exclussive access to the EEPROM.
+ * Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ * Return successful if access grant bit set, else clear the request for
+ * EEPROM access and return -E1000_ERR_NVM (-1).
+ */
+static s32
+e1000_acquire_nvm_82575(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_acquire_nvm_82575");
+
+ ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_acquire_nvm_generic(hw);
+
+ if (ret_val)
+ e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_release_nvm_82575 - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit,
+ * then release the semaphores acquired.
+ */
+static void
+e1000_release_nvm_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_release_nvm_82575");
+
+ e1000_release_nvm_generic(hw);
+ e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
+}
+
+/*
+ * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
+ * will also specify which port we're acquiring the lock for.
+ */
+static s32
+e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+ u32 swmask = mask;
+ u32 fwmask = mask << 16;
+ s32 ret_val = E1000_SUCCESS;
+ s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
+
+ DEBUGFUNC("e1000_acquire_swfw_sync_82575");
+
+ while (i < timeout) {
+ if (e1000_get_hw_semaphore_generic(hw)) {
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ if (!(swfw_sync & (fwmask | swmask)))
+ break;
+
+ /*
+ * Firmware currently using resource (fwmask)
+ * or other software thread using resource (swmask)
+ */
+ e1000_put_hw_semaphore_generic(hw);
+ msec_delay_irq(5);
+ i++;
+ }
+
+ if (i == timeout) {
+ DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
+ ret_val = -E1000_ERR_SWFW_SYNC;
+ goto out;
+ }
+
+ swfw_sync |= swmask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_release_swfw_sync_82575 - Release SW/FW semaphore
+ * @hw: pointer to the HW structure
+ * @mask: specifies which semaphore to acquire
+ *
+ * Release the SW/FW semaphore used to access the PHY or NVM. The mask
+ * will also specify which port we're releasing the lock for.
+ */
+static void
+e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
+{
+ u32 swfw_sync;
+
+ DEBUGFUNC("e1000_release_swfw_sync_82575");
+
+ while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) {
+ /* Empty */
+ }
+
+ swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
+ swfw_sync &= ~mask;
+ E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
+
+ e1000_put_hw_semaphore_generic(hw);
+}
+
+/*
+ * e1000_get_cfg_done_82575 - Read config done bit
+ * @hw: pointer to the HW structure
+ *
+ * Read the management control register for the config done bit for
+ * completion status. NOTE: silicon which is EEPROM-less will fail trying
+ * to read the config done bit, so an error is *ONLY* logged and returns
+ * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
+ * would not be able to be reset or change link.
+ */
+static s32
+e1000_get_cfg_done_82575(struct e1000_hw *hw)
+{
+ s32 timeout = PHY_CFG_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+ u32 mask = E1000_NVM_CFG_DONE_PORT_0;
+
+ DEBUGFUNC("e1000_get_cfg_done_82575");
+
+ if (hw->bus.func == 1)
+ mask = E1000_NVM_CFG_DONE_PORT_1;
+
+ while (timeout) {
+ if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
+ break;
+ msec_delay(1);
+ timeout--;
+ }
+ if (!timeout) {
+ DEBUGOUT("MNG configuration cycle has not completed.\n");
+ }
+
+ /* If EEPROM is not marked present, init the PHY manually */
+ if (((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0) &&
+ (hw->phy.type == e1000_phy_igp_3)) {
+ (void) e1000_phy_init_script_igp3(hw);
+ }
+ return (ret_val);
+}
+
+/*
+ * e1000_get_link_up_info_82575 - Get link speed/duplex info
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * This is a wrapper function, if using the serial gigabit media independent
+ * interface, use pcs to retreive the link speed and duplex information.
+ * Otherwise, use the generic function to get the link speed and duplex info.
+ */
+static s32
+e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_get_link_up_info_82575");
+
+ if (hw->phy.media_type != e1000_media_type_copper ||
+ e1000_sgmii_active_82575(hw)) {
+ ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed,
+ duplex);
+ } else {
+ ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
+ duplex);
+ }
+
+ return (ret_val);
+}
+
+/*
+ * e1000_check_for_link_82575 - Check for link
+ * @hw: pointer to the HW structure
+ *
+ * If sgmii is enabled, then use the pcs register to determine link, otherwise
+ * use the generic interface for determining link.
+ */
+static s32
+e1000_check_for_link_82575(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 speed, duplex;
+
+ DEBUGFUNC("e1000_check_for_link_82575");
+
+ /* SGMII link check is done through the PCS register. */
+ if ((hw->phy.media_type != e1000_media_type_copper) ||
+ (e1000_sgmii_active_82575(hw)))
+ ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed,
+ &duplex);
+ else
+ ret_val = e1000_check_for_copper_link_generic(hw);
+
+ return (ret_val);
+}
+
+/*
+ * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Using the physical coding sub-layer (PCS), retreive the current speed and
+ * duplex, then store the values in the pointers provided.
+ */
+static s32
+e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 pcs;
+
+ DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575");
+
+ /* Set up defaults for the return values of this function */
+ mac->serdes_has_link = FALSE;
+ *speed = 0;
+ *duplex = 0;
+
+ /*
+ * Read the PCS Status register for link state. For non-copper mode,
+ * the status register is not accurate. The PCS status register is
+ * used instead.
+ */
+ pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT);
+
+ /*
+ * The link up bit determines when link is up on autoneg. The sync ok
+ * gets set once both sides sync up and agree upon link. Stable link
+ * can be determined by checking for both link up and link sync ok
+ */
+ if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
+ mac->serdes_has_link = TRUE;
+
+ /* Detect and store PCS speed */
+ if (pcs & E1000_PCS_LSTS_SPEED_1000) {
+ *speed = SPEED_1000;
+ } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
+ *speed = SPEED_100;
+ } else {
+ *speed = SPEED_10;
+ }
+
+ /* Detect and store PCS duplex */
+ if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
+ *duplex = FULL_DUPLEX;
+ } else {
+ *duplex = HALF_DUPLEX;
+ }
+ }
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_rar_set_82575 - Set receive address register
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index: receive address array register
+ *
+ * Sets the receive address array register at index to the address passed
+ * in by addr.
+ */
+static void
+e1000_rar_set_82575(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ DEBUGFUNC("e1000_rar_set_82575");
+
+ if (index < E1000_RAR_ENTRIES_82575) {
+ e1000_rar_set_generic(hw, addr, index);
+ }
+}
+
+/*
+ * e1000_reset_hw_82575 - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state. This is a
+ * function pointer entry point called by the api module.
+ */
+static s32
+e1000_reset_hw_82575(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_reset_hw_82575");
+
+ /*
+ * Prevent the PCI-E bus from sticking if there is no TLP connection
+ * on the last TLP read/write transaction when MAC is reset.
+ */
+ ret_val = e1000_disable_pcie_master_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("PCI-E Master disable polling has failed.\n");
+ }
+
+ DEBUGOUT("Masking off all interrupts\n");
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ E1000_WRITE_REG(hw, E1000_RCTL, 0);
+ E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
+ E1000_WRITE_FLUSH(hw);
+
+ msec_delay(10);
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ DEBUGOUT("Issuing a global reset to MAC\n");
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
+
+ ret_val = e1000_get_auto_rd_done_generic(hw);
+ if (ret_val) {
+ /*
+ * When auto config read does not complete, do not
+ * return with an error. This can happen in situations
+ * where there is no eeprom and prevents getting link.
+ */
+ DEBUGOUT("Auto Read Done did not complete\n");
+ }
+
+ /* If EEPROM is not present, run manual init scripts */
+ if ((E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) == 0)
+ (void) e1000_reset_init_script_82575(hw);
+
+ /* Clear any pending interrupt events. */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+ (void) E1000_READ_REG(hw, E1000_ICR);
+
+ (void) e1000_check_alt_mac_addr_generic(hw);
+
+ return (ret_val);
+}
+
+/*
+ * e1000_init_hw_82575 - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation.
+ */
+static s32
+e1000_init_hw_82575(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ u16 i, rar_count = mac->rar_entry_count;
+
+ DEBUGFUNC("e1000_init_hw_82575");
+
+ /* Initialize identification LED */
+ ret_val = e1000_id_led_init_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error initializing identification LED\n");
+ /* This is not fatal and we should not stop init due to this */
+ }
+
+ /* Disabling VLAN filtering */
+ DEBUGOUT("Initializing the IEEE VLAN\n");
+ e1000_clear_vfta(hw);
+
+ /* Setup the receive address */
+ e1000_init_rx_addrs_generic(hw, rar_count);
+ /* Zero out the Multicast HASH table */
+ DEBUGOUT("Zeroing the MTA\n");
+ for (i = 0; i < mac->mta_reg_count; i++)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+
+ /* Setup link and flow control */
+ ret_val = e1000_setup_link(hw);
+
+ /*
+ * Clear all of the statistics registers (clear on read). It is
+ * important that we do this after we have tried to establish link
+ * because the symbol error count will increment wildly if there
+ * is no link.
+ */
+ e1000_clear_hw_cntrs_82575(hw);
+
+ return (ret_val);
+}
+
+/*
+ * e1000_setup_copper_link_82575 - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Configures the link for auto-neg or forced speed and duplex. Then we check
+ * for link, once link is established calls to configure collision distance
+ * and flow control are called.
+ */
+static s32
+e1000_setup_copper_link_82575(struct e1000_hw *hw)
+{
+ u32 ctrl, led_ctrl;
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_setup_copper_link_82575");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SLU;
+ ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ switch (hw->phy.type) {
+ case e1000_phy_m88:
+ ret_val = e1000_copper_link_setup_m88(hw);
+ break;
+ case e1000_phy_igp_3:
+ ret_val = e1000_copper_link_setup_igp(hw);
+ /* Setup activity LED */
+ led_ctrl = E1000_READ_REG(hw, E1000_LEDCTL);
+ led_ctrl &= IGP_ACTIVITY_LED_MASK;
+ led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, led_ctrl);
+ break;
+ default:
+ ret_val = -E1000_ERR_PHY;
+ break;
+ }
+
+ if (ret_val)
+ goto out;
+
+ if (hw->mac.autoneg) {
+ /*
+ * Setup autoneg and flow control advertisement
+ * and perform autonegotiation.
+ */
+ ret_val = e1000_copper_link_autoneg(hw);
+ if (ret_val)
+ goto out;
+ } else {
+ /*
+ * PHY will be set to 10H, 10F, 100H or 100F
+ * depending on user settings.
+ */
+ DEBUGOUT("Forcing Speed and Duplex\n");
+ ret_val = e1000_phy_force_speed_duplex(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ goto out;
+ }
+ }
+
+ ret_val = e1000_configure_pcs_link_82575(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ ret_val = e1000_phy_has_link_generic(hw,
+ COPPER_LINK_UP_LIMIT,
+ 10,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (link) {
+ DEBUGOUT("Valid link established!!!\n");
+ /* Config the MAC and PHY after link is up */
+ e1000_config_collision_dist_generic(hw);
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ } else {
+ DEBUGOUT("Unable to establish link!!!\n");
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Configures speed and duplex for fiber and serdes links.
+ */
+static s32
+e1000_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
+{
+ u32 reg;
+
+ DEBUGFUNC("e1000_setup_fiber_serdes_link_82575");
+
+ /*
+ * On the 82575, SerDes loopback mode persists until it is
+ * explicitly turned off or a power cycle is performed. A read to
+ * the register does not indicate its status. Therefore, we ensure
+ * loopback mode is disabled during initialization.
+ */
+ E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
+
+ /* Force link up, set 1gb, set both sw defined pins */
+ reg = E1000_READ_REG(hw, E1000_CTRL);
+ reg |= E1000_CTRL_SLU |
+ E1000_CTRL_SPD_1000 |
+ E1000_CTRL_FRCSPD |
+ E1000_CTRL_SWDPIN0 |
+ E1000_CTRL_SWDPIN1;
+ E1000_WRITE_REG(hw, E1000_CTRL, reg);
+
+ /* Set switch control to serdes energy detect */
+ reg = E1000_READ_REG(hw, E1000_CONNSW);
+ reg |= E1000_CONNSW_ENRGSRC;
+ E1000_WRITE_REG(hw, E1000_CONNSW, reg);
+
+ /*
+ * New SerDes mode allows for forcing speed or autonegotiating speed
+ * at 1gb. Autoneg should be default set by most drivers. This is the
+ * mode that will be compatible with older link partners and switches.
+ * However, both are supported by the hardware and some drivers/tools.
+ */
+ reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
+
+ reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
+ E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
+
+ if (hw->mac.autoneg) {
+ /* Set PCS register for autoneg */
+ reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
+ E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
+ E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
+ E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
+ DEBUGOUT1("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
+ } else {
+ /* Set PCS register for forced speed */
+ reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
+ E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
+ E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
+ E1000_PCS_LCTL_FSD | /* Force Speed */
+ E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
+ DEBUGOUT1("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
+ }
+ E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_configure_pcs_link_82575 - Configure PCS link
+ * @hw: pointer to the HW structure
+ *
+ * Configure the physical coding sub-layer (PCS) link. The PCS link is
+ * only used on copper connections where the serialized gigabit media
+ * independent interface (sgmii) is being used. Configures the link
+ * for auto-negotiation or forces speed/duplex.
+ */
+static s32
+e1000_configure_pcs_link_82575(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 reg = 0;
+
+ DEBUGFUNC("e1000_configure_pcs_link_82575");
+
+ if (hw->phy.media_type != e1000_media_type_copper ||
+ !(e1000_sgmii_active_82575(hw)))
+ goto out;
+
+ /* For SGMII, we need to issue a PCS autoneg restart */
+ reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
+
+ /* AN time out should be disabled for SGMII mode */
+ reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
+
+ if (mac->autoneg) {
+ /* Make sure forced speed and force link are not set */
+ reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
+
+ /*
+ * The PHY should be setup prior to calling this function.
+ * All we need to do is restart autoneg and enable autoneg.
+ */
+ reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
+ } else {
+ /* Set PCS regiseter for forced speed */
+
+ /* Turn off bits for full duplex, speed, and autoneg */
+ reg &= ~(E1000_PCS_LCTL_FSV_1000 |
+ E1000_PCS_LCTL_FSV_100 |
+ E1000_PCS_LCTL_FDV_FULL |
+ E1000_PCS_LCTL_AN_ENABLE);
+
+ /* Check for duplex first */
+ if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
+ reg |= E1000_PCS_LCTL_FDV_FULL;
+
+ /* Now set speed */
+ if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
+ reg |= E1000_PCS_LCTL_FSV_100;
+
+ /* Force speed and force link */
+ reg |= E1000_PCS_LCTL_FSD |
+ E1000_PCS_LCTL_FORCE_LINK |
+ E1000_PCS_LCTL_FLV_LINK_UP;
+
+ DEBUGOUT1("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
+ reg);
+ }
+ E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg);
+
+out:
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_sgmii_active_82575 - Return sgmii state
+ * @hw: pointer to the HW structure
+ *
+ * 82575 silicon has a serialized gigabit media independent interface (sgmii)
+ * which can be enabled for use in the embedded applications. Simply
+ * return the current state of the sgmii interface.
+ */
+static bool
+e1000_sgmii_active_82575(struct e1000_hw *hw)
+{
+ struct e1000_dev_spec_82575 *dev_spec;
+ bool ret_val;
+
+ DEBUGFUNC("e1000_sgmii_active_82575");
+
+ if (hw->mac.type != e1000_82575) {
+ ret_val = FALSE;
+ goto out;
+ }
+
+ dev_spec = (struct e1000_dev_spec_82575 *)hw->dev_spec;
+
+ ret_val = dev_spec->sgmii_active;
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_reset_init_script_82575 - Inits HW defaults after reset
+ * @hw: pointer to the HW structure
+ *
+ * Inits recommended HW defaults after a reset when there is no EEPROM
+ * detected. This is only for the 82575.
+ */
+static s32
+e1000_reset_init_script_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_reset_init_script_82575");
+
+ if (hw->mac.type == e1000_82575) {
+ DEBUGOUT("Running reset init script for 82575\n");
+ /* SerDes configuration via SERDESCTRL */
+ (void) e1000_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
+ (void) e1000_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
+ (void) e1000_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
+ (void) e1000_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
+
+ /* CCM configuration via CCMCTL register */
+ (void) e1000_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
+ (void) e1000_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
+
+ /* PCIe lanes configuration */
+ (void) e1000_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
+ (void) e1000_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
+ (void) e1000_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
+ (void) e1000_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
+
+ /* PCIe PLL Configuration */
+ (void) e1000_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
+ (void) e1000_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
+ (void) e1000_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
+ }
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_read_mac_addr_82575 - Read device MAC address
+ * @hw: pointer to the HW structure
+ */
+static s32
+e1000_read_mac_addr_82575(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_mac_addr_82575");
+ if (e1000_check_alt_mac_addr_generic(hw))
+ ret_val = e1000_read_mac_addr_generic(hw);
+
+ return (ret_val);
+}
+
+/*
+ * e1000_power_down_phy_copper_82575 - Remove link during PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, remove the link.
+ */
+static void
+e1000_power_down_phy_copper_82575(struct e1000_hw *hw)
+{
+ /* If the management interface is not enabled, then power down */
+ if (!(e1000_check_mng_mode(hw) || e1000_check_reset_block(hw)))
+ e1000_power_down_phy_copper(hw);
+}
+
+/*
+ * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the hardware counters by reading the counter registers.
+ */
+static void
+e1000_clear_hw_cntrs_82575(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_82575");
+
+ e1000_clear_hw_cntrs_base_generic(hw);
+
+ (void) E1000_READ_REG(hw, E1000_PRC64);
+ (void) E1000_READ_REG(hw, E1000_PRC127);
+ (void) E1000_READ_REG(hw, E1000_PRC255);
+ (void) E1000_READ_REG(hw, E1000_PRC511);
+ (void) E1000_READ_REG(hw, E1000_PRC1023);
+ (void) E1000_READ_REG(hw, E1000_PRC1522);
+ (void) E1000_READ_REG(hw, E1000_PTC64);
+ (void) E1000_READ_REG(hw, E1000_PTC127);
+ (void) E1000_READ_REG(hw, E1000_PTC255);
+ (void) E1000_READ_REG(hw, E1000_PTC511);
+ (void) E1000_READ_REG(hw, E1000_PTC1023);
+ (void) E1000_READ_REG(hw, E1000_PTC1522);
+
+ (void) E1000_READ_REG(hw, E1000_ALGNERRC);
+ (void) E1000_READ_REG(hw, E1000_RXERRC);
+ (void) E1000_READ_REG(hw, E1000_TNCRS);
+ (void) E1000_READ_REG(hw, E1000_CEXTERR);
+ (void) E1000_READ_REG(hw, E1000_TSCTC);
+ (void) E1000_READ_REG(hw, E1000_TSCTFC);
+
+ (void) E1000_READ_REG(hw, E1000_MGTPRC);
+ (void) E1000_READ_REG(hw, E1000_MGTPDC);
+ (void) E1000_READ_REG(hw, E1000_MGTPTC);
+
+ (void) E1000_READ_REG(hw, E1000_IAC);
+ (void) E1000_READ_REG(hw, E1000_ICRXOC);
+
+ (void) E1000_READ_REG(hw, E1000_ICRXPTC);
+ (void) E1000_READ_REG(hw, E1000_ICRXATC);
+ (void) E1000_READ_REG(hw, E1000_ICTXPTC);
+ (void) E1000_READ_REG(hw, E1000_ICTXATC);
+ (void) E1000_READ_REG(hw, E1000_ICTXQEC);
+ (void) E1000_READ_REG(hw, E1000_ICTXQMTC);
+ (void) E1000_READ_REG(hw, E1000_ICRXDMTC);
+
+ (void) E1000_READ_REG(hw, E1000_CBTMPC);
+ (void) E1000_READ_REG(hw, E1000_HTDPMC);
+ (void) E1000_READ_REG(hw, E1000_CBRMPC);
+ (void) E1000_READ_REG(hw, E1000_RPTHC);
+ (void) E1000_READ_REG(hw, E1000_HGPTC);
+ (void) E1000_READ_REG(hw, E1000_HTCBDPC);
+ (void) E1000_READ_REG(hw, E1000_HGORCL);
+ (void) E1000_READ_REG(hw, E1000_HGORCH);
+ (void) E1000_READ_REG(hw, E1000_HGOTCL);
+ (void) E1000_READ_REG(hw, E1000_HGOTCH);
+ (void) E1000_READ_REG(hw, E1000_LENERRS);
+
+ /* This register should not be read in copper configurations */
+ if (hw->phy.media_type == e1000_media_type_internal_serdes)
+ (void) E1000_READ_REG(hw, E1000_SCVPC);
+}
diff --git a/usr/src/uts/common/io/igb/igb_82575.h b/usr/src/uts/common/io/igb/igb_82575.h
new file mode 100644
index 0000000000..1d2f235c2c
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_82575.h
@@ -0,0 +1,326 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#ifndef _IGB_82575_H
+#define _IGB_82575_H
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+ * Receive Address Register Count
+ * Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * These entries are also used for MAC-based filtering.
+ */
+#define E1000_RAR_ENTRIES_82575 16
+
+#ifdef E1000_BIT_FIELDS
+struct e1000_adv_data_desc {
+ u64 buffer_addr; /* Address of the descriptor's data buffer */
+ union {
+ u32 data;
+ struct {
+ u32 datalen :16; /* Data buffer length */
+ u32 rsvd :4;
+ u32 dtyp :4; /* Descriptor type */
+ u32 dcmd :8; /* Descriptor command */
+ } config;
+ } lower;
+ union {
+ u32 data;
+ struct {
+ u32 status :4; /* Descriptor status */
+ u32 idx :4;
+ u32 popts :6; /* Packet Options */
+ u32 paylen :18; /* Payload length */
+ } options;
+ } upper;
+};
+
+#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */
+#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */
+#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */
+#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */
+#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */
+#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */
+#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */
+#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */
+#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */
+#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADV_DCMD_RS 0x8 /* Report Status */
+#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */
+#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */
+/* Extended Device Control */
+#define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */
+
+struct e1000_adv_context_desc {
+ union {
+ u32 ip_config;
+ struct {
+ u32 iplen :9;
+ u32 maclen :7;
+ u32 vlan_tag :16;
+ } fields;
+ } ip_setup;
+ u32 seq_num;
+ union {
+ u64 l4_config;
+ struct {
+ u32 mkrloc :9;
+ u32 tucmd :11;
+ u32 dtyp :4;
+ u32 adv :8;
+ u32 rsvd :4;
+ u32 idx :4;
+ u32 l4len :8;
+ u32 mss :16;
+ } fields;
+ } l4_setup;
+};
+#endif
+
+/* SRRCTL bit definitions */
+#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */
+#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00
+#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */
+#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000
+#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000
+#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000
+#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000
+#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000
+
+#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F
+#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00
+
+#define E1000_TX_HEAD_WB_ENABLE 0x1
+#define E1000_TX_SEQNUM_WB_ENABLE 0x2
+
+#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002
+#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000
+#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000
+
+#define E1000_EICR_TX_QUEUE ( \
+ E1000_EICR_TX_QUEUE0 | \
+ E1000_EICR_TX_QUEUE1 | \
+ E1000_EICR_TX_QUEUE2 | \
+ E1000_EICR_TX_QUEUE3)
+
+#define E1000_EICR_RX_QUEUE ( \
+ E1000_EICR_RX_QUEUE0 | \
+ E1000_EICR_RX_QUEUE1 | \
+ E1000_EICR_RX_QUEUE2 | \
+ E1000_EICR_RX_QUEUE3)
+
+#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE
+#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE
+
+#define EIMS_ENABLE_MASK ( \
+ E1000_EIMS_RX_QUEUE | \
+ E1000_EIMS_TX_QUEUE | \
+ E1000_EIMS_TCP_TIMER | \
+ E1000_EIMS_OTHER)
+
+/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */
+#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */
+#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */
+#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */
+#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */
+#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */
+#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */
+#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */
+#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */
+#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */
+#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */
+
+/* Receive Descriptor - Advanced */
+union e1000_adv_rx_desc {
+ struct {
+ u64 pkt_addr; /* Packet buffer address */
+ u64 hdr_addr; /* Header buffer address */
+ } read;
+ struct {
+ struct {
+ struct {
+ /* RSS type, Packet type */
+ u16 pkt_info;
+ /* Split Header, header buffer length */
+ u16 hdr_info;
+ } lo_dword;
+ union {
+ u32 rss; /* RSS Hash */
+ struct {
+ u16 ip_id; /* IP id */
+ u16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ u32 status_error; /* ext status/error */
+ u16 length; /* Packet length */
+ u16 vlan; /* VLAN tag */
+ } upper;
+ } wb; /* writeback */
+};
+
+#define E1000_RXDADV_RSSTYPE_MASK 0x0000F000
+#define E1000_RXDADV_RSSTYPE_SHIFT 12
+#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0
+#define E1000_RXDADV_HDRBUFLEN_SHIFT 5
+#define E1000_RXDADV_SPLITHEADER_EN 0x00001000
+#define E1000_RXDADV_SPH 0x8000
+#define E1000_RXDADV_HBO 0x00800000
+
+/* RSS Hash results */
+#define E1000_RXDADV_RSSTYPE_NONE 0x00000000
+#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001
+#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002
+#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003
+#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004
+#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005
+#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006
+#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007
+#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008
+#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009
+
+/* RSS Packet Types as indicated in the receive descriptor */
+#define E1000_RXDADV_PKTTYPE_NONE 0x00000000
+#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */
+#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */
+#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */
+#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */
+#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */
+#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */
+
+/* Transmit Descriptor - Advanced */
+union e1000_adv_tx_desc {
+ struct {
+ u64 buffer_addr; /* Address of descriptor's data buf */
+ u32 cmd_type_len;
+ u32 olinfo_status;
+ } read;
+ struct {
+ u64 rsvd; /* Reserved */
+ u32 nxtseq_seed;
+ u32 status;
+ } wb;
+};
+
+/* Adv Transmit Descriptor Config Masks */
+#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */
+#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */
+#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */
+#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_ADVTXD_DCMD_RDMA 0x04000000 /* RDMA */
+#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */
+#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */
+#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */
+#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */
+#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */
+#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp packet */
+#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED present in WB */
+#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */
+#define E1000_ADVTXD_POPTS_EOM 0x00000400 /* Enable L bit in RDMA DDP hdr */
+#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */
+/* 1st&Last TSO-full iSCSI PDU */
+#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800
+#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */
+#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */
+
+/* Context descriptors */
+struct e1000_adv_tx_context_desc {
+ u32 vlan_macip_lens;
+ u32 seqnum_seed;
+ u32 type_tucmd_mlhl;
+ u32 mss_l4len_idx;
+};
+
+#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */
+#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */
+#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */
+#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */
+#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */
+#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */
+#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */
+/* IPSec Encrypt Enable for ESP */
+#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000
+/* Req requires Markers and CRC */
+#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000
+#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */
+#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */
+/* Adv ctxt IPSec SA IDX mask */
+#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF
+/* Adv ctxt IPSec ESP len mask */
+#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF
+
+/* Additional Transmit Descriptor Control definitions */
+/* Enable specific Tx Queue */
+#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000
+/* Tx Desc. write-back flushing */
+#define E1000_TXDCTL_SWFLSH 0x04000000
+/* Tx Queue Arbitration Priority 0=low, 1=high */
+#define E1000_TXDCTL_PRIORITY 0x08000000
+
+/* Additional Receive Descriptor Control definitions */
+/* Enable specific Rx Queue */
+#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000
+/* Rx Desc. write-back flushing */
+#define E1000_RXDCTL_SWFLSH 0x04000000
+
+/* Direct Cache Access (DCA) definitions */
+#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */
+#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */
+
+#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */
+#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */
+
+#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */
+#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */
+#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header enable */
+#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload enable */
+
+#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */
+#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */
+#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _IGB_82575_H */
diff --git a/usr/src/uts/common/io/igb/igb_api.c b/usr/src/uts/common/io/igb/igb_api.c
new file mode 100644
index 0000000000..5a8f7d49b1
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_api.c
@@ -0,0 +1,1091 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "igb_api.h"
+#include "igb_mac.h"
+#include "igb_nvm.h"
+#include "igb_phy.h"
+
+/*
+ * e1000_init_mac_params - Initialize MAC function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the MAC
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ */
+s32
+e1000_init_mac_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->func.init_mac_params) {
+ ret_val = hw->func.init_mac_params(hw);
+ if (ret_val) {
+ DEBUGOUT("MAC Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("mac.init_mac_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_init_nvm_params - Initialize NVM function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the NVM
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ */
+s32
+e1000_init_nvm_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->func.init_nvm_params) {
+ ret_val = hw->func.init_nvm_params(hw);
+ if (ret_val) {
+ DEBUGOUT("NVM Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("nvm.init_nvm_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_init_phy_params - Initialize PHY function pointers
+ * @hw: pointer to the HW structure
+ *
+ * This function initializes the function pointers for the PHY
+ * set of functions. Called by drivers or by e1000_setup_init_funcs.
+ */
+s32
+e1000_init_phy_params(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ if (hw->func.init_phy_params) {
+ ret_val = hw->func.init_phy_params(hw);
+ if (ret_val) {
+ DEBUGOUT("PHY Initialization Error\n");
+ goto out;
+ }
+ } else {
+ DEBUGOUT("phy.init_phy_params was NULL\n");
+ ret_val = -E1000_ERR_CONFIG;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_set_mac_type - Sets MAC type
+ * @hw: pointer to the HW structure
+ *
+ * This function sets the mac type of the adapter based on the
+ * device ID stored in the hw structure.
+ * MUST BE FIRST FUNCTION CALLED (explicitly or through
+ * e1000_setup_init_funcs()).
+ */
+s32
+e1000_set_mac_type(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_set_mac_type");
+
+ switch (hw->device_id) {
+ case E1000_DEV_ID_82575EB_COPPER:
+ case E1000_DEV_ID_82575EB_FIBER_SERDES:
+ case E1000_DEV_ID_82575GB_QUAD_COPPER:
+ mac->type = e1000_82575;
+ break;
+ default:
+ /* Should never have loaded on this device */
+ ret_val = -E1000_ERR_MAC_INIT;
+ break;
+ }
+
+ return (ret_val);
+}
+
+/*
+ * e1000_setup_init_funcs - Initializes function pointers
+ * @hw: pointer to the HW structure
+ * @init_device: TRUE will initialize the rest of the function pointers
+ * getting the device ready for use. FALSE will only set
+ * MAC type and the function pointers for the other init
+ * functions. Passing FALSE will not generate any hardware
+ * reads or writes.
+ *
+ * This function must be called by a driver in order to use the rest
+ * of the 'shared' code files. Called by drivers only.
+ */
+s32
+e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
+{
+ s32 ret_val;
+
+ /* Can't do much good without knowing the MAC type. */
+ ret_val = e1000_set_mac_type(hw);
+ if (ret_val) {
+ DEBUGOUT("ERROR: MAC type could not be set properly.\n");
+ goto out;
+ }
+
+ if (!hw->hw_addr) {
+ DEBUGOUT("ERROR: Registers not mapped\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ /*
+ * Init some generic function pointers that are currently all pointing
+ * to generic implementations. We do this first allowing a driver
+ * module to override it afterwards.
+ */
+ hw->func.config_collision_dist = e1000_config_collision_dist_generic;
+ hw->func.rar_set = e1000_rar_set_generic;
+ hw->func.validate_mdi_setting = e1000_validate_mdi_setting_generic;
+ hw->func.mng_host_if_write = e1000_mng_host_if_write_generic;
+ hw->func.mng_write_cmd_header = e1000_mng_write_cmd_header_generic;
+ hw->func.mng_enable_host_if = e1000_mng_enable_host_if_generic;
+ hw->func.wait_autoneg = e1000_wait_autoneg_generic;
+ hw->func.reload_nvm = e1000_reload_nvm_generic;
+
+ /*
+ * Set up the init function pointers. These are functions within the
+ * adapter family file that sets up function pointers for the rest of
+ * the functions in that family.
+ */
+ switch (hw->mac.type) {
+ case e1000_82575:
+ e1000_init_function_pointers_82575(hw);
+ break;
+ default:
+ DEBUGOUT("Hardware not supported\n");
+ ret_val = -E1000_ERR_CONFIG;
+ break;
+ }
+
+ /*
+ * Initialize the rest of the function pointers. These require some
+ * register reads/writes in some cases.
+ */
+ if (!(ret_val) && init_device) {
+ ret_val = e1000_init_mac_params(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_init_nvm_params(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_init_phy_params(hw);
+ if (ret_val)
+ goto out;
+
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_remove_device - Free device specific structure
+ * @hw: pointer to the HW structure
+ *
+ * If a device specific structure was allocated, this function will
+ * free it. This is a function pointer entry point called by drivers.
+ */
+void
+e1000_remove_device(struct e1000_hw *hw)
+{
+ if (hw->func.remove_device)
+ hw->func.remove_device(hw);
+}
+
+/*
+ * e1000_get_bus_info - Obtain bus information for adapter
+ * @hw: pointer to the HW structure
+ *
+ * This will obtain information about the HW bus for which the
+ * adaper is attached and stores it in the hw structure. This is a
+ * function pointer entry point called by drivers.
+ */
+s32
+e1000_get_bus_info(struct e1000_hw *hw)
+{
+ if (hw->func.get_bus_info)
+ return (hw->func.get_bus_info(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_clear_vfta - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * This clears the VLAN filter table on the adapter. This is a function
+ * pointer entry point called by drivers.
+ */
+void
+e1000_clear_vfta(struct e1000_hw *hw)
+{
+ if (hw->func.clear_vfta)
+ hw->func.clear_vfta(hw);
+}
+
+/*
+ * e1000_write_vfta - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: the 32-bit offset in which to write the value to.
+ * @value: the 32-bit value to write at location offset.
+ *
+ * This writes a 32-bit value to a 32-bit offset in the VLAN filter
+ * table. This is a function pointer entry point called by drivers.
+ */
+void
+e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ if (hw->func.write_vfta)
+ hw->func.write_vfta(hw, offset, value);
+}
+
+/*
+ * e1000_update_mc_addr_list - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ * @rar_used_count: the first RAR register free to program
+ * @rar_count: total number of supported Receive Address Registers
+ *
+ * Updates the Receive Address Registers and Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ * The parameter rar_count will usually be hw->mac.rar_entry_count
+ * unless there are workarounds that change this. Currently no func pointer
+ * exists and all implementations are handled in the generic version of this
+ * function.
+ */
+void
+e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
+ u32 mc_addr_count, u32 rar_used_count, u32 rar_count)
+{
+ if (hw->func.update_mc_addr_list)
+ hw->func.update_mc_addr_list(hw,
+ mc_addr_list,
+ mc_addr_count,
+ rar_used_count,
+ rar_count);
+}
+
+/*
+ * e1000_force_mac_fc - Force MAC flow control
+ * @hw: pointer to the HW structure
+ *
+ * Force the MAC's flow control settings. Currently no func pointer exists
+ * and all implementations are handled in the generic version of this
+ * function.
+ */
+s32
+e1000_force_mac_fc(struct e1000_hw *hw)
+{
+ return (e1000_force_mac_fc_generic(hw));
+}
+
+/*
+ * e1000_check_for_link - Check/Store link connection
+ * @hw: pointer to the HW structure
+ *
+ * This checks the link condition of the adapter and stores the
+ * results in the hw->mac structure. This is a function pointer entry
+ * point called by drivers.
+ */
+s32
+e1000_check_for_link(struct e1000_hw *hw)
+{
+ if (hw->func.check_for_link)
+ return (hw->func.check_for_link(hw));
+
+ return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_check_mng_mode - Check management mode
+ * @hw: pointer to the HW structure
+ *
+ * This checks if the adapter has manageability enabled.
+ * This is a function pointer entry point called by drivers.
+ */
+bool
+e1000_check_mng_mode(struct e1000_hw *hw)
+{
+ if (hw->func.check_mng_mode)
+ return (hw->func.check_mng_mode(hw));
+
+ return (FALSE);
+}
+
+/*
+ * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface
+ * @length: size of the buffer
+ *
+ * Writes the DHCP information to the host interface.
+ */
+s32
+e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
+{
+ return (e1000_mng_write_dhcp_info_generic(hw, buffer, length));
+}
+
+/*
+ * e1000_reset_hw - Reset hardware
+ * @hw: pointer to the HW structure
+ *
+ * This resets the hardware into a known state. This is a function pointer
+ * entry point called by drivers.
+ */
+s32
+e1000_reset_hw(struct e1000_hw *hw)
+{
+ if (hw->func.reset_hw)
+ return (hw->func.reset_hw(hw));
+
+ return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_init_hw - Initialize hardware
+ * @hw: pointer to the HW structure
+ *
+ * This inits the hardware readying it for operation. This is a function
+ * pointer entry point called by drivers.
+ */
+s32
+e1000_init_hw(struct e1000_hw *hw)
+{
+ if (hw->func.init_hw)
+ return (hw->func.init_hw(hw));
+
+ return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_setup_link - Configures link and flow control
+ * @hw: pointer to the HW structure
+ *
+ * This configures link and flow control settings for the adapter. This
+ * is a function pointer entry point called by drivers. While modules can
+ * also call this, they probably call their own version of this function.
+ */
+s32
+e1000_setup_link(struct e1000_hw *hw)
+{
+ if (hw->func.setup_link)
+ return (hw->func.setup_link(hw));
+
+ return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_get_speed_and_duplex - Returns current speed and duplex
+ * @hw: pointer to the HW structure
+ * @speed: pointer to a 16-bit value to store the speed
+ * @duplex: pointer to a 16-bit value to store the duplex.
+ *
+ * This returns the speed and duplex of the adapter in the two 'out'
+ * variables passed in. This is a function pointer entry point called
+ * by drivers.
+ */
+s32
+e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
+{
+ if (hw->func.get_link_up_info)
+ return (hw->func.get_link_up_info(hw, speed, duplex));
+
+ return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_setup_led - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored. This is a function pointer entry
+ * point called by drivers.
+ */
+s32
+e1000_setup_led(struct e1000_hw *hw)
+{
+ if (hw->func.setup_led)
+ return (hw->func.setup_led(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_cleanup_led - Restores SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This restores the SW controllable LED to the value saved off by
+ * e1000_setup_led. This is a function pointer entry point called by drivers.
+ */
+s32
+e1000_cleanup_led(struct e1000_hw *hw)
+{
+ if (hw->func.cleanup_led)
+ return (hw->func.cleanup_led(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_blink_led - Blink SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This starts the adapter LED blinking. Request the LED to be setup first
+ * and cleaned up after. This is a function pointer entry point called by
+ * drivers.
+ */
+s32
+e1000_blink_led(struct e1000_hw *hw)
+{
+ if (hw->func.blink_led)
+ return (hw->func.blink_led(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_led_on - Turn on SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED on. This is a function pointer entry point
+ * called by drivers.
+ */
+s32
+e1000_led_on(struct e1000_hw *hw)
+{
+ if (hw->func.led_on)
+ return (hw->func.led_on(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_led_off - Turn off SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * Turns the SW defined LED off. This is a function pointer entry point
+ * called by drivers.
+ */
+s32
+e1000_led_off(struct e1000_hw *hw)
+{
+ if (hw->func.led_off)
+ return (hw->func.led_off(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_reset_adaptive - Reset adaptive IFS
+ * @hw: pointer to the HW structure
+ *
+ * Resets the adaptive IFS. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ */
+void
+e1000_reset_adaptive(struct e1000_hw *hw)
+{
+ e1000_reset_adaptive_generic(hw);
+}
+
+/*
+ * e1000_update_adaptive - Update adaptive IFS
+ * @hw: pointer to the HW structure
+ *
+ * Updates adapter IFS. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ */
+void
+e1000_update_adaptive(struct e1000_hw *hw)
+{
+ e1000_update_adaptive_generic(hw);
+}
+
+/*
+ * e1000_disable_pcie_master - Disable PCI-Express master access
+ * @hw: pointer to the HW structure
+ *
+ * Disables PCI-Express master access and verifies there are no pending
+ * requests. Currently no func pointer exists and all implementations are
+ * handled in the generic version of this function.
+ */
+s32
+e1000_disable_pcie_master(struct e1000_hw *hw)
+{
+ return (e1000_disable_pcie_master_generic(hw));
+}
+
+/*
+ * e1000_config_collision_dist - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup.
+ */
+void
+e1000_config_collision_dist(struct e1000_hw *hw)
+{
+ if (hw->func.config_collision_dist)
+ hw->func.config_collision_dist(hw);
+}
+
+/*
+ * e1000_rar_set - Sets a receive address register
+ * @hw: pointer to the HW structure
+ * @addr: address to set the RAR to
+ * @index: the RAR to set
+ *
+ * Sets a Receive Address Register (RAR) to the specified address.
+ */
+void
+e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ if (hw->func.rar_set)
+ hw->func.rar_set(hw, addr, index);
+}
+
+/*
+ * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
+ * @hw: pointer to the HW structure
+ *
+ * Ensures that the MDI/MDIX SW state is valid.
+ */
+s32
+e1000_validate_mdi_setting(struct e1000_hw *hw)
+{
+ if (hw->func.validate_mdi_setting)
+ return (hw->func.validate_mdi_setting(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_mta_set - Sets multicast table bit
+ * @hw: pointer to the HW structure
+ * @hash_value: Multicast hash value.
+ *
+ * This sets the bit in the multicast table corresponding to the
+ * hash value. This is a function pointer entry point called by drivers.
+ */
+void
+e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
+{
+ if (hw->func.mta_set)
+ hw->func.mta_set(hw, hash_value);
+}
+
+/*
+ * e1000_hash_mc_addr - Determines address location in multicast table
+ * @hw: pointer to the HW structure
+ * @mc_addr: Multicast address to hash.
+ *
+ * This hashes an address to determine its location in the multicast
+ * table. Currently no func pointer exists and all implementations
+ * are handled in the generic version of this function.
+ */
+u32
+e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
+{
+ return (e1000_hash_mc_addr_generic(hw, mc_addr));
+}
+
+/*
+ * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
+ * @hw: pointer to the HW structure
+ *
+ * Enables packet filtering on transmit packets if manageability is enabled
+ * and host interface is enabled.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ */
+bool
+e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
+{
+ return (e1000_enable_tx_pkt_filtering_generic(hw));
+}
+
+/*
+ * e1000_mng_host_if_write - Writes to the manageability host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface buffer
+ * @length: size of the buffer
+ * @offset: location in the buffer to write to
+ * @sum: sum of the data (not checksum)
+ *
+ * This function writes the buffer content at the offset given on the host if.
+ * It also does alignment considerations to do the writes in most efficient
+ * way. Also fills up the sum of the buffer in *buffer parameter.
+ */
+s32
+e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
+ u16 offset, u8 *sum)
+{
+ if (hw->func.mng_host_if_write)
+ return (hw->func.mng_host_if_write(hw, buffer, length, offset,
+ sum));
+
+ return (E1000_NOT_IMPLEMENTED);
+}
+
+/*
+ * e1000_mng_write_cmd_header - Writes manageability command header
+ * @hw: pointer to the HW structure
+ * @hdr: pointer to the host interface command header
+ *
+ * Writes the command header after does the checksum calculation.
+ */
+s32
+e1000_mng_write_cmd_header(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr)
+{
+ if (hw->func.mng_write_cmd_header)
+ return (hw->func.mng_write_cmd_header(hw, hdr));
+
+ return (E1000_NOT_IMPLEMENTED);
+}
+
+/*
+ * e1000_mng_enable_host_if - Checks host interface is enabled
+ * @hw: pointer to the HW structure
+ *
+ * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ * This function checks whether the HOST IF is enabled for command operaton
+ * and also checks whether the previous command is completed. It busy waits
+ * in case of previous command is not completed.
+ */
+s32
+e1000_mng_enable_host_if(struct e1000_hw *hw)
+{
+ if (hw->func.mng_enable_host_if)
+ return (hw->func.mng_enable_host_if(hw));
+
+ return (E1000_NOT_IMPLEMENTED);
+}
+
+/*
+ * e1000_wait_autoneg - Waits for autonegotiation completion
+ * @hw: pointer to the HW structure
+ *
+ * Waits for autoneg to complete. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ */
+s32
+e1000_wait_autoneg(struct e1000_hw *hw)
+{
+ if (hw->func.wait_autoneg)
+ return (hw->func.wait_autoneg(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_check_reset_block - Verifies PHY can be reset
+ * @hw: pointer to the HW structure
+ *
+ * Checks if the PHY is in a state that can be reset or if manageability
+ * has it tied up. This is a function pointer entry point called by drivers.
+ */
+s32
+e1000_check_reset_block(struct e1000_hw *hw)
+{
+ if (hw->func.check_reset_block)
+ return (hw->func.check_reset_block(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_read_phy_reg - Reads PHY register
+ * @hw: pointer to the HW structure
+ * @offset: the register to read
+ * @data: the buffer to store the 16-bit read.
+ *
+ * Reads the PHY register and returns the value in data.
+ * This is a function pointer entry point called by drivers.
+ */
+s32
+e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ if (hw->func.read_phy_reg)
+ return (hw->func.read_phy_reg(hw, offset, data));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_write_phy_reg - Writes PHY register
+ * @hw: pointer to the HW structure
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes the PHY register at offset with the value in data.
+ * This is a function pointer entry point called by drivers.
+ */
+s32
+e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ if (hw->func.write_phy_reg)
+ return (hw->func.write_phy_reg(hw, offset, data));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_read_kmrn_reg - Reads register using Kumeran interface
+ * @hw: pointer to the HW structure
+ * @offset: the register to read
+ * @data: the location to store the 16-bit value read.
+ *
+ * Reads a register out of the Kumeran interface. Currently no func pointer
+ * exists and all implementations are handled in the generic version of
+ * this function.
+ */
+s32
+e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ return (e1000_read_kmrn_reg_generic(hw, offset, data));
+}
+
+/*
+ * e1000_write_kmrn_reg - Writes register using Kumeran interface
+ * @hw: pointer to the HW structure
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes a register to the Kumeran interface. Currently no func pointer
+ * exists and all implementations are handled in the generic version of
+ * this function.
+ */
+s32
+e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ return (e1000_write_kmrn_reg_generic(hw, offset, data));
+}
+
+/*
+ * e1000_get_cable_length - Retrieves cable length estimation
+ * @hw: pointer to the HW structure
+ *
+ * This function estimates the cable length and stores them in
+ * hw->phy.min_length and hw->phy.max_length. This is a function pointer
+ * entry point called by drivers.
+ */
+s32
+e1000_get_cable_length(struct e1000_hw *hw)
+{
+ if (hw->func.get_cable_length)
+ return (hw->func.get_cable_length(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_get_phy_info - Retrieves PHY information from registers
+ * @hw: pointer to the HW structure
+ *
+ * This function gets some information from various PHY registers and
+ * populates hw->phy values with it. This is a function pointer entry
+ * point called by drivers.
+ */
+s32
+e1000_get_phy_info(struct e1000_hw *hw)
+{
+ if (hw->func.get_phy_info)
+ return (hw->func.get_phy_info(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_phy_hw_reset - Hard PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Performs a hard PHY reset. This is a function pointer entry point called
+ * by drivers.
+ */
+s32
+e1000_phy_hw_reset(struct e1000_hw *hw)
+{
+ if (hw->func.reset_phy)
+ return (hw->func.reset_phy(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_phy_commit - Soft PHY reset
+ * @hw: pointer to the HW structure
+ *
+ * Performs a soft PHY reset on those that apply. This is a function pointer
+ * entry point called by drivers.
+ */
+s32
+e1000_phy_commit(struct e1000_hw *hw)
+{
+ if (hw->func.commit_phy)
+ return (hw->func.commit_phy(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_set_d3_lplu_state - Sets low power link up state for D0
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D0
+ * and SmartSpeed is disabled when active is true, else clear lplu for D0
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained. This is a function pointer entry point called by drivers.
+ */
+s32
+e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
+{
+ if (hw->func.set_d0_lplu_state)
+ return (hw->func.set_d0_lplu_state(hw, active));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_set_d3_lplu_state - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is true, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained. This is a function pointer entry point called by drivers.
+ */
+s32
+e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
+{
+ if (hw->func.set_d3_lplu_state)
+ return (hw->func.set_d3_lplu_state(hw, active));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_read_mac_addr - Reads MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the MAC address out of the adapter and stores it in the HW structure.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ */
+s32
+e1000_read_mac_addr(struct e1000_hw *hw)
+{
+ if (hw->func.read_mac_addr)
+ return (hw->func.read_mac_addr(hw));
+
+ return (e1000_read_mac_addr_generic(hw));
+}
+
+/*
+ * e1000_read_pba_num - Read device part number
+ * @hw: pointer to the HW structure
+ * @pba_num: pointer to device part number
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in pba_num.
+ * Currently no func pointer exists and all implementations are handled in the
+ * generic version of this function.
+ */
+s32
+e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
+{
+ return (e1000_read_pba_num_generic(hw, pba_num));
+}
+
+/*
+ * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
+ * @hw: pointer to the HW structure
+ *
+ * Validates the NVM checksum is correct. This is a function pointer entry
+ * point called by drivers.
+ */
+s32
+e1000_validate_nvm_checksum(struct e1000_hw *hw)
+{
+ if (hw->func.validate_nvm)
+ return (hw->func.validate_nvm(hw));
+
+ return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the NVM checksum. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ */
+s32
+e1000_update_nvm_checksum(struct e1000_hw *hw)
+{
+ if (hw->func.update_nvm)
+ return (hw->func.update_nvm(hw));
+
+ return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_reload_nvm - Reloads EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ * extended control register.
+ */
+void
+e1000_reload_nvm(struct e1000_hw *hw)
+{
+ if (hw->func.reload_nvm)
+ hw->func.reload_nvm(hw);
+}
+
+/*
+ * e1000_read_nvm - Reads NVM (EEPROM)
+ * @hw: pointer to the HW structure
+ * @offset: the word offset to read
+ * @words: number of 16-bit words to read
+ * @data: pointer to the properly sized buffer for the data.
+ *
+ * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
+ * pointer entry point called by drivers.
+ */
+s32
+e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ if (hw->func.read_nvm)
+ return (hw->func.read_nvm(hw, offset, words, data));
+
+ return (-E1000_ERR_CONFIG);
+}
+
+/*
+ * e1000_write_nvm - Writes to NVM (EEPROM)
+ * @hw: pointer to the HW structure
+ * @offset: the word offset to read
+ * @words: number of 16-bit words to write
+ * @data: pointer to the properly sized buffer for the data.
+ *
+ * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
+ * pointer entry point called by drivers.
+ */
+s32
+e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ if (hw->func.write_nvm)
+ return (hw->func.write_nvm(hw, offset, words, data));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
+ * @hw: pointer to the HW structure
+ * @reg: 32bit register offset
+ * @offset: the register to write
+ * @data: the value to write.
+ *
+ * Writes the PHY register at offset with the value in data.
+ * This is a function pointer entry point called by drivers.
+ */
+s32
+e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, u8 data)
+{
+ return (e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data));
+}
+
+/*
+ * e1000_power_up_phy - Restores link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * The phy may be powered down to save power, to turn off link when the
+ * driver is unloaded, or wake on lan is not enabled (among others).
+ */
+void
+e1000_power_up_phy(struct e1000_hw *hw)
+{
+ if (hw->func.power_up_phy)
+ hw->func.power_up_phy(hw);
+
+ (void) e1000_setup_link(hw);
+}
+
+/*
+ * e1000_power_down_phy - Power down PHY
+ * @hw: pointer to the HW structure
+ *
+ * The phy may be powered down to save power, to turn off link when the
+ * driver is unloaded, or wake on lan is not enabled (among others).
+ */
+void
+e1000_power_down_phy(struct e1000_hw *hw)
+{
+ if (hw->func.power_down_phy)
+ hw->func.power_down_phy(hw);
+}
diff --git a/usr/src/uts/common/io/igb/igb_api.h b/usr/src/uts/common/io/igb/igb_api.h
new file mode 100644
index 0000000000..94d7afe12d
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_api.h
@@ -0,0 +1,161 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#ifndef _IGB_API_H
+#define _IGB_API_H
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "igb_hw.h"
+
+extern void e1000_init_function_pointers_82575(struct e1000_hw *hw);
+
+s32 e1000_set_mac_type(struct e1000_hw *hw);
+s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device);
+s32 e1000_init_mac_params(struct e1000_hw *hw);
+s32 e1000_init_nvm_params(struct e1000_hw *hw);
+s32 e1000_init_phy_params(struct e1000_hw *hw);
+void e1000_remove_device(struct e1000_hw *hw);
+s32 e1000_get_bus_info(struct e1000_hw *hw);
+void e1000_clear_vfta(struct e1000_hw *hw);
+void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value);
+s32 e1000_force_mac_fc(struct e1000_hw *hw);
+s32 e1000_check_for_link(struct e1000_hw *hw);
+s32 e1000_reset_hw(struct e1000_hw *hw);
+s32 e1000_init_hw(struct e1000_hw *hw);
+s32 e1000_setup_link(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex);
+s32 e1000_disable_pcie_master(struct e1000_hw *hw);
+void e1000_config_collision_dist(struct e1000_hw *hw);
+void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
+void e1000_mta_set(struct e1000_hw *hw, u32 hash_value);
+u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
+void e1000_update_mc_addr_list(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count,
+ u32 rar_used_count, u32 rar_count);
+s32 e1000_setup_led(struct e1000_hw *hw);
+s32 e1000_cleanup_led(struct e1000_hw *hw);
+s32 e1000_check_reset_block(struct e1000_hw *hw);
+s32 e1000_blink_led(struct e1000_hw *hw);
+s32 e1000_led_on(struct e1000_hw *hw);
+s32 e1000_led_off(struct e1000_hw *hw);
+void e1000_reset_adaptive(struct e1000_hw *hw);
+void e1000_update_adaptive(struct e1000_hw *hw);
+s32 e1000_get_cable_length(struct e1000_hw *hw);
+s32 e1000_validate_mdi_setting(struct e1000_hw *hw);
+s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
+ u32 offset, u8 data);
+s32 e1000_get_phy_info(struct e1000_hw *hw);
+s32 e1000_phy_hw_reset(struct e1000_hw *hw);
+s32 e1000_phy_commit(struct e1000_hw *hw);
+void e1000_power_up_phy(struct e1000_hw *hw);
+void e1000_power_down_phy(struct e1000_hw *hw);
+s32 e1000_read_mac_addr(struct e1000_hw *hw);
+s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *part_num);
+void e1000_reload_nvm(struct e1000_hw *hw);
+s32 e1000_update_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_validate_nvm_checksum(struct e1000_hw *hw);
+s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_wait_autoneg(struct e1000_hw *hw);
+s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
+s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
+bool e1000_check_mng_mode(struct e1000_hw *hw);
+bool e1000_enable_mng_pass_thru(struct e1000_hw *hw);
+bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw);
+s32 e1000_mng_enable_host_if(struct e1000_hw *hw);
+s32 e1000_mng_host_if_write(struct e1000_hw *hw,
+ u8 *buffer, u16 length, u16 offset, u8 *sum);
+s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr);
+s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw,
+ u8 *buffer, u16 length);
+#ifndef FIFO_WORKAROUND
+s32 e1000_fifo_workaround_82547(struct e1000_hw *hw, u16 length);
+void e1000_update_tx_fifo_head_82547(struct e1000_hw *hw, u32 length);
+void e1000_set_ttl_workaround_state_82541(struct e1000_hw *hw, bool state);
+bool e1000_ttl_workaround_enabled_82541(struct e1000_hw *hw);
+s32 e1000_igp_ttl_workaround_82547(struct e1000_hw *hw);
+#endif
+
+
+/*
+ * TBI_ACCEPT macro definition:
+ *
+ * This macro requires:
+ * adapter = a pointer to struct e1000_hw
+ * status = the 8 bit status field of the Rx descriptor with EOP set
+ * error = the 8 bit error field of the Rx descriptor with EOP set
+ * length = the sum of all the length fields of the Rx descriptors that
+ * make up the current frame
+ * last_byte = the last byte of the frame DMAed by the hardware
+ * max_frame_length = the maximum frame length we want to accept.
+ * min_frame_length = the minimum frame length we want to accept.
+ *
+ * This macro is a conditional that should be used in the interrupt
+ * handler's Rx processing routine when RxErrors have been detected.
+ *
+ * Typical use:
+ * ...
+ * if (TBI_ACCEPT) {
+ * accept_frame = TRUE;
+ * e1000_tbi_adjust_stats(adapter, MacAddress);
+ * frame_length--;
+ * } else {
+ * accept_frame = FALSE;
+ * }
+ * ...
+ */
+
+/* The carrier extension symbol, as received by the NIC. */
+#define CARRIER_EXTENSION 0x0F
+
+#define TBI_ACCEPT(a, status, errors, length, last_byte, \
+ min_frame_size, max_frame_size) \
+ (e1000_tbi_sbp_enabled_82543(a) && \
+ (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \
+ ((last_byte) == CARRIER_EXTENSION) && \
+ (((status) & E1000_RXD_STAT_VP) ? \
+ (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \
+ ((length) <= (max_frame_size + 1))) : \
+ (((length) > min_frame_size) && \
+ ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1)))))
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _IGB_API_H */
diff --git a/usr/src/uts/common/io/igb/igb_buf.c b/usr/src/uts/common/io/igb/igb_buf.c
new file mode 100644
index 0000000000..3503653923
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_buf.c
@@ -0,0 +1,871 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "igb_sw.h"
+
+static int igb_alloc_tbd_ring(igb_tx_ring_t *);
+static void igb_free_tbd_ring(igb_tx_ring_t *);
+static int igb_alloc_rbd_ring(igb_rx_ring_t *);
+static void igb_free_rbd_ring(igb_rx_ring_t *);
+static int igb_alloc_dma_buffer(igb_t *, dma_buffer_t *, size_t);
+static void igb_free_dma_buffer(dma_buffer_t *);
+static int igb_alloc_tcb_lists(igb_tx_ring_t *);
+static void igb_free_tcb_lists(igb_tx_ring_t *);
+static int igb_alloc_rcb_lists(igb_rx_ring_t *);
+static void igb_free_rcb_lists(igb_rx_ring_t *);
+
+#ifdef __sparc
+#define IGB_DMA_ALIGNMENT 0x0000000000002000ull
+#else
+#define IGB_DMA_ALIGNMENT 0x0000000000001000ull
+#endif
+
+/*
+ * DMA attributes for tx/rx descriptors
+ */
+static ddi_dma_attr_t igb_desc_dma_attr = {
+ DMA_ATTR_V0, /* version number */
+ 0x0000000000000000ull, /* low address */
+ 0xFFFFFFFFFFFFFFFFull, /* high address */
+ 0x00000000FFFFFFFFull, /* dma counter max */
+ IGB_DMA_ALIGNMENT, /* alignment */
+ 0x00000FFF, /* burst sizes */
+ 0x00000001, /* minimum transfer size */
+ 0x00000000FFFFFFFFull, /* maximum transfer size */
+ 0xFFFFFFFFFFFFFFFFull, /* maximum segment size */
+ 1, /* scatter/gather list length */
+ 0x00000001, /* granularity */
+ 0 /* DMA flags */
+};
+
+/*
+ * DMA attributes for tx/rx buffers
+ */
+static ddi_dma_attr_t igb_buf_dma_attr = {
+ DMA_ATTR_V0, /* version number */
+ 0x0000000000000000ull, /* low address */
+ 0xFFFFFFFFFFFFFFFFull, /* high address */
+ 0x00000000FFFFFFFFull, /* dma counter max */
+ IGB_DMA_ALIGNMENT, /* alignment */
+ 0x00000FFF, /* burst sizes */
+ 0x00000001, /* minimum transfer size */
+ 0x00000000FFFFFFFFull, /* maximum transfer size */
+ 0xFFFFFFFFFFFFFFFFull, /* maximum segment size */
+ 1, /* scatter/gather list length */
+ 0x00000001, /* granularity */
+ 0 /* DMA flags */
+};
+
+/*
+ * DMA attributes for transmit
+ */
+static ddi_dma_attr_t igb_tx_dma_attr = {
+ DMA_ATTR_V0, /* version number */
+ 0x0000000000000000ull, /* low address */
+ 0xFFFFFFFFFFFFFFFFull, /* high address */
+ 0x00000000FFFFFFFFull, /* dma counter max */
+ 1, /* alignment */
+ 0x00000FFF, /* burst sizes */
+ 0x00000001, /* minimum transfer size */
+ 0x00000000FFFFFFFFull, /* maximum transfer size */
+ 0xFFFFFFFFFFFFFFFFull, /* maximum segment size */
+ MAX_COOKIE, /* scatter/gather list length */
+ 0x00000001, /* granularity */
+ 0 /* DMA flags */
+};
+
+/*
+ * DMA access attributes for descriptors.
+ */
+static ddi_device_acc_attr_t igb_desc_acc_attr = {
+ DDI_DEVICE_ATTR_V0,
+ DDI_STRUCTURE_LE_ACC,
+ DDI_STRICTORDER_ACC
+};
+
+/*
+ * DMA access attributes for buffers.
+ */
+static ddi_device_acc_attr_t igb_buf_acc_attr = {
+ DDI_DEVICE_ATTR_V0,
+ DDI_NEVERSWAP_ACC,
+ DDI_STRICTORDER_ACC
+};
+
+
+/*
+ * igb_alloc_dma - Allocate DMA resources for all rx/tx rings
+ */
+int
+igb_alloc_dma(igb_t *igb)
+{
+ igb_rx_ring_t *rx_ring;
+ igb_tx_ring_t *tx_ring;
+ int i;
+
+ for (i = 0; i < igb->num_rx_rings; i++) {
+ /*
+ * Allocate receive desciptor ring and control block lists
+ */
+ rx_ring = &igb->rx_rings[i];
+
+ if (igb_alloc_rbd_ring(rx_ring) != IGB_SUCCESS)
+ goto alloc_dma_failure;
+
+ if (igb_alloc_rcb_lists(rx_ring) != IGB_SUCCESS)
+ goto alloc_dma_failure;
+ }
+
+ for (i = 0; i < igb->num_tx_rings; i++) {
+ /*
+ * Allocate transmit desciptor ring and control block lists
+ */
+ tx_ring = &igb->tx_rings[i];
+
+ if (igb_alloc_tbd_ring(tx_ring) != IGB_SUCCESS)
+ goto alloc_dma_failure;
+
+ if (igb_alloc_tcb_lists(tx_ring) != IGB_SUCCESS)
+ goto alloc_dma_failure;
+ }
+
+ return (IGB_SUCCESS);
+
+alloc_dma_failure:
+ igb_free_dma(igb);
+
+ return (IGB_FAILURE);
+}
+
+
+/*
+ * igb_free_dma - Free all the DMA resources of all rx/tx rings
+ */
+void
+igb_free_dma(igb_t *igb)
+{
+ igb_rx_ring_t *rx_ring;
+ igb_tx_ring_t *tx_ring;
+ int i;
+
+ /*
+ * Free DMA resources of rx rings
+ */
+ for (i = 0; i < igb->num_rx_rings; i++) {
+ rx_ring = &igb->rx_rings[i];
+ igb_free_rbd_ring(rx_ring);
+ igb_free_rcb_lists(rx_ring);
+ }
+
+ /*
+ * Free DMA resources of tx rings
+ */
+ for (i = 0; i < igb->num_tx_rings; i++) {
+ tx_ring = &igb->tx_rings[i];
+ igb_free_tbd_ring(tx_ring);
+ igb_free_tcb_lists(tx_ring);
+ }
+}
+
+/*
+ * igb_alloc_tbd_ring - Memory allocation for the tx descriptors of one ring.
+ */
+static int
+igb_alloc_tbd_ring(igb_tx_ring_t *tx_ring)
+{
+ int ret;
+ size_t size;
+ size_t len;
+ uint_t cookie_num;
+ dev_info_t *devinfo;
+ ddi_dma_cookie_t cookie;
+ igb_t *igb = tx_ring->igb;
+
+ devinfo = igb->dip;
+ size = sizeof (union e1000_adv_tx_desc) * tx_ring->ring_size;
+
+ /*
+ * If tx head write-back is enabled, an extra tbd is allocated
+ * to save the head write-back value
+ */
+ if (igb->tx_head_wb_enable) {
+ size += sizeof (union e1000_adv_tx_desc);
+ }
+
+ /*
+ * Allocate a DMA handle for the transmit descriptor
+ * memory area.
+ */
+ ret = ddi_dma_alloc_handle(devinfo, &igb_desc_dma_attr,
+ DDI_DMA_DONTWAIT, NULL,
+ &tx_ring->tbd_area.dma_handle);
+
+ if (ret != DDI_SUCCESS) {
+ igb_error(igb,
+ "Could not allocate tbd dma handle: %x", ret);
+ tx_ring->tbd_area.dma_handle = NULL;
+
+ return (IGB_FAILURE);
+ }
+
+ /*
+ * Allocate memory to DMA data to and from the transmit
+ * descriptors.
+ */
+ ret = ddi_dma_mem_alloc(tx_ring->tbd_area.dma_handle,
+ size, &igb_desc_acc_attr, DDI_DMA_CONSISTENT,
+ DDI_DMA_DONTWAIT, NULL,
+ (caddr_t *)&tx_ring->tbd_area.address,
+ &len, &tx_ring->tbd_area.acc_handle);
+
+ if (ret != DDI_SUCCESS) {
+ igb_error(igb,
+ "Could not allocate tbd dma memory: %x", ret);
+ tx_ring->tbd_area.acc_handle = NULL;
+ tx_ring->tbd_area.address = NULL;
+ if (tx_ring->tbd_area.dma_handle != NULL) {
+ ddi_dma_free_handle(&tx_ring->tbd_area.dma_handle);
+ tx_ring->tbd_area.dma_handle = NULL;
+ }
+ return (IGB_FAILURE);
+ }
+
+ /*
+ * Initialize the entire transmit buffer descriptor area to zero
+ */
+ bzero(tx_ring->tbd_area.address, len);
+
+ /*
+ * Allocates DMA resources for the memory that was allocated by
+ * the ddi_dma_mem_alloc call. The DMA resources then get bound to the
+ * the memory address
+ */
+ ret = ddi_dma_addr_bind_handle(tx_ring->tbd_area.dma_handle,
+ NULL, (caddr_t)tx_ring->tbd_area.address,
+ len, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
+ DDI_DMA_DONTWAIT, NULL, &cookie, &cookie_num);
+
+ if (ret != DDI_DMA_MAPPED) {
+ igb_error(igb,
+ "Could not bind tbd dma resource: %x", ret);
+ tx_ring->tbd_area.dma_address = NULL;
+ if (tx_ring->tbd_area.acc_handle != NULL) {
+ ddi_dma_mem_free(&tx_ring->tbd_area.acc_handle);
+ tx_ring->tbd_area.acc_handle = NULL;
+ tx_ring->tbd_area.address = NULL;
+ }
+ if (tx_ring->tbd_area.dma_handle != NULL) {
+ ddi_dma_free_handle(&tx_ring->tbd_area.dma_handle);
+ tx_ring->tbd_area.dma_handle = NULL;
+ }
+ return (IGB_FAILURE);
+ }
+
+ ASSERT(cookie_num == 1);
+
+ tx_ring->tbd_area.dma_address = cookie.dmac_laddress;
+ tx_ring->tbd_area.size = len;
+
+ tx_ring->tbd_ring = (union e1000_adv_tx_desc *)(uintptr_t)
+ tx_ring->tbd_area.address;
+
+ return (IGB_SUCCESS);
+}
+
+/*
+ * igb_free_tbd_ring - Free the tx descriptors of one ring.
+ */
+static void
+igb_free_tbd_ring(igb_tx_ring_t *tx_ring)
+{
+ if (tx_ring->tbd_area.dma_handle != NULL) {
+ (void) ddi_dma_unbind_handle(tx_ring->tbd_area.dma_handle);
+ }
+ if (tx_ring->tbd_area.acc_handle != NULL) {
+ ddi_dma_mem_free(&tx_ring->tbd_area.acc_handle);
+ tx_ring->tbd_area.acc_handle = NULL;
+ }
+ if (tx_ring->tbd_area.dma_handle != NULL) {
+ ddi_dma_free_handle(&tx_ring->tbd_area.dma_handle);
+ tx_ring->tbd_area.dma_handle = NULL;
+ }
+ tx_ring->tbd_area.address = NULL;
+ tx_ring->tbd_area.dma_address = NULL;
+ tx_ring->tbd_area.size = 0;
+
+ tx_ring->tbd_ring = NULL;
+}
+
+/*
+ * igb_alloc_rbd_ring - Memory allocation for the rx descriptors of one ring.
+ */
+static int
+igb_alloc_rbd_ring(igb_rx_ring_t *rx_ring)
+{
+ int ret;
+ size_t size;
+ size_t len;
+ uint_t cookie_num;
+ dev_info_t *devinfo;
+ ddi_dma_cookie_t cookie;
+ igb_t *igb = rx_ring->igb;
+
+ devinfo = igb->dip;
+ size = sizeof (union e1000_adv_rx_desc) * rx_ring->ring_size;
+
+ /*
+ * Allocate a new DMA handle for the receive descriptor
+ * memory area.
+ */
+ ret = ddi_dma_alloc_handle(devinfo, &igb_desc_dma_attr,
+ DDI_DMA_DONTWAIT, NULL,
+ &rx_ring->rbd_area.dma_handle);
+
+ if (ret != DDI_SUCCESS) {
+ igb_error(igb,
+ "Could not allocate rbd dma handle: %x", ret);
+ rx_ring->rbd_area.dma_handle = NULL;
+ return (IGB_FAILURE);
+ }
+
+ /*
+ * Allocate memory to DMA data to and from the receive
+ * descriptors.
+ */
+ ret = ddi_dma_mem_alloc(rx_ring->rbd_area.dma_handle,
+ size, &igb_desc_acc_attr, DDI_DMA_CONSISTENT,
+ DDI_DMA_DONTWAIT, NULL,
+ (caddr_t *)&rx_ring->rbd_area.address,
+ &len, &rx_ring->rbd_area.acc_handle);
+
+ if (ret != DDI_SUCCESS) {
+ igb_error(igb,
+ "Could not allocate rbd dma memory: %x", ret);
+ rx_ring->rbd_area.acc_handle = NULL;
+ rx_ring->rbd_area.address = NULL;
+ if (rx_ring->rbd_area.dma_handle != NULL) {
+ ddi_dma_free_handle(&rx_ring->rbd_area.dma_handle);
+ rx_ring->rbd_area.dma_handle = NULL;
+ }
+ return (IGB_FAILURE);
+ }
+
+ /*
+ * Initialize the entire transmit buffer descriptor area to zero
+ */
+ bzero(rx_ring->rbd_area.address, len);
+
+ /*
+ * Allocates DMA resources for the memory that was allocated by
+ * the ddi_dma_mem_alloc call.
+ */
+ ret = ddi_dma_addr_bind_handle(rx_ring->rbd_area.dma_handle,
+ NULL, (caddr_t)rx_ring->rbd_area.address,
+ len, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
+ DDI_DMA_DONTWAIT, NULL, &cookie, &cookie_num);
+
+ if (ret != DDI_DMA_MAPPED) {
+ igb_error(igb,
+ "Could not bind rbd dma resource: %x", ret);
+ rx_ring->rbd_area.dma_address = NULL;
+ if (rx_ring->rbd_area.acc_handle != NULL) {
+ ddi_dma_mem_free(&rx_ring->rbd_area.acc_handle);
+ rx_ring->rbd_area.acc_handle = NULL;
+ rx_ring->rbd_area.address = NULL;
+ }
+ if (rx_ring->rbd_area.dma_handle != NULL) {
+ ddi_dma_free_handle(&rx_ring->rbd_area.dma_handle);
+ rx_ring->rbd_area.dma_handle = NULL;
+ }
+ return (IGB_FAILURE);
+ }
+
+ ASSERT(cookie_num == 1);
+
+ rx_ring->rbd_area.dma_address = cookie.dmac_laddress;
+ rx_ring->rbd_area.size = len;
+
+ rx_ring->rbd_ring = (union e1000_adv_rx_desc *)(uintptr_t)
+ rx_ring->rbd_area.address;
+
+ return (IGB_SUCCESS);
+}
+
+/*
+ * igb_free_rbd_ring - Free the rx descriptors of one ring.
+ */
+static void
+igb_free_rbd_ring(igb_rx_ring_t *rx_ring)
+{
+ if (rx_ring->rbd_area.dma_handle != NULL) {
+ (void) ddi_dma_unbind_handle(rx_ring->rbd_area.dma_handle);
+ }
+ if (rx_ring->rbd_area.acc_handle != NULL) {
+ ddi_dma_mem_free(&rx_ring->rbd_area.acc_handle);
+ rx_ring->rbd_area.acc_handle = NULL;
+ }
+ if (rx_ring->rbd_area.dma_handle != NULL) {
+ ddi_dma_free_handle(&rx_ring->rbd_area.dma_handle);
+ rx_ring->rbd_area.dma_handle = NULL;
+ }
+ rx_ring->rbd_area.address = NULL;
+ rx_ring->rbd_area.dma_address = NULL;
+ rx_ring->rbd_area.size = 0;
+
+ rx_ring->rbd_ring = NULL;
+}
+
+
+/*
+ * igb_alloc_dma_buffer - Allocate DMA resources for a DMA buffer
+ */
+static int
+igb_alloc_dma_buffer(igb_t *igb,
+ dma_buffer_t *buf, size_t size)
+{
+ int ret;
+ dev_info_t *devinfo = igb->dip;
+ ddi_dma_cookie_t cookie;
+ size_t len;
+ uint_t cookie_num;
+
+ ret = ddi_dma_alloc_handle(devinfo,
+ &igb_buf_dma_attr, DDI_DMA_DONTWAIT,
+ NULL, &buf->dma_handle);
+
+ if (ret != DDI_SUCCESS) {
+ buf->dma_handle = NULL;
+ igb_error(igb,
+ "Could not allocate dma buffer handle: %x", ret);
+ return (IGB_FAILURE);
+ }
+
+ ret = ddi_dma_mem_alloc(buf->dma_handle,
+ size, &igb_buf_acc_attr, DDI_DMA_STREAMING,
+ DDI_DMA_DONTWAIT, NULL, &buf->address,
+ &len, &buf->acc_handle);
+
+ if (ret != DDI_SUCCESS) {
+ buf->acc_handle = NULL;
+ buf->address = NULL;
+ if (buf->dma_handle != NULL) {
+ ddi_dma_free_handle(&buf->dma_handle);
+ buf->dma_handle = NULL;
+ }
+ igb_error(igb,
+ "Could not allocate dma buffer memory: %x", ret);
+ return (IGB_FAILURE);
+ }
+
+ ret = ddi_dma_addr_bind_handle(buf->dma_handle, NULL,
+ buf->address,
+ len, DDI_DMA_RDWR | DDI_DMA_STREAMING,
+ DDI_DMA_DONTWAIT, NULL, &cookie, &cookie_num);
+
+ if (ret != DDI_DMA_MAPPED) {
+ buf->dma_address = NULL;
+ if (buf->acc_handle != NULL) {
+ ddi_dma_mem_free(&buf->acc_handle);
+ buf->acc_handle = NULL;
+ buf->address = NULL;
+ }
+ if (buf->dma_handle != NULL) {
+ ddi_dma_free_handle(&buf->dma_handle);
+ buf->dma_handle = NULL;
+ }
+ igb_error(igb,
+ "Could not bind dma buffer handle: %x", ret);
+ return (IGB_FAILURE);
+ }
+
+ ASSERT(cookie_num == 1);
+
+ buf->dma_address = cookie.dmac_laddress;
+ buf->size = len;
+ buf->len = 0;
+
+ return (IGB_SUCCESS);
+}
+
+/*
+ * igb_free_dma_buffer - Free one allocated area of dma memory and handle
+ */
+static void
+igb_free_dma_buffer(dma_buffer_t *buf)
+{
+ if (buf->dma_handle != NULL) {
+ (void) ddi_dma_unbind_handle(buf->dma_handle);
+ buf->dma_address = NULL;
+ } else {
+ return;
+ }
+
+ if (buf->acc_handle != NULL) {
+ ddi_dma_mem_free(&buf->acc_handle);
+ buf->acc_handle = NULL;
+ buf->address = NULL;
+ }
+
+ if (buf->dma_handle != NULL) {
+ ddi_dma_free_handle(&buf->dma_handle);
+ buf->dma_handle = NULL;
+ }
+
+ buf->size = 0;
+ buf->len = 0;
+}
+
+/*
+ * igb_alloc_tcb_lists - Memory allocation for the transmit control bolcks
+ * of one ring.
+ */
+static int
+igb_alloc_tcb_lists(igb_tx_ring_t *tx_ring)
+{
+ int i;
+ int ret;
+ tx_control_block_t *tcb;
+ dma_buffer_t *tx_buf;
+ igb_t *igb = tx_ring->igb;
+ dev_info_t *devinfo = igb->dip;
+
+ /*
+ * Allocate memory for the work list.
+ */
+ tx_ring->work_list = kmem_zalloc(sizeof (tx_control_block_t *) *
+ tx_ring->ring_size, KM_NOSLEEP);
+
+ if (tx_ring->work_list == NULL) {
+ igb_error(igb,
+ "Cound not allocate memory for tx work list");
+ return (IGB_FAILURE);
+ }
+
+ /*
+ * Allocate memory for the free list.
+ */
+ tx_ring->free_list = kmem_zalloc(sizeof (tx_control_block_t *) *
+ tx_ring->free_list_size, KM_NOSLEEP);
+
+ if (tx_ring->free_list == NULL) {
+ kmem_free(tx_ring->work_list,
+ sizeof (tx_control_block_t *) * tx_ring->ring_size);
+ tx_ring->work_list = NULL;
+
+ igb_error(igb,
+ "Cound not allocate memory for tx free list");
+ return (IGB_FAILURE);
+ }
+
+ /*
+ * Allocate memory for the tx control blocks of free list.
+ */
+ tx_ring->tcb_area =
+ kmem_zalloc(sizeof (tx_control_block_t) *
+ tx_ring->free_list_size, KM_NOSLEEP);
+
+ if (tx_ring->tcb_area == NULL) {
+ kmem_free(tx_ring->work_list,
+ sizeof (tx_control_block_t *) * tx_ring->ring_size);
+ tx_ring->work_list = NULL;
+
+ kmem_free(tx_ring->free_list,
+ sizeof (tx_control_block_t *) * tx_ring->free_list_size);
+ tx_ring->free_list = NULL;
+
+ igb_error(igb,
+ "Cound not allocate memory for tx control blocks");
+ return (IGB_FAILURE);
+ }
+
+ /*
+ * Allocate dma memory for the tx control block of free list.
+ */
+ tcb = tx_ring->tcb_area;
+ for (i = 0; i < tx_ring->free_list_size; i++, tcb++) {
+ ASSERT(tcb != NULL);
+
+ tx_ring->free_list[i] = tcb;
+
+ /*
+ * Pre-allocate dma handles for transmit. These dma handles
+ * will be dynamically bound to the data buffers passed down
+ * from the upper layers at the time of transmitting.
+ */
+ ret = ddi_dma_alloc_handle(devinfo,
+ &igb_tx_dma_attr,
+ DDI_DMA_DONTWAIT, NULL,
+ &tcb->tx_dma_handle);
+ if (ret != DDI_SUCCESS) {
+ tcb->tx_dma_handle = NULL;
+ igb_error(igb,
+ "Could not allocate tx dma handle: %x", ret);
+ goto alloc_tcb_lists_fail;
+ }
+
+ /*
+ * Pre-allocate transmit buffers for packets that the
+ * size is less than bcopy_thresh.
+ */
+ tx_buf = &tcb->tx_buf;
+
+ ret = igb_alloc_dma_buffer(igb,
+ tx_buf, igb->tx_buf_size);
+
+ if (ret != IGB_SUCCESS) {
+ ASSERT(tcb->tx_dma_handle != NULL);
+ ddi_dma_free_handle(&tcb->tx_dma_handle);
+ tcb->tx_dma_handle = NULL;
+ igb_error(igb, "Allocate tx dma buffer failed");
+ goto alloc_tcb_lists_fail;
+ }
+ }
+
+ return (IGB_SUCCESS);
+
+alloc_tcb_lists_fail:
+ igb_free_tcb_lists(tx_ring);
+
+ return (IGB_FAILURE);
+}
+
+/*
+ * igb_free_tcb_lists - Release the memory allocated for
+ * the transmit control bolcks of one ring.
+ */
+static void
+igb_free_tcb_lists(igb_tx_ring_t *tx_ring)
+{
+ int i;
+ tx_control_block_t *tcb;
+
+ tcb = tx_ring->tcb_area;
+ if (tcb == NULL)
+ return;
+
+ for (i = 0; i < tx_ring->free_list_size; i++, tcb++) {
+ ASSERT(tcb != NULL);
+
+ /* Free the tx dma handle for dynamical binding */
+ if (tcb->tx_dma_handle != NULL) {
+ ddi_dma_free_handle(&tcb->tx_dma_handle);
+ tcb->tx_dma_handle = NULL;
+ } else {
+ /*
+ * If the dma handle is NULL, then we don't
+ * have to check the remaining.
+ */
+ break;
+ }
+
+ igb_free_dma_buffer(&tcb->tx_buf);
+ }
+
+ if (tx_ring->tcb_area != NULL) {
+ kmem_free(tx_ring->tcb_area,
+ sizeof (tx_control_block_t) * tx_ring->free_list_size);
+ tx_ring->tcb_area = NULL;
+ }
+
+ if (tx_ring->work_list != NULL) {
+ kmem_free(tx_ring->work_list,
+ sizeof (tx_control_block_t *) * tx_ring->ring_size);
+ tx_ring->work_list = NULL;
+ }
+
+ if (tx_ring->free_list != NULL) {
+ kmem_free(tx_ring->free_list,
+ sizeof (tx_control_block_t *) * tx_ring->free_list_size);
+ tx_ring->free_list = NULL;
+ }
+}
+
+/*
+ * igb_alloc_rcb_lists - Memory allocation for the receive control blocks
+ * of one ring.
+ */
+static int
+igb_alloc_rcb_lists(igb_rx_ring_t *rx_ring)
+{
+ int i;
+ int ret;
+ rx_control_block_t *rcb;
+ igb_t *igb = rx_ring->igb;
+ dma_buffer_t *rx_buf;
+ uint32_t rcb_count;
+
+ /*
+ * Allocate memory for the work list.
+ */
+ rx_ring->work_list = kmem_zalloc(sizeof (rx_control_block_t *) *
+ rx_ring->ring_size, KM_NOSLEEP);
+
+ if (rx_ring->work_list == NULL) {
+ igb_error(igb,
+ "Could not allocate memory for rx work list");
+ return (IGB_FAILURE);
+ }
+
+ /*
+ * Allocate memory for the free list.
+ */
+ rx_ring->free_list = kmem_zalloc(sizeof (rx_control_block_t *) *
+ rx_ring->free_list_size, KM_NOSLEEP);
+
+ if (rx_ring->free_list == NULL) {
+ kmem_free(rx_ring->work_list,
+ sizeof (rx_control_block_t *) * rx_ring->ring_size);
+ rx_ring->work_list = NULL;
+
+ igb_error(igb,
+ "Cound not allocate memory for rx free list");
+ return (IGB_FAILURE);
+ }
+
+ /*
+ * Allocate memory for the rx control blocks for work list and
+ * free list.
+ */
+ rcb_count = rx_ring->ring_size + rx_ring->free_list_size;
+ rx_ring->rcb_area =
+ kmem_zalloc(sizeof (rx_control_block_t) * rcb_count,
+ KM_NOSLEEP);
+
+ if (rx_ring->rcb_area == NULL) {
+ kmem_free(rx_ring->work_list,
+ sizeof (rx_control_block_t *) * rx_ring->ring_size);
+ rx_ring->work_list = NULL;
+
+ kmem_free(rx_ring->free_list,
+ sizeof (rx_control_block_t *) * rx_ring->free_list_size);
+ rx_ring->free_list = NULL;
+
+ igb_error(igb,
+ "Cound not allocate memory for rx control blocks");
+ return (IGB_FAILURE);
+ }
+
+ /*
+ * Allocate dma memory for the rx control blocks
+ */
+ rcb = rx_ring->rcb_area;
+ for (i = 0; i < rcb_count; i++, rcb++) {
+ ASSERT(rcb != NULL);
+
+ if (i < rx_ring->ring_size) {
+ /* Attach the rx control block to the work list */
+ rx_ring->work_list[i] = rcb;
+ } else {
+ /* Attach the rx control block to the free list */
+ rx_ring->free_list[i - rx_ring->ring_size] = rcb;
+ }
+
+ rx_buf = &rcb->rx_buf;
+ ret = igb_alloc_dma_buffer(igb,
+ rx_buf, igb->rx_buf_size);
+
+ if (ret != IGB_SUCCESS) {
+ igb_error(igb, "Allocate rx dma buffer failed");
+ goto alloc_rcb_lists_fail;
+ }
+
+ rx_buf->size -= IPHDR_ALIGN_ROOM;
+ rx_buf->address += IPHDR_ALIGN_ROOM;
+ rx_buf->dma_address += IPHDR_ALIGN_ROOM;
+
+ rcb->state = RCB_FREE;
+ rcb->rx_ring = (igb_rx_ring_t *)rx_ring;
+ rcb->free_rtn.free_func = igb_rx_recycle;
+ rcb->free_rtn.free_arg = (char *)rcb;
+
+ rcb->mp = desballoc((unsigned char *)
+ rx_buf->address - IPHDR_ALIGN_ROOM,
+ rx_buf->size + IPHDR_ALIGN_ROOM,
+ 0, &rcb->free_rtn);
+
+ if (rcb->mp != NULL) {
+ rcb->mp->b_rptr += IPHDR_ALIGN_ROOM;
+ rcb->mp->b_wptr += IPHDR_ALIGN_ROOM;
+ }
+ }
+
+ return (IGB_SUCCESS);
+
+alloc_rcb_lists_fail:
+ igb_free_rcb_lists(rx_ring);
+
+ return (IGB_FAILURE);
+}
+
+/*
+ * igb_free_rcb_lists - Free the receive control blocks of one ring.
+ */
+static void
+igb_free_rcb_lists(igb_rx_ring_t *rx_ring)
+{
+ int i;
+ rx_control_block_t *rcb;
+ uint32_t rcb_count;
+
+ rcb = rx_ring->rcb_area;
+ if (rcb == NULL)
+ return;
+
+ rcb_count = rx_ring->ring_size + rx_ring->free_list_size;
+ for (i = 0; i < rcb_count; i++, rcb++) {
+ ASSERT(rcb != NULL);
+ ASSERT(rcb->state == RCB_FREE);
+
+ if (rcb->mp != NULL) {
+ freemsg(rcb->mp);
+ rcb->mp = NULL;
+ }
+
+ igb_free_dma_buffer(&rcb->rx_buf);
+ }
+
+ if (rx_ring->rcb_area != NULL) {
+ kmem_free(rx_ring->rcb_area,
+ sizeof (rx_control_block_t) * rcb_count);
+ rx_ring->rcb_area = NULL;
+ }
+
+ if (rx_ring->work_list != NULL) {
+ kmem_free(rx_ring->work_list,
+ sizeof (rx_control_block_t *) * rx_ring->ring_size);
+ rx_ring->work_list = NULL;
+ }
+
+ if (rx_ring->free_list != NULL) {
+ kmem_free(rx_ring->free_list,
+ sizeof (rx_control_block_t *) * rx_ring->free_list_size);
+ rx_ring->free_list = NULL;
+ }
+}
diff --git a/usr/src/uts/common/io/igb/igb_debug.c b/usr/src/uts/common/io/igb/igb_debug.c
new file mode 100644
index 0000000000..021656cbaa
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_debug.c
@@ -0,0 +1,297 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "igb_sw.h"
+#include "igb_debug.h"
+
+#ifdef IGB_DEBUG
+extern ddi_device_acc_attr_t igb_regs_acc_attr;
+
+void
+pci_dump(void *arg)
+{
+ igb_t *igb = (igb_t *)arg;
+ ddi_acc_handle_t handle;
+ uint8_t cap_ptr;
+ uint8_t next_ptr;
+ uint32_t msix_bar;
+ uint32_t msix_ctrl;
+ uint32_t msix_tbl_sz;
+ uint32_t tbl_offset;
+ uint32_t tbl_bir;
+ uint32_t pba_offset;
+ uint32_t pba_bir;
+ off_t offset;
+ off_t mem_size;
+ uintptr_t base;
+ ddi_acc_handle_t acc_hdl;
+ int i;
+
+ handle = igb->osdep.cfg_handle;
+
+ igb_log(igb, "Begin dump PCI config space");
+
+ igb_log(igb,
+ "PCI_CONF_VENID:\t0x%x\n",
+ pci_config_get16(handle, PCI_CONF_VENID));
+ igb_log(igb,
+ "PCI_CONF_DEVID:\t0x%x\n",
+ pci_config_get16(handle, PCI_CONF_DEVID));
+ igb_log(igb,
+ "PCI_CONF_COMMAND:\t0x%x\n",
+ pci_config_get16(handle, PCI_CONF_COMM));
+ igb_log(igb,
+ "PCI_CONF_STATUS:\t0x%x\n",
+ pci_config_get16(handle, PCI_CONF_STAT));
+ igb_log(igb,
+ "PCI_CONF_REVID:\t0x%x\n",
+ pci_config_get8(handle, PCI_CONF_REVID));
+ igb_log(igb,
+ "PCI_CONF_PROG_CLASS:\t0x%x\n",
+ pci_config_get8(handle, PCI_CONF_PROGCLASS));
+ igb_log(igb,
+ "PCI_CONF_SUB_CLASS:\t0x%x\n",
+ pci_config_get8(handle, PCI_CONF_SUBCLASS));
+ igb_log(igb,
+ "PCI_CONF_BAS_CLASS:\t0x%x\n",
+ pci_config_get8(handle, PCI_CONF_BASCLASS));
+ igb_log(igb,
+ "PCI_CONF_CACHE_LINESZ:\t0x%x\n",
+ pci_config_get8(handle, PCI_CONF_CACHE_LINESZ));
+ igb_log(igb,
+ "PCI_CONF_LATENCY_TIMER:\t0x%x\n",
+ pci_config_get8(handle, PCI_CONF_LATENCY_TIMER));
+ igb_log(igb,
+ "PCI_CONF_HEADER_TYPE:\t0x%x\n",
+ pci_config_get8(handle, PCI_CONF_HEADER));
+ igb_log(igb,
+ "PCI_CONF_BIST:\t0x%x\n",
+ pci_config_get8(handle, PCI_CONF_BIST));
+ igb_log(igb,
+ "PCI_CONF_BASE0:\t0x%x\n",
+ pci_config_get32(handle, PCI_CONF_BASE0));
+ igb_log(igb,
+ "PCI_CONF_BASE1:\t0x%x\n",
+ pci_config_get32(handle, PCI_CONF_BASE1));
+ igb_log(igb,
+ "PCI_CONF_BASE2:\t0x%x\n",
+ pci_config_get32(handle, PCI_CONF_BASE2));
+
+ /* MSI-X BAR */
+ msix_bar = pci_config_get32(handle, PCI_CONF_BASE3);
+ igb_log(igb,
+ "PCI_CONF_BASE3:\t0x%x\n", msix_bar);
+
+ igb_log(igb,
+ "PCI_CONF_BASE4:\t0x%x\n",
+ pci_config_get32(handle, PCI_CONF_BASE4));
+ igb_log(igb,
+ "PCI_CONF_BASE5:\t0x%x\n",
+ pci_config_get32(handle, PCI_CONF_BASE5));
+ igb_log(igb,
+ "PCI_CONF_CIS:\t0x%x\n",
+ pci_config_get32(handle, PCI_CONF_CIS));
+ igb_log(igb,
+ "PCI_CONF_SUBVENID:\t0x%x\n",
+ pci_config_get16(handle, PCI_CONF_SUBVENID));
+ igb_log(igb,
+ "PCI_CONF_SUBSYSID:\t0x%x\n",
+ pci_config_get16(handle, PCI_CONF_SUBSYSID));
+ igb_log(igb,
+ "PCI_CONF_ROM:\t0x%x\n",
+ pci_config_get32(handle, PCI_CONF_ROM));
+
+ cap_ptr = pci_config_get8(handle, PCI_CONF_CAP_PTR);
+
+ igb_log(igb,
+ "PCI_CONF_CAP_PTR:\t0x%x\n", cap_ptr);
+ igb_log(igb,
+ "PCI_CONF_ILINE:\t0x%x\n",
+ pci_config_get8(handle, PCI_CONF_ILINE));
+ igb_log(igb,
+ "PCI_CONF_IPIN:\t0x%x\n",
+ pci_config_get8(handle, PCI_CONF_IPIN));
+ igb_log(igb,
+ "PCI_CONF_MIN_G:\t0x%x\n",
+ pci_config_get8(handle, PCI_CONF_MIN_G));
+ igb_log(igb,
+ "PCI_CONF_MAX_L:\t0x%x\n",
+ pci_config_get8(handle, PCI_CONF_MAX_L));
+
+ /* Power Management */
+ offset = cap_ptr;
+
+ igb_log(igb,
+ "PCI_PM_CAP_ID:\t0x%x\n",
+ pci_config_get8(handle, offset));
+
+ next_ptr = pci_config_get8(handle, offset + 1);
+
+ igb_log(igb,
+ "PCI_PM_NEXT_PTR:\t0x%x\n", next_ptr);
+ igb_log(igb,
+ "PCI_PM_CAP:\t0x%x\n",
+ pci_config_get16(handle, offset + PCI_PMCAP));
+ igb_log(igb,
+ "PCI_PM_CSR:\t0x%x\n",
+ pci_config_get16(handle, offset + PCI_PMCSR));
+ igb_log(igb,
+ "PCI_PM_CSR_BSE:\t0x%x\n",
+ pci_config_get8(handle, offset + PCI_PMCSR_BSE));
+ igb_log(igb,
+ "PCI_PM_DATA:\t0x%x\n",
+ pci_config_get8(handle, offset + PCI_PMDATA));
+
+ /* MSI Configuration */
+ offset = next_ptr;
+
+ igb_log(igb,
+ "PCI_MSI_CAP_ID:\t0x%x\n",
+ pci_config_get8(handle, offset));
+
+ next_ptr = pci_config_get8(handle, offset + 1);
+
+ igb_log(igb,
+ "PCI_MSI_NEXT_PTR:\t0x%x\n", next_ptr);
+ igb_log(igb,
+ "PCI_MSI_CTRL:\t0x%x\n",
+ pci_config_get16(handle, offset + PCI_MSI_CTRL));
+ igb_log(igb,
+ "PCI_MSI_ADDR:\t0x%x\n",
+ pci_config_get32(handle, offset + PCI_MSI_ADDR_OFFSET));
+ igb_log(igb,
+ "PCI_MSI_ADDR_HI:\t0x%x\n",
+ pci_config_get32(handle, offset + 0x8));
+ igb_log(igb,
+ "PCI_MSI_DATA:\t0x%x\n",
+ pci_config_get16(handle, offset + 0xC));
+
+ /* MSI-X Configuration */
+ offset = next_ptr;
+
+ igb_log(igb,
+ "PCI_MSIX_CAP_ID:\t0x%x\n",
+ pci_config_get8(handle, offset));
+
+ next_ptr = pci_config_get8(handle, offset + 1);
+ igb_log(igb,
+ "PCI_MSIX_NEXT_PTR:\t0x%x\n", next_ptr);
+
+ msix_ctrl = pci_config_get16(handle, offset + PCI_MSIX_CTRL);
+ msix_tbl_sz = msix_ctrl & 0x7ff;
+ igb_log(igb,
+ "PCI_MSIX_CTRL:\t0x%x\n", msix_ctrl);
+
+ tbl_offset = pci_config_get32(handle, offset + PCI_MSIX_TBL_OFFSET);
+ tbl_bir = tbl_offset & PCI_MSIX_TBL_BIR_MASK;
+ tbl_offset = tbl_offset & ~PCI_MSIX_TBL_BIR_MASK;
+ igb_log(igb,
+ "PCI_MSIX_TBL_OFFSET:\t0x%x\n", tbl_offset);
+ igb_log(igb,
+ "PCI_MSIX_TBL_BIR:\t0x%x\n", tbl_bir);
+
+ pba_offset = pci_config_get32(handle, offset + PCI_MSIX_PBA_OFFSET);
+ pba_bir = pba_offset & PCI_MSIX_PBA_BIR_MASK;
+ pba_offset = pba_offset & ~PCI_MSIX_PBA_BIR_MASK;
+ igb_log(igb,
+ "PCI_MSIX_PBA_OFFSET:\t0x%x\n", pba_offset);
+ igb_log(igb,
+ "PCI_MSIX_PBA_BIR:\t0x%x\n", pba_bir);
+
+ /* PCI Express Configuration */
+ offset = next_ptr;
+
+ igb_log(igb,
+ "PCIE_CAP_ID:\t0x%x\n",
+ pci_config_get8(handle, offset + PCIE_CAP_ID));
+
+ next_ptr = pci_config_get8(handle, offset + PCIE_CAP_NEXT_PTR);
+
+ igb_log(igb,
+ "PCIE_CAP_NEXT_PTR:\t0x%x\n", next_ptr);
+ igb_log(igb,
+ "PCIE_PCIECAP:\t0x%x\n",
+ pci_config_get16(handle, offset + PCIE_PCIECAP));
+ igb_log(igb,
+ "PCIE_DEVCAP:\t0x%x\n",
+ pci_config_get32(handle, offset + PCIE_DEVCAP));
+ igb_log(igb,
+ "PCIE_DEVCTL:\t0x%x\n",
+ pci_config_get16(handle, offset + PCIE_DEVCTL));
+ igb_log(igb,
+ "PCIE_DEVSTS:\t0x%x\n",
+ pci_config_get16(handle, offset + PCIE_DEVSTS));
+ igb_log(igb,
+ "PCIE_LINKCAP:\t0x%x\n",
+ pci_config_get32(handle, offset + PCIE_LINKCAP));
+ igb_log(igb,
+ "PCIE_LINKCTL:\t0x%x\n",
+ pci_config_get16(handle, offset + PCIE_LINKCTL));
+ igb_log(igb,
+ "PCIE_LINKSTS:\t0x%x\n",
+ pci_config_get16(handle, offset + PCIE_LINKSTS));
+
+ /* MSI-X Memory Space */
+ if (ddi_dev_regsize(igb->dip, 4, &mem_size) != DDI_SUCCESS) {
+ igb_log(igb, "ddi_dev_regsize() failed");
+ return;
+ }
+
+ if ((ddi_regs_map_setup(igb->dip, 4, (caddr_t *)&base, 0, mem_size,
+ &igb_regs_acc_attr, &acc_hdl)) != DDI_SUCCESS) {
+ igb_log(igb, "ddi_regs_map_setup() failed");
+ return;
+ }
+
+ igb_log(igb, "MSI-X Memory Space: (mem_size = %d, base = %x)",
+ mem_size, base);
+
+ for (i = 0; i <= msix_tbl_sz; i++) {
+ igb_log(igb, "MSI-X Table Entry(%d):", i);
+ igb_log(igb, "lo_addr:\t%x",
+ ddi_get32(acc_hdl,
+ (uint32_t *)(base + tbl_offset + (i * 16))));
+ igb_log(igb, "up_addr:\t%x",
+ ddi_get32(acc_hdl,
+ (uint32_t *)(base + tbl_offset + (i * 16) + 4)));
+ igb_log(igb, "msg_data:\t%x",
+ ddi_get32(acc_hdl,
+ (uint32_t *)(base + tbl_offset + (i * 16) + 8)));
+ igb_log(igb, "vct_ctrl:\t%x",
+ ddi_get32(acc_hdl,
+ (uint32_t *)(base + tbl_offset + (i * 16) + 12)));
+ }
+
+ igb_log(igb, "MSI-X Pending Bits:\t%x",
+ ddi_get32(acc_hdl, (uint32_t *)(base + pba_offset)));
+
+ ddi_regs_map_free(&acc_hdl);
+}
+#endif
diff --git a/usr/src/uts/common/io/igb/igb_debug.h b/usr/src/uts/common/io/igb/igb_debug.h
new file mode 100644
index 0000000000..a21745537e
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_debug.h
@@ -0,0 +1,83 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#ifndef _IGB_DEBUG_H
+#define _IGB_DEBUG_H
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+#ifdef DEBUG
+#define IGB_DEBUG
+#endif
+
+#ifdef IGB_DEBUG
+
+#define IGB_DEBUGLOG_0(adapter, fmt) \
+ igb_log((adapter), (fmt))
+#define IGB_DEBUGLOG_1(adapter, fmt, d1) \
+ igb_log((adapter), (fmt), (d1))
+#define IGB_DEBUGLOG_2(adapter, fmt, d1, d2) \
+ igb_log((adapter), (fmt), (d1), (d2))
+#define IGB_DEBUGLOG_3(adapter, fmt, d1, d2, d3) \
+ igb_log((adapter), (fmt), (d1), (d2), (d3))
+
+#define IGB_DEBUG_STAT_COND(val, cond) if (cond) (val)++;
+#define IGB_DEBUG_STAT(val) (val)++;
+
+#else
+
+#define IGB_DEBUGLOG_0(adapter, fmt)
+#define IGB_DEBUGLOG_1(adapter, fmt, d1)
+#define IGB_DEBUGLOG_2(adapter, fmt, d1, d2)
+#define IGB_DEBUGLOG_3(adapter, fmt, d1, d2, d3)
+
+#define IGB_DEBUG_STAT_COND(val, cond)
+#define IGB_DEBUG_STAT(val)
+
+#endif /* IGB_DEBUG */
+
+#define IGB_STAT(val) (val)++;
+
+#ifdef IGB_DEBUG
+
+void pci_dump(void *);
+
+#endif /* IGB_DEBUG */
+
+extern void igb_log(void *, const char *, ...);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _IGB_DEBUG_H */
diff --git a/usr/src/uts/common/io/igb/igb_defines.h b/usr/src/uts/common/io/igb/igb_defines.h
new file mode 100644
index 0000000000..abed173c46
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_defines.h
@@ -0,0 +1,1474 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#ifndef _IGB_DEFINES_H
+#define _IGB_DEFINES_H
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
+#define REQ_TX_DESCRIPTOR_MULTIPLE 8
+#define REQ_RX_DESCRIPTOR_MULTIPLE 8
+
+/* Definitions for power management and wakeup registers */
+/* Wake Up Control */
+#define E1000_WUC_APME 0x00000001 /* APM Enable */
+#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
+#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */
+#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */
+#define E1000_WUC_LSCWE 0x00000010 /* Link Status wake up enable */
+#define E1000_WUC_LSCWO 0x00000020 /* Link Status wake up override */
+#define E1000_WUC_SPM 0x80000000 /* Enable SPM */
+#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */
+
+/* Wake Up Filter Control */
+#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
+#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
+#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
+#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
+#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
+#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
+#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */
+#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */
+#define E1000_WUFC_IGNORE_TCO_BM 0x00000800 /* Ignore WakeOn TCO packets */
+#define E1000_WUFC_FLX0_BM 0x00001000 /* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1_BM 0x00002000 /* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2_BM 0x00004000 /* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3_BM 0x00008000 /* Flexible Filter 3 Enable */
+#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */
+#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */
+#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */
+#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */
+#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */
+/* Mask for all wakeup filters */
+#define E1000_WUFC_ALL_FILTERS_BM 0x0000F0FF
+/* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_OFFSET_BM 12
+/* Mask for the 4 flexible filters */
+#define E1000_WUFC_FLX_FILTERS_BM 0x0000F000
+#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */
+#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */
+#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */
+
+/* Wake Up Status */
+#define E1000_WUS_LNKC E1000_WUFC_LNKC
+#define E1000_WUS_MAG E1000_WUFC_MAG
+#define E1000_WUS_EX E1000_WUFC_EX
+#define E1000_WUS_MC E1000_WUFC_MC
+#define E1000_WUS_BC E1000_WUFC_BC
+#define E1000_WUS_ARP E1000_WUFC_ARP
+#define E1000_WUS_IPV4 E1000_WUFC_IPV4
+#define E1000_WUS_IPV6 E1000_WUFC_IPV6
+#define E1000_WUS_FLX0_BM E1000_WUFC_FLX0_BM
+#define E1000_WUS_FLX1_BM E1000_WUFC_FLX1_BM
+#define E1000_WUS_FLX2_BM E1000_WUFC_FLX2_BM
+#define E1000_WUS_FLX3_BM E1000_WUFC_FLX3_BM
+#define E1000_WUS_FLX_FILTERS_BM E1000_WUFC_FLX_FILTERS_BM
+#define E1000_WUS_FLX0 E1000_WUFC_FLX0
+#define E1000_WUS_FLX1 E1000_WUFC_FLX1
+#define E1000_WUS_FLX2 E1000_WUFC_FLX2
+#define E1000_WUS_FLX3 E1000_WUFC_FLX3
+#define E1000_WUS_FLX_FILTERS E1000_WUFC_FLX_FILTERS
+
+/* Wake Up Packet Length */
+#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */
+
+/* Four Flexible Filters are supported */
+#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4
+
+/* Each Flexible Filter is at most 128 (0x80) bytes in length */
+#define E1000_FLEXIBLE_FILTER_SIZE_MAX 128
+
+#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX
+#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX
+
+/* Extended Device Control */
+#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */
+#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */
+#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN
+#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */
+#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */
+/* Reserved (bits 4,5) in >= 82575 */
+#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */
+#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */
+#define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA
+#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */
+#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
+/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */
+#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */
+#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */
+#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */
+#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */
+#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */
+#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
+#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */
+#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
+#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
+#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_KMRN 0x00000000
+#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000
+#define E1000_CTRL_EXT_LINK_MODE_PCIX_SERDES 0x00800000
+#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000
+#define E1000_CTRL_EXT_EIAME 0x01000000
+#define E1000_CTRL_EXT_IRCA 0x00000001
+#define E1000_CTRL_EXT_WR_WMARK_MASK 0x03000000
+#define E1000_CTRL_EXT_WR_WMARK_256 0x00000000
+#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
+#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
+#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
+#define E1000_CTRL_EXT_CANC 0x04000000 /* Interrupt delay cancellation */
+#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
+/* IAME enable bit (27) was removed in >= 82575 */
+/* Interrupt acknowledge Auto-mask */
+#define E1000_CTRL_EXT_IAME 0x08000000
+/* Clear Interrupt timers after IMS clear */
+#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000
+/* packet buffer parity error detection enabled */
+#define E1000_CRTL_EXT_PB_PAREN 0x01000000
+/* descriptor FIFO parity error detection enable */
+#define E1000_CTRL_EXT_DF_PAREN 0x02000000
+#define E1000_CTRL_EXT_GHOST_PAREN 0x40000000
+#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */
+#define E1000_I2CCMD_REG_ADDR_SHIFT 16
+#define E1000_I2CCMD_REG_ADDR 0x00FF0000
+#define E1000_I2CCMD_PHY_ADDR_SHIFT 24
+#define E1000_I2CCMD_PHY_ADDR 0x07000000
+#define E1000_I2CCMD_OPCODE_READ 0x08000000
+#define E1000_I2CCMD_OPCODE_WRITE 0x00000000
+#define E1000_I2CCMD_RESET 0x10000000
+#define E1000_I2CCMD_READY 0x20000000
+#define E1000_I2CCMD_INTERRUPT_ENA 0x40000000
+#define E1000_I2CCMD_ERROR 0x80000000
+#define E1000_MAX_SGMII_PHY_REG_ADDR 255
+#define E1000_I2CCMD_PHY_TIMEOUT 200
+
+/* Receive Decriptor bit definitions */
+#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
+#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
+#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
+#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
+#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */
+#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
+#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */
+#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */
+#define E1000_RXD_STAT_CRCV 0x100 /* Speculative CRC Valid */
+#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */
+#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */
+#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */
+#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */
+#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
+#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
+#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
+#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
+#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
+#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */
+#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
+#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
+#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */
+#define E1000_RXD_SPC_PRI_SHIFT 13
+#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */
+#define E1000_RXD_SPC_CFI_SHIFT 12
+
+#define E1000_RXDEXT_STATERR_CE 0x01000000
+#define E1000_RXDEXT_STATERR_SE 0x02000000
+#define E1000_RXDEXT_STATERR_SEQ 0x04000000
+#define E1000_RXDEXT_STATERR_CXE 0x10000000
+#define E1000_RXDEXT_STATERR_TCPE 0x20000000
+#define E1000_RXDEXT_STATERR_IPE 0x40000000
+#define E1000_RXDEXT_STATERR_RXE 0x80000000
+
+/* mask to determine if packets should be dropped due to frame errors */
+#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
+ E1000_RXD_ERR_CE | \
+ E1000_RXD_ERR_SE | \
+ E1000_RXD_ERR_SEQ | \
+ E1000_RXD_ERR_CXE | \
+ E1000_RXD_ERR_RXE)
+
+/* Same mask, but for extended and packet split descriptors */
+#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
+ E1000_RXDEXT_STATERR_CE | \
+ E1000_RXDEXT_STATERR_SE | \
+ E1000_RXDEXT_STATERR_SEQ | \
+ E1000_RXDEXT_STATERR_CXE | \
+ E1000_RXDEXT_STATERR_RXE)
+
+#define E1000_MRQC_ENABLE_MASK 0x00000007
+#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001
+#define E1000_MRQC_ENABLE_RSS_INT 0x00000004
+#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000
+#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
+#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
+#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
+#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
+#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
+
+#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
+#define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF
+
+/* Management Control */
+#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
+#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
+#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */
+#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */
+#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */
+#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */
+#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */
+#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */
+#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
+/* Enable Neighbor Discovery Filtering */
+#define E1000_MANC_NEIGHBOR_EN 0x00004000
+#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */
+#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */
+#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
+#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */
+#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */
+#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
+/* Enable MAC address filtering */
+#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000
+/* Enable MNG packets to host memory */
+#define E1000_MANC_EN_MNG2HOST 0x00200000
+/* Enable IP address filtering */
+#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000
+#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable cksum filtering */
+#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */
+#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */
+#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */
+#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */
+#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */
+#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */
+#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */
+
+#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */
+#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */
+
+/* Receive Control */
+#define E1000_RCTL_RST 0x00000001 /* Software reset */
+#define E1000_RCTL_EN 0x00000002 /* enable */
+#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
+#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
+#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
+#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
+#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
+#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
+#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */
+#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
+#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */
+#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
+#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */
+#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */
+#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
+#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */
+#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */
+#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */
+#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
+#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */
+#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
+#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */
+#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */
+#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */
+#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */
+/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
+#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */
+#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */
+#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */
+#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
+#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
+#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
+#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */
+#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
+#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
+#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
+#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */
+#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */
+
+/*
+ * Use byte values for the following shift parameters
+ * Usage:
+ * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
+ * E1000_PSRCTL_BSIZE0_MASK) |
+ * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
+ * E1000_PSRCTL_BSIZE1_MASK) |
+ * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
+ * E1000_PSRCTL_BSIZE2_MASK) |
+ * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
+ * E1000_PSRCTL_BSIZE3_MASK))
+ * where value0 = [128..16256], default=256
+ * value1 = [1024..64512], default=4096
+ * value2 = [0..64512], default=4096
+ * value3 = [0..64512], default=0
+ */
+
+#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
+#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
+#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
+#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
+
+#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
+#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
+#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
+#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
+
+/* SWFW_SYNC Definitions */
+#define E1000_SWFW_EEP_SM 0x1
+#define E1000_SWFW_PHY0_SM 0x2
+#define E1000_SWFW_PHY1_SM 0x4
+
+/* FACTPS Definitions */
+#define E1000_FACTPS_LFS 0x40000000 /* LAN Function Select */
+/* Device Control */
+#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
+#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */
+#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */
+#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /* Block new Master requests */
+#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
+#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */
+#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */
+#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
+#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
+#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
+#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
+#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
+#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
+#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
+#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */
+#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
+#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
+#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */
+/* Defined polarity of Dock/Undock indication in SDP[0] */
+#define E1000_CTRL_D_UD_POLARITY 0x00004000
+/* Reset both PHY ports, through PHYRST_N pin */
+#define E1000_CTRL_FORCE_PHY_RESET 0x00008000
+/* enable link status from external LINK_0 and LINK_1 pins */
+#define E1000_CTRL_EXT_LINK_EN 0x00010000
+#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
+#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
+#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */
+#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */
+#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
+#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */
+#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */
+#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */
+#define E1000_CTRL_RST 0x04000000 /* Global reset */
+#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
+#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
+#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
+#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
+#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
+/* Initiate an interrupt to manageability engine */
+#define E1000_CTRL_SW2FW_INT 0x02000000
+#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */
+
+/*
+ * Bit definitions for the Management Data IO (MDIO) and Management Data
+ * Clock (MDC) pins in the Device Control Register.
+ */
+#define E1000_CTRL_PHY_RESET_DIR E1000_CTRL_SWDPIO0
+#define E1000_CTRL_PHY_RESET E1000_CTRL_SWDPIN0
+#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2
+#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2
+#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3
+#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3
+#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR
+#define E1000_CTRL_PHY_RESET4 E1000_CTRL_EXT_SDP4_DATA
+
+#define E1000_CONNSW_ENRGSRC 0x4
+#define E1000_PCS_LCTL_FLV_LINK_UP 1
+#define E1000_PCS_LCTL_FSV_10 0
+#define E1000_PCS_LCTL_FSV_100 2
+#define E1000_PCS_LCTL_FSV_1000 4
+#define E1000_PCS_LCTL_FDV_FULL 8
+#define E1000_PCS_LCTL_FSD 0x10
+#define E1000_PCS_LCTL_FORCE_LINK 0x20
+#define E1000_PCS_LCTL_LOW_LINK_LATCH 0x40
+#define E1000_PCS_LCTL_AN_ENABLE 0x10000
+#define E1000_PCS_LCTL_AN_RESTART 0x20000
+#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000
+#define E1000_PCS_LCTL_AN_SGMII_BYPASS 0x80000
+#define E1000_PCS_LCTL_AN_SGMII_TRIGGER 0x100000
+#define E1000_PCS_LCTL_FAST_LINK_TIMER 0x1000000
+#define E1000_PCS_LCTL_LINK_OK_FIX 0x2000000
+#define E1000_PCS_LCTL_CRS_ON_NI 0x4000000
+#define E1000_ENABLE_SERDES_LOOPBACK 0x0410
+
+#define E1000_PCS_LSTS_LINK_OK 1
+#define E1000_PCS_LSTS_SPEED_10 0
+#define E1000_PCS_LSTS_SPEED_100 2
+#define E1000_PCS_LSTS_SPEED_1000 4
+#define E1000_PCS_LSTS_DUPLEX_FULL 8
+#define E1000_PCS_LSTS_SYNK_OK 0x10
+#define E1000_PCS_LSTS_AN_COMPLETE 0x10000
+#define E1000_PCS_LSTS_AN_PAGE_RX 0x20000
+#define E1000_PCS_LSTS_AN_TIMED_OUT 0x40000
+#define E1000_PCS_LSTS_AN_REMOTE_FAULT 0x80000
+#define E1000_PCS_LSTS_AN_ERROR_RWS 0x100000
+
+/* Device Status */
+#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
+#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
+#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
+#define E1000_STATUS_FUNC_SHIFT 2
+#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */
+#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
+#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
+#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */
+#define E1000_STATUS_SPEED_MASK 0x000000C0
+#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
+#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
+#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
+#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */
+#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
+/* Change in Dock/Undock state. Clear on write '0'. */
+#define E1000_STATUS_DOCK_CI 0x00000800
+/* Status of Master requests. */
+#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000
+#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */
+#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */
+#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */
+#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */
+#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */
+#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */
+#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */
+#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */
+#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */
+/* BMC external code execution disabled */
+#define E1000_STATUS_BMC_LITE 0x01000000
+#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */
+#define E1000_STATUS_FUSE_8 0x04000000
+#define E1000_STATUS_FUSE_9 0x08000000
+#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */
+#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */
+
+/* Constants used to intrepret the masked PCI-X bus speed. */
+#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */
+#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */
+#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */
+
+#define SPEED_10 10
+#define SPEED_100 100
+#define SPEED_1000 1000
+#define HALF_DUPLEX 1
+#define FULL_DUPLEX 2
+
+#define PHY_FORCE_TIME 20
+
+#define ADVERTISE_10_HALF 0x0001
+#define ADVERTISE_10_FULL 0x0002
+#define ADVERTISE_100_HALF 0x0004
+#define ADVERTISE_100_FULL 0x0008
+#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
+#define ADVERTISE_1000_FULL 0x0020
+
+/* 1000/H is not supported, nor spec-compliant. */
+#define E1000_ALL_SPEED_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+ ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
+ ADVERTISE_1000_FULL)
+#define E1000_ALL_NOT_GIG (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
+ ADVERTISE_100_HALF | ADVERTISE_100_FULL)
+#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL)
+#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL)
+#define E1000_ALL_FULL_DUPLEX (ADVERTISE_10_FULL | ADVERTISE_100_FULL | \
+ ADVERTISE_1000_FULL)
+#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF)
+
+#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX
+
+/* LED Control */
+#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
+#define E1000_LEDCTL_LED0_MODE_SHIFT 0
+#define E1000_LEDCTL_LED0_BLINK_RATE 0x00000020
+#define E1000_LEDCTL_LED0_IVRT 0x00000040
+#define E1000_LEDCTL_LED0_BLINK 0x00000080
+#define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00
+#define E1000_LEDCTL_LED1_MODE_SHIFT 8
+#define E1000_LEDCTL_LED1_BLINK_RATE 0x00002000
+#define E1000_LEDCTL_LED1_IVRT 0x00004000
+#define E1000_LEDCTL_LED1_BLINK 0x00008000
+#define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000
+#define E1000_LEDCTL_LED2_MODE_SHIFT 16
+#define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000
+#define E1000_LEDCTL_LED2_IVRT 0x00400000
+#define E1000_LEDCTL_LED2_BLINK 0x00800000
+#define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000
+#define E1000_LEDCTL_LED3_MODE_SHIFT 24
+#define E1000_LEDCTL_LED3_BLINK_RATE 0x20000000
+#define E1000_LEDCTL_LED3_IVRT 0x40000000
+#define E1000_LEDCTL_LED3_BLINK 0x80000000
+
+#define E1000_LEDCTL_MODE_LINK_10_1000 0x0
+#define E1000_LEDCTL_MODE_LINK_100_1000 0x1
+#define E1000_LEDCTL_MODE_LINK_UP 0x2
+#define E1000_LEDCTL_MODE_ACTIVITY 0x3
+#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4
+#define E1000_LEDCTL_MODE_LINK_10 0x5
+#define E1000_LEDCTL_MODE_LINK_100 0x6
+#define E1000_LEDCTL_MODE_LINK_1000 0x7
+#define E1000_LEDCTL_MODE_PCIX_MODE 0x8
+#define E1000_LEDCTL_MODE_FULL_DUPLEX 0x9
+#define E1000_LEDCTL_MODE_COLLISION 0xA
+#define E1000_LEDCTL_MODE_BUS_SPEED 0xB
+#define E1000_LEDCTL_MODE_BUS_SIZE 0xC
+#define E1000_LEDCTL_MODE_PAUSED 0xD
+#define E1000_LEDCTL_MODE_LED_ON 0xE
+#define E1000_LEDCTL_MODE_LED_OFF 0xF
+
+/* Transmit Descriptor bit definitions */
+#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
+#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */
+#define E1000_TXD_POPTS_SHIFT 8 /* POPTS shift */
+#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
+#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
+#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
+#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
+#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
+#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
+#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
+#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0=legacy) */
+#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
+#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
+#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
+#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
+#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
+#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
+#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
+#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
+#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
+#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
+/* Extended desc bits for Linksec and timesync */
+
+/* Transmit Control */
+#define E1000_TCTL_RST 0x00000001 /* software reset */
+#define E1000_TCTL_EN 0x00000002 /* enable tx */
+#define E1000_TCTL_BCE 0x00000004 /* busy check enable */
+#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
+#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
+#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
+#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */
+#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */
+#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
+#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */
+#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
+
+/* Transmit Arbitration Count */
+#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */
+
+/* SerDes Control */
+#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
+
+/* Receive Checksum Control */
+#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */
+#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */
+#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
+#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */
+#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */
+#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
+#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
+
+/* Header split receive */
+#define E1000_RFCTL_ISCSI_DIS 0x00000001
+#define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E
+#define E1000_RFCTL_ISCSI_DWC_SHIFT 1
+#define E1000_RFCTL_NFSW_DIS 0x00000040
+#define E1000_RFCTL_NFSR_DIS 0x00000080
+#define E1000_RFCTL_NFS_VER_MASK 0x00000300
+#define E1000_RFCTL_NFS_VER_SHIFT 8
+#define E1000_RFCTL_IPV6_DIS 0x00000400
+#define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800
+#define E1000_RFCTL_ACK_DIS 0x00001000
+#define E1000_RFCTL_ACKD_DIS 0x00002000
+#define E1000_RFCTL_IPFRSP_DIS 0x00004000
+#define E1000_RFCTL_EXTEN 0x00008000
+#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
+#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
+
+/* Collision related configuration parameters */
+#define E1000_COLLISION_THRESHOLD 15
+#define E1000_CT_SHIFT 4
+#define E1000_COLLISION_DISTANCE 63
+#define E1000_COLD_SHIFT 12
+
+/* Default values for the transmit IPG register */
+#define DEFAULT_82543_TIPG_IPGT_FIBER 9
+#define DEFAULT_82543_TIPG_IPGT_COPPER 8
+
+#define E1000_TIPG_IPGT_MASK 0x000003FF
+#define E1000_TIPG_IPGR1_MASK 0x000FFC00
+#define E1000_TIPG_IPGR2_MASK 0x3FF00000
+
+#define DEFAULT_82543_TIPG_IPGR1 8
+#define E1000_TIPG_IPGR1_SHIFT 10
+
+#define DEFAULT_82543_TIPG_IPGR2 6
+#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
+#define E1000_TIPG_IPGR2_SHIFT 20
+
+/* Ethertype field values */
+#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */
+
+#define ETHERNET_FCS_SIZE 4
+#define MAX_JUMBO_FRAME_SIZE 0x3F00
+
+/* Extended Configuration Control and Size */
+#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
+#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
+#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000
+#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000
+#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16
+
+#define E1000_PHY_CTRL_SPD_EN 0x00000001
+#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
+#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
+#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
+#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
+
+#define E1000_KABGTXD_BGSQLBIAS 0x00050000
+
+/* PBA constants */
+#define E1000_PBA_8K 0x0008 /* 8KB */
+#define E1000_PBA_12K 0x000C /* 12KB */
+#define E1000_PBA_16K 0x0010 /* 16KB */
+#define E1000_PBA_20K 0x0014
+#define E1000_PBA_22K 0x0016
+#define E1000_PBA_24K 0x0018
+#define E1000_PBA_30K 0x001E
+#define E1000_PBA_32K 0x0020
+#define E1000_PBA_34K 0x0022
+#define E1000_PBA_38K 0x0026
+#define E1000_PBA_40K 0x0028
+#define E1000_PBA_48K 0x0030 /* 48KB */
+#define E1000_PBA_64K 0x0040 /* 64KB */
+
+#define E1000_PBS_16K E1000_PBA_16K
+#define E1000_PBS_24K E1000_PBA_24K
+
+#define IFS_MAX 80
+#define IFS_MIN 40
+#define IFS_RATIO 4
+#define IFS_STEP 10
+#define MIN_NUM_XMITS 1000
+
+/* SW Semaphore Register */
+#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
+#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
+#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */
+#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
+
+/* Interrupt Cause Read */
+#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
+#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */
+#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
+#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */
+#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */
+#define E1000_ICR_RXO 0x00000040 /* rx overrun */
+#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
+#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
+#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */
+#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
+#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
+#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
+#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */
+#define E1000_ICR_TXD_LOW 0x00008000
+#define E1000_ICR_SRPD 0x00010000
+#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */
+#define E1000_ICR_MNG 0x00040000 /* Manageability event */
+#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */
+/* If this bit asserted, the driver should claim the interrupt */
+#define E1000_ICR_INT_ASSERTED 0x80000000
+/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICR_RXD_FIFO_PAR0 0x00100000
+/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR0 0x00200000
+/* host arb read buffer parity error */
+#define E1000_ICR_HOST_ARB_PAR 0x00400000
+#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */
+/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICR_RXD_FIFO_PAR1 0x01000000
+/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICR_TXD_FIFO_PAR1 0x02000000
+#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */
+/* FW changed the status of DISSW bit in the FWSM */
+#define E1000_ICR_DSW 0x00000020
+/* LAN connected device generates an interrupt */
+#define E1000_ICR_PHYINT 0x00001000
+#define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */
+#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */
+#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */
+#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */
+#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */
+#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */
+
+/* Extended Interrupt Cause Read */
+#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */
+#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */
+#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */
+#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */
+#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */
+#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */
+#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */
+#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */
+#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */
+#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */
+/* TCP Timer */
+#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */
+#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */
+#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */
+#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */
+
+/*
+ * This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register. Each bit is documented below:
+ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ * o RXSEQ = Receive Sequence Error
+ */
+#define POLL_IMS_ENABLE_MASK ( \
+ E1000_IMS_RXDMT0 | \
+ E1000_IMS_RXSEQ)
+
+/*
+ * This defines the bits that are set in the Interrupt Mask
+ * Set/Read Register. Each bit is documented below:
+ * o RXT0 = Receiver Timer Interrupt (ring 0)
+ * o TXDW = Transmit Descriptor Written Back
+ * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
+ * o RXSEQ = Receive Sequence Error
+ * o LSC = Link Status Change
+ */
+#define IMS_ENABLE_MASK ( \
+ E1000_IMS_RXT0 | \
+ E1000_IMS_TXDW | \
+ E1000_IMS_RXDMT0 | \
+ E1000_IMS_RXSEQ | \
+ E1000_IMS_LSC)
+
+/* Interrupt Mask Set */
+#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */
+#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_IMS_SRPD E1000_ICR_SRPD
+#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */
+#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */
+#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */
+/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0
+/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0
+/* host arb read buffer parity error */
+#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR
+/* packet buffer parity error */
+#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR
+/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1
+/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1
+#define E1000_IMS_DSW E1000_ICR_DSW
+#define E1000_IMS_PHYINT E1000_ICR_PHYINT
+#define E1000_IMS_EPRST E1000_ICR_EPRST
+#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */
+#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */
+#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */
+#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */
+#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */
+
+/* Extended Interrupt Mask Set */
+#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
+
+/* Interrupt Cause Set */
+#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
+#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */
+#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
+#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
+#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
+#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */
+#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
+#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */
+#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* Rx /c/ ordered set */
+#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */
+#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */
+#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */
+#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */
+#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW
+#define E1000_ICS_SRPD E1000_ICR_SRPD
+#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */
+#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */
+#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */
+/* queue 0 Rx descriptor FIFO parity error */
+#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0
+/* queue 0 Tx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0
+/* host arb read buffer parity error */
+#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR
+/* packet buffer parity error */
+#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR
+/* queue 1 Rx descriptor FIFO parity error */
+#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1
+/* queue 1 Tx descriptor FIFO parity error */
+#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1
+#define E1000_ICS_DSW E1000_ICR_DSW
+#define E1000_ICS_PHYINT E1000_ICR_PHYINT
+#define E1000_ICS_EPRST E1000_ICR_EPRST
+
+/* Extended Interrupt Cause Set */
+#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */
+#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */
+#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */
+#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */
+#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */
+#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */
+#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */
+#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */
+#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
+#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */
+
+/* Transmit Descriptor Control */
+#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
+#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
+#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
+#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
+#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */
+#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
+#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
+/* Enable the counting of descriptors still to be processed. */
+#define E1000_TXDCTL_COUNT_DESC 0x00400000
+
+/* Flow Control Constants */
+#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
+#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
+#define FLOW_CONTROL_TYPE 0x8808
+
+/* 802.1q VLAN Packet Size */
+#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */
+#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
+
+/* Receive Address */
+/*
+ * Number of high/low register pairs in the RAR. The RAR (Receive Address
+ * Registers) holds the directed and multicast addresses that we monitor.
+ * Technically, we have 16 spots. However, we reserve one of these spots
+ * (RAR[15]) for our directed address used by controllers with
+ * manageability enabled, allowing us room for 15 multicast addresses.
+ */
+#define E1000_RAR_ENTRIES 15
+#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
+
+/* Error Codes */
+#define E1000_SUCCESS 0
+#define E1000_ERR_NVM 1
+#define E1000_ERR_PHY 2
+#define E1000_ERR_CONFIG 3
+#define E1000_ERR_PARAM 4
+#define E1000_ERR_MAC_INIT 5
+#define E1000_ERR_PHY_TYPE 6
+#define E1000_ERR_RESET 9
+#define E1000_ERR_MASTER_REQUESTS_PENDING 10
+#define E1000_ERR_HOST_INTERFACE_COMMAND 11
+#define E1000_BLK_PHY_RESET 12
+#define E1000_ERR_SWFW_SYNC 13
+#define E1000_NOT_IMPLEMENTED 14
+
+/* Loop limit on how long we wait for auto-negotiation to complete */
+#define FIBER_LINK_UP_LIMIT 50
+#define COPPER_LINK_UP_LIMIT 10
+#define PHY_AUTO_NEG_LIMIT 45
+#define PHY_FORCE_LIMIT 20
+/* Number of 100 microseconds we wait for PCI Express master disable */
+#define MASTER_DISABLE_TIMEOUT 800
+/* Number of milliseconds we wait for PHY configuration done after MAC reset */
+#define PHY_CFG_TIMEOUT 100
+/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
+#define MDIO_OWNERSHIP_TIMEOUT 10
+/* Number of milliseconds for NVM auto read done after MAC reset. */
+#define AUTO_READ_DONE_TIMEOUT 10
+
+/* Flow Control */
+#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
+#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */
+#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
+#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
+
+/* Transmit Configuration Word */
+#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
+#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */
+#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
+#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
+#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
+#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */
+#define E1000_TXCW_NP 0x00008000 /* TXCW next page */
+#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */
+#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */
+#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
+
+/* Receive Configuration Word */
+#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
+#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */
+#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
+#define E1000_RXCW_CC 0x10000000 /* Receive config change */
+#define E1000_RXCW_C 0x20000000 /* Receive config */
+#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
+#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */
+
+/* PCI Express Control */
+#define E1000_GCR_RXD_NO_SNOOP 0x00000001
+#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
+#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
+#define E1000_GCR_TXD_NO_SNOOP 0x00000008
+#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
+#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
+
+#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
+ E1000_GCR_RXDSCW_NO_SNOOP | \
+ E1000_GCR_RXDSCR_NO_SNOOP | \
+ E1000_GCR_TXD_NO_SNOOP | \
+ E1000_GCR_TXDSCW_NO_SNOOP | \
+ E1000_GCR_TXDSCR_NO_SNOOP)
+
+/* PHY Control Register */
+#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */
+#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
+#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
+#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */
+#define MII_CR_POWER_DOWN 0x0800 /* Power down */
+#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
+#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */
+#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
+#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
+#define MII_CR_SPEED_1000 0x0040
+#define MII_CR_SPEED_100 0x2000
+#define MII_CR_SPEED_10 0x0000
+
+/* PHY Status Register */
+#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */
+#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */
+#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
+#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */
+#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */
+#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
+#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */
+#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */
+#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */
+#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */
+#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */
+#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */
+#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */
+#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */
+#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */
+
+/* Autoneg Advertisement Register */
+#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */
+#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
+#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
+#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
+#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
+#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */
+#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
+#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
+#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */
+#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Link Partner Ability Register (Base Page) */
+#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */
+#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */
+#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */
+#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */
+#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */
+#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */
+#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
+#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
+#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */
+#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */
+#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */
+
+/* Autoneg Expansion Register */
+#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
+#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */
+#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */
+#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */
+#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */
+
+/* 1000BASE-T Control Register */
+#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */
+#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
+#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
+#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */
+ /* 0=DTE device */
+#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
+ /* 0=Configure PHY as Slave */
+#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
+ /* 0=Automatic Master/Slave config */
+#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */
+#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */
+#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */
+#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */
+#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */
+
+/* 1000BASE-T Status Register */
+#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */
+#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */
+#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */
+#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */
+#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
+#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
+#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx is Master, 0=Slave */
+#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */
+
+#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5
+
+/* PHY 1000 MII Register/Bit Definitions */
+/* PHY Registers defined by IEEE */
+#define PHY_CONTROL 0x00 /* Control Register */
+#define PHY_STATUS 0x01 /* Status Regiser */
+#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
+#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
+#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
+#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
+#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
+#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */
+#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */
+#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
+#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
+#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
+
+/* NVM Control */
+#define E1000_EECD_SK 0x00000001 /* NVM Clock */
+#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */
+#define E1000_EECD_DI 0x00000004 /* NVM Data In */
+#define E1000_EECD_DO 0x00000008 /* NVM Data Out */
+#define E1000_EECD_FWE_MASK 0x00000030
+#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */
+#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */
+#define E1000_EECD_FWE_SHIFT 4
+#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
+#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
+#define E1000_EECD_PRES 0x00000100 /* NVM Present */
+#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
+/* NVM Addressing bits based on type 0=small, 1=large */
+#define E1000_EECD_ADDR_BITS 0x00000400
+#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */
+#ifndef E1000_NVM_GRANT_ATTEMPTS
+#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
+#endif
+#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
+#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
+#define E1000_EECD_SIZE_EX_SHIFT 11
+#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */
+#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */
+#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */
+#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
+#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
+#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */
+#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
+#define E1000_EECD_SECVAL_SHIFT 22
+
+#define E1000_NVM_SWDPIN0 0x0001 /* SWDPIN 0 NVM Value */
+#define E1000_NVM_LED_LOGIC 0x0020 /* Led Logic Word */
+/* Offset to data in NVM read/write registers */
+#define E1000_NVM_RW_REG_DATA 16
+#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
+#define E1000_NVM_RW_REG_START 1 /* Start operation */
+#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
+#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */
+#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */
+#define E1000_FLASH_UPDATES 2000
+
+/* NVM Word Offsets */
+#define NVM_COMPAT 0x0003
+#define NVM_ID_LED_SETTINGS 0x0004
+#define NVM_VERSION 0x0005
+/* For SERDES output amplitude adjustment. */
+#define NVM_SERDES_AMPLITUDE 0x0006
+#define NVM_PHY_CLASS_WORD 0x0007
+#define NVM_INIT_CONTROL1_REG 0x000A
+#define NVM_INIT_CONTROL2_REG 0x000F
+#define NVM_SWDEF_PINS_CTRL_PORT_1 0x0010
+#define NVM_INIT_CONTROL3_PORT_B 0x0014
+#define NVM_INIT_3GIO_3 0x001A
+#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020
+#define NVM_INIT_CONTROL3_PORT_A 0x0024
+#define NVM_CFG 0x0012
+#define NVM_FLASH_VERSION 0x0032
+#define NVM_ALT_MAC_ADDR_PTR 0x0037
+#define NVM_CHECKSUM_REG 0x003F
+
+#define E1000_NVM_CFG_DONE_PORT_0 0x40000 /* MNG config cycle done */
+#define E1000_NVM_CFG_DONE_PORT_1 0x80000 /* ...for second port */
+
+/* Mask bits for fields in Word 0x0f of the NVM */
+#define NVM_WORD0F_PAUSE_MASK 0x3000
+#define NVM_WORD0F_PAUSE 0x1000
+#define NVM_WORD0F_ASM_DIR 0x2000
+#define NVM_WORD0F_ANE 0x0800
+#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0
+#define NVM_WORD0F_LPLU 0x0001
+
+/* Mask bits for fields in Word 0x1a of the NVM */
+#define NVM_WORD1A_ASPM_MASK 0x000C
+
+/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
+#define NVM_SUM 0xBABA
+
+#define NVM_MAC_ADDR_OFFSET 0
+#define NVM_PBA_OFFSET_0 8
+#define NVM_PBA_OFFSET_1 9
+#define NVM_RESERVED_WORD 0xFFFF
+#define NVM_PHY_CLASS_A 0x8000
+#define NVM_SERDES_AMPLITUDE_MASK 0x000F
+#define NVM_SIZE_MASK 0x1C00
+#define NVM_SIZE_SHIFT 10
+#define NVM_WORD_SIZE_BASE_SHIFT 6
+#define NVM_SWDPIO_EXT_SHIFT 4
+
+/* NVM Commands - Microwire */
+#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */
+#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */
+#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */
+#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erast/write disable */
+
+/* NVM Commands - SPI */
+#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
+#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */
+#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */
+#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
+#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */
+#define NVM_WRDI_OPCODE_SPI 0x04 /* NVM reset Write Enable latch */
+#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */
+#define NVM_WRSR_OPCODE_SPI 0x01 /* NVM write Status register */
+
+/* SPI NVM Status Register */
+#define NVM_STATUS_RDY_SPI 0x01
+#define NVM_STATUS_WEN_SPI 0x02
+#define NVM_STATUS_BP0_SPI 0x04
+#define NVM_STATUS_BP1_SPI 0x08
+#define NVM_STATUS_WPEN_SPI 0x80
+
+/* Word definitions for ID LED Settings */
+#define ID_LED_RESERVED_0000 0x0000
+#define ID_LED_RESERVED_FFFF 0xFFFF
+#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
+ (ID_LED_OFF1_OFF2 << 8) | \
+ (ID_LED_DEF1_DEF2 << 4) | \
+ (ID_LED_DEF1_DEF2))
+#define ID_LED_DEF1_DEF2 0x1
+#define ID_LED_DEF1_ON2 0x2
+#define ID_LED_DEF1_OFF2 0x3
+#define ID_LED_ON1_DEF2 0x4
+#define ID_LED_ON1_ON2 0x5
+#define ID_LED_ON1_OFF2 0x6
+#define ID_LED_OFF1_DEF2 0x7
+#define ID_LED_OFF1_ON2 0x8
+#define ID_LED_OFF1_OFF2 0x9
+
+#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
+#define IGP_ACTIVITY_LED_ENABLE 0x0300
+#define IGP_LED3_MODE 0x07000000
+
+/* PCI/PCI-X/PCI-EX Config space */
+#define PCIX_COMMAND_REGISTER 0xE6
+#define PCIX_STATUS_REGISTER_LO 0xE8
+#define PCIX_STATUS_REGISTER_HI 0xEA
+#define PCI_HEADER_TYPE_REGISTER 0x0E
+#define PCIE_LINK_STATUS 0x12
+
+#define PCIX_COMMAND_MMRBC_MASK 0x000C
+#define PCIX_COMMAND_MMRBC_SHIFT 0x2
+#define PCIX_STATUS_HI_MMRBC_MASK 0x0060
+#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5
+#define PCIX_STATUS_HI_MMRBC_4K 0x3
+#define PCIX_STATUS_HI_MMRBC_2K 0x2
+#define PCIX_STATUS_LO_FUNC_MASK 0x7
+#define PCI_HEADER_TYPE_MULTIFUNC 0x80
+#define PCIE_LINK_WIDTH_MASK 0x3F0
+#define PCIE_LINK_WIDTH_SHIFT 4
+
+#ifndef ETH_ADDR_LEN
+#define ETH_ADDR_LEN 6
+#endif
+
+#define PHY_REVISION_MASK 0xFFFFFFF0
+#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
+#define MAX_PHY_MULTI_PAGE_REG 0xF
+
+/* Bit definitions for valid PHY IDs. */
+/*
+ * I = Integrated
+ * E = External
+ */
+#define M88E1000_E_PHY_ID 0x01410C50
+#define M88E1000_I_PHY_ID 0x01410C30
+#define M88E1011_I_PHY_ID 0x01410C20
+#define IGP01E1000_I_PHY_ID 0x02A80380
+#define M88E1011_I_REV_4 0x04
+#define M88E1111_I_PHY_ID 0x01410CC0
+#define GG82563_E_PHY_ID 0x01410CA0
+#define IGP03E1000_E_PHY_ID 0x02A80390
+#define IFE_E_PHY_ID 0x02A80330
+#define IFE_PLUS_E_PHY_ID 0x02A80320
+#define IFE_C_E_PHY_ID 0x02A80310
+#define BME1000_E_PHY_ID 0x01410CB0
+#define BME1000_E_PHY_ID_R2 0x01410CB1
+#define M88_VENDOR 0x0141
+
+/* M88E1000 Specific Registers */
+#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
+#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
+#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */
+#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */
+#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
+#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */
+
+#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */
+#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg29 for page number setting */
+#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
+#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */
+#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */
+
+/* M88E1000 PHY Specific Control Register */
+#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */
+#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
+#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */
+/* 1=CLK125 low, 0=CLK125 toggling */
+#define M88E1000_PSCR_CLK125_DISABLE 0x0010
+#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
+ /* Manual MDI configuration */
+#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
+/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
+#define M88E1000_PSCR_AUTO_X_1000T 0x0040
+/* Auto crossover enabled all speeds */
+#define M88E1000_PSCR_AUTO_X_MODE 0x0060
+/*
+ * 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold
+ * 0=Normal 10BASE-T Rx Threshold
+ */
+#define M88E1000_PSCR_EN_10BT_EXT_DIST 0x0080
+/* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */
+#define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100
+#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */
+#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */
+#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
+
+/* M88E1000 PHY Specific Status Register */
+#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */
+#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
+#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
+#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
+/*
+ * 0 = <50M
+ * 1 = 50-80M
+ * 2 = 80-110M
+ * 3 = 110-140M
+ * 4 = >140M
+ */
+#define M88E1000_PSSR_CABLE_LENGTH 0x0380
+#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */
+#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */
+#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */
+#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */
+#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
+#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */
+#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */
+#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
+
+#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
+
+/* M88E1000 Extended PHY Specific Control Register */
+#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */
+/*
+ * 1 = Lost lock detect enabled.
+ * Will assert lost lock and bring
+ * link down if idle not seen
+ * within 1ms in 1000BASE-T
+ */
+#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the master
+ */
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X 0x0400
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X 0x0800
+#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X 0x0C00
+/*
+ * Number of times we will attempt to autonegotiate before downshifting if we
+ * are the slave
+ */
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS 0x0000
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200
+#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300
+#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
+#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
+
+/* M88EC018 Rev 2 specific DownShift settings */
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00
+#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00
+
+/* BME1000 PHY Specific Control Register */
+#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */
+
+/*
+ * Bits...
+ * 15-5: page
+ * 4-0: register offset
+ */
+#define GG82563_PAGE_SHIFT 5
+#define GG82563_REG(page, reg) \
+ (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
+#define GG82563_MIN_ALT_REG 30
+
+/* GG82563 Specific Registers */
+#define GG82563_PHY_SPEC_CTRL \
+ GG82563_REG(0, 16) /* PHY Specific Control */
+#define GG82563_PHY_SPEC_STATUS \
+ GG82563_REG(0, 17) /* PHY Specific Status */
+#define GG82563_PHY_INT_ENABLE \
+ GG82563_REG(0, 18) /* Interrupt Enable */
+#define GG82563_PHY_SPEC_STATUS_2 \
+ GG82563_REG(0, 19) /* PHY Specific Status 2 */
+#define GG82563_PHY_RX_ERR_CNTR \
+ GG82563_REG(0, 21) /* Receive Error Counter */
+#define GG82563_PHY_PAGE_SELECT \
+ GG82563_REG(0, 22) /* Page Select */
+#define GG82563_PHY_SPEC_CTRL_2 \
+ GG82563_REG(0, 26) /* PHY Specific Control 2 */
+#define GG82563_PHY_PAGE_SELECT_ALT \
+ GG82563_REG(0, 29) /* Alternate Page Select */
+#define GG82563_PHY_TEST_CLK_CTRL \
+ GG82563_REG(0, 30) /* Test Clock Control (use reg. 29 to select) */
+
+#define GG82563_PHY_MAC_SPEC_CTRL \
+ GG82563_REG(2, 21) /* MAC Specific Control Register */
+#define GG82563_PHY_MAC_SPEC_CTRL_2 \
+ GG82563_REG(2, 26) /* MAC Specific Control 2 */
+
+#define GG82563_PHY_DSP_DISTANCE \
+ GG82563_REG(5, 26) /* DSP Distance */
+
+/* Page 193 - Port Control Registers */
+#define GG82563_PHY_KMRN_MODE_CTRL \
+ GG82563_REG(193, 16) /* Kumeran Mode Control */
+#define GG82563_PHY_PORT_RESET \
+ GG82563_REG(193, 17) /* Port Reset */
+#define GG82563_PHY_REVISION_ID \
+ GG82563_REG(193, 18) /* Revision ID */
+#define GG82563_PHY_DEVICE_ID \
+ GG82563_REG(193, 19) /* Device ID */
+#define GG82563_PHY_PWR_MGMT_CTRL \
+ GG82563_REG(193, 20) /* Power Management Control */
+#define GG82563_PHY_RATE_ADAPT_CTRL \
+ GG82563_REG(193, 25) /* Rate Adaptation Control */
+
+/* Page 194 - KMRN Registers */
+#define GG82563_PHY_KMRN_FIFO_CTRL_STAT \
+ GG82563_REG(194, 16) /* FIFO's Control/Status */
+#define GG82563_PHY_KMRN_CTRL \
+ GG82563_REG(194, 17) /* Control */
+#define GG82563_PHY_INBAND_CTRL \
+ GG82563_REG(194, 18) /* Inband Control */
+#define GG82563_PHY_KMRN_DIAGNOSTIC \
+ GG82563_REG(194, 19) /* Diagnostic */
+#define GG82563_PHY_ACK_TIMEOUTS \
+ GG82563_REG(194, 20) /* Acknowledge Timeouts */
+#define GG82563_PHY_ADV_ABILITY \
+ GG82563_REG(194, 21) /* Advertised Ability */
+#define GG82563_PHY_LINK_PARTNER_ADV_ABILITY \
+ GG82563_REG(194, 23) /* Link Partner Advertised Ability */
+#define GG82563_PHY_ADV_NEXT_PAGE \
+ GG82563_REG(194, 24) /* Advertised Next Page */
+#define GG82563_PHY_LINK_PARTNER_ADV_NEXT_PAGE \
+ GG82563_REG(194, 25) /* Link Partner Advertised Next page */
+#define GG82563_PHY_KMRN_MISC \
+ GG82563_REG(194, 26) /* Misc. */
+
+/* MDI Control */
+#define E1000_MDIC_DATA_MASK 0x0000FFFF
+#define E1000_MDIC_REG_MASK 0x001F0000
+#define E1000_MDIC_REG_SHIFT 16
+#define E1000_MDIC_PHY_MASK 0x03E00000
+#define E1000_MDIC_PHY_SHIFT 21
+#define E1000_MDIC_OP_WRITE 0x04000000
+#define E1000_MDIC_OP_READ 0x08000000
+#define E1000_MDIC_READY 0x10000000
+#define E1000_MDIC_INT_EN 0x20000000
+#define E1000_MDIC_ERROR 0x40000000
+
+/* SerDes Control */
+#define E1000_GEN_CTL_READY 0x80000000
+#define E1000_GEN_CTL_ADDRESS_SHIFT 8
+#define E1000_GEN_POLL_TIMEOUT 640
+
+#ifndef UNREFERENCED_PARAMETER
+#define UNREFERENCED_PARAMETER(_p)
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _IGB_DEFINES_H */
diff --git a/usr/src/uts/common/io/igb/igb_gld.c b/usr/src/uts/common/io/igb/igb_gld.c
new file mode 100644
index 0000000000..a493c624a4
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_gld.c
@@ -0,0 +1,888 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "igb_sw.h"
+
+int
+igb_m_stat(void *arg, uint_t stat, uint64_t *val)
+{
+ igb_t *igb = (igb_t *)arg;
+ struct e1000_hw *hw = &igb->hw;
+ igb_stat_t *igb_ks;
+ uint32_t low_val, high_val;
+
+ igb_ks = (igb_stat_t *)igb->igb_ks->ks_data;
+
+ mutex_enter(&igb->gen_lock);
+
+ if (igb->igb_state & IGB_SUSPENDED) {
+ mutex_exit(&igb->gen_lock);
+ return (ECANCELED);
+ }
+
+ switch (stat) {
+ case MAC_STAT_IFSPEED:
+ *val = igb->link_speed * 1000000ull;
+ break;
+
+ case MAC_STAT_MULTIRCV:
+ igb_ks->mprc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_MPRC);
+ *val = igb_ks->mprc.value.ui64;
+ break;
+
+ case MAC_STAT_BRDCSTRCV:
+ igb_ks->bprc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_BPRC);
+ *val = igb_ks->bprc.value.ui64;
+ break;
+
+ case MAC_STAT_MULTIXMT:
+ igb_ks->mptc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_MPTC);
+ *val = igb_ks->mptc.value.ui64;
+ break;
+
+ case MAC_STAT_BRDCSTXMT:
+ igb_ks->bptc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_BPTC);
+ *val = igb_ks->bptc.value.ui64;
+ break;
+
+ case MAC_STAT_NORCVBUF:
+ igb_ks->rnbc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_RNBC);
+ *val = igb_ks->rnbc.value.ui64;
+ break;
+
+ case MAC_STAT_IERRORS:
+ igb_ks->rxerrc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_RXERRC);
+ igb_ks->algnerrc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ igb_ks->rlec.value.ui64 +=
+ E1000_READ_REG(hw, E1000_RLEC);
+ igb_ks->crcerrs.value.ui64 +=
+ E1000_READ_REG(hw, E1000_CRCERRS);
+ igb_ks->cexterr.value.ui64 +=
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ *val = igb_ks->rxerrc.value.ui64 +
+ igb_ks->algnerrc.value.ui64 +
+ igb_ks->rlec.value.ui64 +
+ igb_ks->crcerrs.value.ui64 +
+ igb_ks->cexterr.value.ui64;
+ break;
+
+ case MAC_STAT_NOXMTBUF:
+ *val = 0;
+ break;
+
+ case MAC_STAT_OERRORS:
+ igb_ks->ecol.value.ui64 +=
+ E1000_READ_REG(hw, E1000_ECOL);
+ *val = igb_ks->ecol.value.ui64;
+ break;
+
+ case MAC_STAT_COLLISIONS:
+ igb_ks->colc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_COLC);
+ *val = igb_ks->colc.value.ui64;
+ break;
+
+ case MAC_STAT_RBYTES:
+ /*
+ * The 64-bit register will reset whenever the upper
+ * 32 bits are read. So we need to read the lower
+ * 32 bits first, then read the upper 32 bits.
+ */
+ low_val = E1000_READ_REG(hw, E1000_TORL);
+ high_val = E1000_READ_REG(hw, E1000_TORH);
+ igb_ks->tor.value.ui64 +=
+ (uint64_t)high_val << 32 | (uint64_t)low_val;
+ *val = igb_ks->tor.value.ui64;
+ break;
+
+ case MAC_STAT_IPACKETS:
+ igb_ks->tpr.value.ui64 +=
+ E1000_READ_REG(hw, E1000_TPR);
+ *val = igb_ks->tpr.value.ui64;
+ break;
+
+ case MAC_STAT_OBYTES:
+ /*
+ * The 64-bit register will reset whenever the upper
+ * 32 bits are read. So we need to read the lower
+ * 32 bits first, then read the upper 32 bits.
+ */
+ low_val = E1000_READ_REG(hw, E1000_TOTL);
+ high_val = E1000_READ_REG(hw, E1000_TOTH);
+ igb_ks->tot.value.ui64 +=
+ (uint64_t)high_val << 32 | (uint64_t)low_val;
+ *val = igb_ks->tot.value.ui64;
+ break;
+
+ case MAC_STAT_OPACKETS:
+ igb_ks->tpt.value.ui64 +=
+ E1000_READ_REG(hw, E1000_TPT);
+ *val = igb_ks->tpt.value.ui64;
+ break;
+
+ /* RFC 1643 stats */
+ case ETHER_STAT_ALIGN_ERRORS:
+ igb_ks->algnerrc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_ALGNERRC);
+ *val = igb_ks->algnerrc.value.ui64;
+ break;
+
+ case ETHER_STAT_FCS_ERRORS:
+ igb_ks->crcerrs.value.ui64 +=
+ E1000_READ_REG(hw, E1000_CRCERRS);
+ *val = igb_ks->crcerrs.value.ui64;
+ break;
+
+ case ETHER_STAT_FIRST_COLLISIONS:
+ igb_ks->scc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_SCC);
+ *val = igb_ks->scc.value.ui64;
+ break;
+
+ case ETHER_STAT_MULTI_COLLISIONS:
+ igb_ks->mcc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_MCC);
+ *val = igb_ks->mcc.value.ui64;
+ break;
+
+ case ETHER_STAT_SQE_ERRORS:
+ igb_ks->sec.value.ui64 +=
+ E1000_READ_REG(hw, E1000_SEC);
+ *val = igb_ks->sec.value.ui64;
+ break;
+
+ case ETHER_STAT_DEFER_XMTS:
+ igb_ks->dc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_DC);
+ *val = igb_ks->dc.value.ui64;
+ break;
+
+ case ETHER_STAT_TX_LATE_COLLISIONS:
+ igb_ks->latecol.value.ui64 +=
+ E1000_READ_REG(hw, E1000_LATECOL);
+ *val = igb_ks->latecol.value.ui64;
+ break;
+
+ case ETHER_STAT_EX_COLLISIONS:
+ igb_ks->ecol.value.ui64 +=
+ E1000_READ_REG(hw, E1000_ECOL);
+ *val = igb_ks->ecol.value.ui64;
+ break;
+
+ case ETHER_STAT_MACXMT_ERRORS:
+ igb_ks->ecol.value.ui64 +=
+ E1000_READ_REG(hw, E1000_ECOL);
+ *val = igb_ks->ecol.value.ui64;
+ break;
+
+ case ETHER_STAT_CARRIER_ERRORS:
+ igb_ks->cexterr.value.ui64 +=
+ E1000_READ_REG(hw, E1000_CEXTERR);
+ *val = igb_ks->cexterr.value.ui64;
+ break;
+
+ case ETHER_STAT_TOOLONG_ERRORS:
+ igb_ks->roc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_ROC);
+ *val = igb_ks->roc.value.ui64;
+ break;
+
+ case ETHER_STAT_MACRCV_ERRORS:
+ igb_ks->rxerrc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_RXERRC);
+ *val = igb_ks->rxerrc.value.ui64;
+ break;
+
+ /* MII/GMII stats */
+ case ETHER_STAT_XCVR_ADDR:
+ /* The Internal PHY's MDI address for each MAC is 1 */
+ *val = 1;
+ break;
+
+ case ETHER_STAT_XCVR_ID:
+ *val = hw->phy.id | hw->phy.revision;
+ break;
+
+ case ETHER_STAT_XCVR_INUSE:
+ switch (igb->link_speed) {
+ case SPEED_1000:
+ *val =
+ (hw->phy.media_type == e1000_media_type_copper) ?
+ XCVR_1000T : XCVR_1000X;
+ break;
+ case SPEED_100:
+ *val =
+ (hw->phy.media_type == e1000_media_type_copper) ?
+ (igb->param_100t4_cap == 1) ?
+ XCVR_100T4 : XCVR_100T2 : XCVR_100X;
+ break;
+ case SPEED_10:
+ *val = XCVR_10;
+ break;
+ default:
+ *val = XCVR_NONE;
+ break;
+ }
+ break;
+
+ case ETHER_STAT_CAP_1000FDX:
+ *val = igb->param_1000fdx_cap;
+ break;
+
+ case ETHER_STAT_CAP_1000HDX:
+ *val = igb->param_1000hdx_cap;
+ break;
+
+ case ETHER_STAT_CAP_100FDX:
+ *val = igb->param_100fdx_cap;
+ break;
+
+ case ETHER_STAT_CAP_100HDX:
+ *val = igb->param_100hdx_cap;
+ break;
+
+ case ETHER_STAT_CAP_10FDX:
+ *val = igb->param_10fdx_cap;
+ break;
+
+ case ETHER_STAT_CAP_10HDX:
+ *val = igb->param_10hdx_cap;
+ break;
+
+ case ETHER_STAT_CAP_ASMPAUSE:
+ *val = igb->param_asym_pause_cap;
+ break;
+
+ case ETHER_STAT_CAP_PAUSE:
+ *val = igb->param_pause_cap;
+ break;
+
+ case ETHER_STAT_CAP_AUTONEG:
+ *val = igb->param_autoneg_cap;
+ break;
+
+ case ETHER_STAT_ADV_CAP_1000FDX:
+ *val = igb->param_adv_1000fdx_cap;
+ break;
+
+ case ETHER_STAT_ADV_CAP_1000HDX:
+ *val = igb->param_adv_1000hdx_cap;
+ break;
+
+ case ETHER_STAT_ADV_CAP_100FDX:
+ *val = igb->param_adv_100fdx_cap;
+ break;
+
+ case ETHER_STAT_ADV_CAP_100HDX:
+ *val = igb->param_adv_100hdx_cap;
+ break;
+
+ case ETHER_STAT_ADV_CAP_10FDX:
+ *val = igb->param_adv_10fdx_cap;
+ break;
+
+ case ETHER_STAT_ADV_CAP_10HDX:
+ *val = igb->param_adv_10hdx_cap;
+ break;
+
+ case ETHER_STAT_ADV_CAP_ASMPAUSE:
+ *val = igb->param_adv_asym_pause_cap;
+ break;
+
+ case ETHER_STAT_ADV_CAP_PAUSE:
+ *val = igb->param_adv_pause_cap;
+ break;
+
+ case ETHER_STAT_ADV_CAP_AUTONEG:
+ *val = hw->mac.autoneg;
+ break;
+
+ case ETHER_STAT_LP_CAP_1000FDX:
+ *val = igb->param_lp_1000fdx_cap;
+ break;
+
+ case ETHER_STAT_LP_CAP_1000HDX:
+ *val = igb->param_lp_1000hdx_cap;
+ break;
+
+ case ETHER_STAT_LP_CAP_100FDX:
+ *val = igb->param_lp_100fdx_cap;
+ break;
+
+ case ETHER_STAT_LP_CAP_100HDX:
+ *val = igb->param_lp_100hdx_cap;
+ break;
+
+ case ETHER_STAT_LP_CAP_10FDX:
+ *val = igb->param_lp_10fdx_cap;
+ break;
+
+ case ETHER_STAT_LP_CAP_10HDX:
+ *val = igb->param_lp_10hdx_cap;
+ break;
+
+ case ETHER_STAT_LP_CAP_ASMPAUSE:
+ *val = igb->param_lp_asym_pause_cap;
+ break;
+
+ case ETHER_STAT_LP_CAP_PAUSE:
+ *val = igb->param_lp_pause_cap;
+ break;
+
+ case ETHER_STAT_LP_CAP_AUTONEG:
+ *val = igb->param_lp_autoneg_cap;
+ break;
+
+ case ETHER_STAT_LINK_ASMPAUSE:
+ *val = igb->param_asym_pause_cap;
+ break;
+
+ case ETHER_STAT_LINK_PAUSE:
+ *val = igb->param_pause_cap;
+ break;
+
+ case ETHER_STAT_LINK_AUTONEG:
+ *val = hw->mac.autoneg;
+ break;
+
+ case ETHER_STAT_LINK_DUPLEX:
+ *val = (igb->link_duplex == FULL_DUPLEX) ?
+ LINK_DUPLEX_FULL : LINK_DUPLEX_HALF;
+ break;
+
+ case ETHER_STAT_TOOSHORT_ERRORS:
+ igb_ks->ruc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_RUC);
+ *val = igb_ks->ruc.value.ui64;
+ break;
+
+ case ETHER_STAT_CAP_REMFAULT:
+ *val = igb->param_rem_fault;
+ break;
+
+ case ETHER_STAT_ADV_REMFAULT:
+ *val = igb->param_adv_rem_fault;
+ break;
+
+ case ETHER_STAT_LP_REMFAULT:
+ *val = igb->param_lp_rem_fault;
+ break;
+
+ case ETHER_STAT_JABBER_ERRORS:
+ igb_ks->rjc.value.ui64 +=
+ E1000_READ_REG(hw, E1000_RJC);
+ *val = igb_ks->rjc.value.ui64;
+ break;
+
+ case ETHER_STAT_CAP_100T4:
+ *val = igb->param_100t4_cap;
+ break;
+
+ case ETHER_STAT_ADV_CAP_100T4:
+ *val = igb->param_adv_100t4_cap;
+ break;
+
+ case ETHER_STAT_LP_CAP_100T4:
+ *val = igb->param_lp_100t4_cap;
+ break;
+
+ default:
+ mutex_exit(&igb->gen_lock);
+ return (ENOTSUP);
+ }
+
+ mutex_exit(&igb->gen_lock);
+
+ return (0);
+}
+
+/*
+ * Bring the device out of the reset/quiesced state that it
+ * was in when the interface was registered.
+ */
+int
+igb_m_start(void *arg)
+{
+ igb_t *igb = (igb_t *)arg;
+
+ mutex_enter(&igb->gen_lock);
+
+ if (igb->igb_state & IGB_SUSPENDED) {
+ mutex_exit(&igb->gen_lock);
+ return (ECANCELED);
+ }
+
+ if (igb_start(igb) != IGB_SUCCESS) {
+ mutex_exit(&igb->gen_lock);
+ return (EIO);
+ }
+
+ igb->igb_state |= IGB_STARTED;
+
+ mutex_exit(&igb->gen_lock);
+
+ /*
+ * Enable and start the watchdog timer
+ */
+ igb_enable_watchdog_timer(igb);
+
+ return (0);
+}
+
+/*
+ * Stop the device and put it in a reset/quiesced state such
+ * that the interface can be unregistered.
+ */
+void
+igb_m_stop(void *arg)
+{
+ igb_t *igb = (igb_t *)arg;
+
+ mutex_enter(&igb->gen_lock);
+
+ if (igb->igb_state & IGB_SUSPENDED) {
+ mutex_exit(&igb->gen_lock);
+ return;
+ }
+
+ igb->igb_state &= ~IGB_STARTED;
+
+ igb_stop(igb);
+
+ mutex_exit(&igb->gen_lock);
+
+ /*
+ * Disable and stop the watchdog timer
+ */
+ igb_disable_watchdog_timer(igb);
+}
+
+/*
+ * Set the promiscuity of the device.
+ */
+int
+igb_m_promisc(void *arg, boolean_t on)
+{
+ igb_t *igb = (igb_t *)arg;
+ uint32_t reg_val;
+
+ mutex_enter(&igb->gen_lock);
+
+ if (igb->igb_state & IGB_SUSPENDED) {
+ mutex_exit(&igb->gen_lock);
+ return (ECANCELED);
+ }
+
+ reg_val = E1000_READ_REG(&igb->hw, E1000_RCTL);
+
+ if (on)
+ reg_val |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
+ else
+ reg_val &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
+
+ E1000_WRITE_REG(&igb->hw, E1000_RCTL, reg_val);
+
+ mutex_exit(&igb->gen_lock);
+
+ return (0);
+}
+
+/*
+ * Add/remove the addresses to/from the set of multicast
+ * addresses for which the device will receive packets.
+ */
+int
+igb_m_multicst(void *arg, boolean_t add, const uint8_t *mcst_addr)
+{
+ igb_t *igb = (igb_t *)arg;
+ int result;
+
+ mutex_enter(&igb->gen_lock);
+
+ if (igb->igb_state & IGB_SUSPENDED) {
+ mutex_exit(&igb->gen_lock);
+ return (ECANCELED);
+ }
+
+ result = (add) ? igb_multicst_add(igb, mcst_addr)
+ : igb_multicst_remove(igb, mcst_addr);
+
+ mutex_exit(&igb->gen_lock);
+
+ return (result);
+}
+
+/*
+ * Set a new device unicast address.
+ */
+int
+igb_m_unicst(void *arg, const uint8_t *mac_addr)
+{
+ igb_t *igb = (igb_t *)arg;
+ int result;
+
+ mutex_enter(&igb->gen_lock);
+
+ if (igb->igb_state & IGB_SUSPENDED) {
+ mutex_exit(&igb->gen_lock);
+ return (ECANCELED);
+ }
+
+ /*
+ * Store the new MAC address.
+ */
+ bcopy(mac_addr, igb->hw.mac.addr, ETHERADDRL);
+
+ /*
+ * Set MAC address in address slot 0, which is the default address.
+ */
+ result = igb_unicst_set(igb, mac_addr, 0);
+
+ mutex_exit(&igb->gen_lock);
+
+ return (result);
+}
+
+/*
+ * Pass on M_IOCTL messages passed to the DLD, and support
+ * private IOCTLs for debugging and ndd.
+ */
+void
+igb_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
+{
+ igb_t *igb = (igb_t *)arg;
+ struct iocblk *iocp;
+ enum ioc_reply status;
+
+ iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
+ iocp->ioc_error = 0;
+
+ switch (iocp->ioc_cmd) {
+ case LB_GET_INFO_SIZE:
+ case LB_GET_INFO:
+ case LB_GET_MODE:
+ case LB_SET_MODE:
+ status = igb_loopback_ioctl(igb, iocp, mp);
+ break;
+
+ case ND_GET:
+ case ND_SET:
+ status = igb_nd_ioctl(igb, q, mp, iocp);
+ break;
+
+ default:
+ status = IOC_INVAL;
+ break;
+ }
+
+ /*
+ * Decide how to reply
+ */
+ switch (status) {
+ default:
+ case IOC_INVAL:
+ /*
+ * Error, reply with a NAK and EINVAL or the specified error
+ */
+ miocnak(q, mp, 0, iocp->ioc_error == 0 ?
+ EINVAL : iocp->ioc_error);
+ break;
+
+ case IOC_DONE:
+ /*
+ * OK, reply already sent
+ */
+ break;
+
+ case IOC_ACK:
+ /*
+ * OK, reply with an ACK
+ */
+ miocack(q, mp, 0, 0);
+ break;
+
+ case IOC_REPLY:
+ /*
+ * OK, send prepared reply as ACK or NAK
+ */
+ mp->b_datap->db_type = iocp->ioc_error == 0 ?
+ M_IOCACK : M_IOCNAK;
+ qreply(q, mp);
+ break;
+ }
+}
+
+
+/*
+ * Find an unused address slot, set the address to it, reserve
+ * this slot and enable the device to start filtering on the
+ * new address.
+ */
+int
+igb_m_unicst_add(void *arg, mac_multi_addr_t *maddr)
+{
+ igb_t *igb = (igb_t *)arg;
+ mac_addr_slot_t slot;
+ int err;
+
+ mutex_enter(&igb->gen_lock);
+
+ if (igb->igb_state & IGB_SUSPENDED) {
+ mutex_exit(&igb->gen_lock);
+ return (ECANCELED);
+ }
+
+ if (mac_unicst_verify(igb->mac_hdl,
+ maddr->mma_addr, maddr->mma_addrlen) == B_FALSE) {
+ mutex_exit(&igb->gen_lock);
+ return (EINVAL);
+ }
+
+ if (igb->unicst_avail == 0) {
+ /* no slots available */
+ mutex_exit(&igb->gen_lock);
+ return (ENOSPC);
+ }
+
+ /*
+ * Primary/default address is in slot 0. The next addresses
+ * are the multiple MAC addresses. So multiple MAC address 0
+ * is in slot 1, 1 in slot 2, and so on. So the first multiple
+ * MAC address resides in slot 1.
+ */
+ for (slot = 1; slot < igb->unicst_total; slot++) {
+ if (igb->unicst_addr[slot].mac.set == 0) {
+ igb->unicst_addr[slot].mac.set = 1;
+ break;
+ }
+ }
+
+ ASSERT((slot > 0) && (slot < igb->unicst_total));
+
+ igb->unicst_avail--;
+ mutex_exit(&igb->gen_lock);
+
+ maddr->mma_slot = slot;
+
+ if ((err = igb_unicst_set(igb, maddr->mma_addr, slot)) != 0) {
+ mutex_enter(&igb->gen_lock);
+ igb->unicst_addr[slot].mac.set = 0;
+ igb->unicst_avail++;
+ mutex_exit(&igb->gen_lock);
+ }
+
+ return (err);
+}
+
+
+/*
+ * Removes a MAC address that was added before.
+ */
+int
+igb_m_unicst_remove(void *arg, mac_addr_slot_t slot)
+{
+ igb_t *igb = (igb_t *)arg;
+ int err;
+
+ mutex_enter(&igb->gen_lock);
+
+ if (igb->igb_state & IGB_SUSPENDED) {
+ mutex_exit(&igb->gen_lock);
+ return (ECANCELED);
+ }
+
+ if ((slot <= 0) || (slot >= igb->unicst_total)) {
+ mutex_exit(&igb->gen_lock);
+ return (EINVAL);
+ }
+
+ if (igb->unicst_addr[slot].mac.set == 1) {
+ igb->unicst_addr[slot].mac.set = 0;
+ igb->unicst_avail++;
+
+ /* Copy the default address to the passed slot */
+ if ((err = igb_unicst_set(igb,
+ igb->unicst_addr[0].mac.addr, slot)) != 0) {
+ igb->unicst_addr[slot].mac.set = 1;
+ igb->unicst_avail--;
+ }
+
+ mutex_exit(&igb->gen_lock);
+
+ return (err);
+ }
+ mutex_exit(&igb->gen_lock);
+
+ return (EINVAL);
+}
+
+/*
+ * Modifies the value of an address that has been added before.
+ * The new address length and the slot number that was returned
+ * in the call to add should be passed in. mma_flags should be
+ * set to 0.
+ * Returns 0 on success.
+ */
+int
+igb_m_unicst_modify(void *arg, mac_multi_addr_t *maddr)
+{
+ igb_t *igb = (igb_t *)arg;
+ mac_addr_slot_t slot;
+
+ mutex_enter(&igb->gen_lock);
+
+ if (igb->igb_state & IGB_SUSPENDED) {
+ mutex_exit(&igb->gen_lock);
+ return (ECANCELED);
+ }
+
+ if (mac_unicst_verify(igb->mac_hdl,
+ maddr->mma_addr, maddr->mma_addrlen) == B_FALSE) {
+ mutex_exit(&igb->gen_lock);
+ return (EINVAL);
+ }
+
+ slot = maddr->mma_slot;
+
+ if ((slot <= 0) || (slot >= igb->unicst_total)) {
+ mutex_exit(&igb->gen_lock);
+ return (EINVAL);
+ }
+
+ if (igb->unicst_addr[slot].mac.set == 1) {
+ mutex_exit(&igb->gen_lock);
+
+ return (igb_unicst_set(igb, maddr->mma_addr, slot));
+ }
+ mutex_exit(&igb->gen_lock);
+
+ return (EINVAL);
+}
+
+/*
+ * Get the MAC address and all other information related to
+ * the address slot passed in mac_multi_addr_t.
+ * mma_flags should be set to 0 in the call.
+ * On return, mma_flags can take the following values:
+ * 1) MMAC_SLOT_UNUSED
+ * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR
+ * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR
+ * 4) MMAC_SLOT_USED
+ */
+int
+igb_m_unicst_get(void *arg, mac_multi_addr_t *maddr)
+{
+ igb_t *igb = (igb_t *)arg;
+ mac_addr_slot_t slot;
+
+ mutex_enter(&igb->gen_lock);
+
+ if (igb->igb_state & IGB_SUSPENDED) {
+ mutex_exit(&igb->gen_lock);
+ return (ECANCELED);
+ }
+
+ slot = maddr->mma_slot;
+
+ if ((slot <= 0) || (slot >= igb->unicst_total)) {
+ mutex_exit(&igb->gen_lock);
+ return (EINVAL);
+ }
+
+ if (igb->unicst_addr[slot].mac.set == 1) {
+ bcopy(igb->unicst_addr[slot].mac.addr,
+ maddr->mma_addr, ETHERADDRL);
+ maddr->mma_flags = MMAC_SLOT_USED;
+ } else {
+ maddr->mma_flags = MMAC_SLOT_UNUSED;
+ }
+ mutex_exit(&igb->gen_lock);
+
+ return (0);
+}
+
+/*
+ * Obtain the MAC's capabilities and associated data from
+ * the driver.
+ */
+boolean_t
+igb_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
+{
+ igb_t *igb = (igb_t *)arg;
+
+ switch (cap) {
+ case MAC_CAPAB_HCKSUM: {
+ uint32_t *tx_hcksum_flags = cap_data;
+
+ /*
+ * We advertise our capabilities only if tx hcksum offload is
+ * enabled. On receive, the stack will accept checksummed
+ * packets anyway, even if we haven't said we can deliver
+ * them.
+ */
+ if (!igb->tx_hcksum_enable)
+ return (B_FALSE);
+
+ *tx_hcksum_flags = HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM;
+ break;
+ }
+ case MAC_CAPAB_MULTIADDRESS: {
+ multiaddress_capab_t *mmacp = cap_data;
+
+ /*
+ * The number of MAC addresses made available by
+ * this capability is one less than the total as
+ * the primary address in slot 0 is counted in
+ * the total.
+ */
+ mmacp->maddr_naddr = igb->unicst_total - 1;
+ mmacp->maddr_naddrfree = igb->unicst_avail;
+ /* No multiple factory addresses, set mma_flag to 0 */
+ mmacp->maddr_flag = 0;
+ mmacp->maddr_handle = igb;
+ mmacp->maddr_add = igb_m_unicst_add;
+ mmacp->maddr_remove = igb_m_unicst_remove;
+ mmacp->maddr_modify = igb_m_unicst_modify;
+ mmacp->maddr_get = igb_m_unicst_get;
+ mmacp->maddr_reserve = NULL;
+ break;
+ }
+ default:
+ return (B_FALSE);
+ }
+ return (B_TRUE);
+}
diff --git a/usr/src/uts/common/io/igb/igb_hw.h b/usr/src/uts/common/io/igb/igb_hw.h
new file mode 100644
index 0000000000..21b1532193
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_hw.h
@@ -0,0 +1,626 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#ifndef _IGB_HW_H
+#define _IGB_HW_H
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include "igb_osdep.h"
+#include "igb_regs.h"
+#include "igb_defines.h"
+
+struct e1000_hw;
+
+#define E1000_DEV_ID_82575EB_COPPER 0x10A7
+#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9
+#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6
+
+#define E1000_REVISION_0 0
+#define E1000_REVISION_1 1
+#define E1000_REVISION_2 2
+#define E1000_REVISION_3 3
+#define E1000_REVISION_4 4
+
+#define E1000_FUNC_0 0
+#define E1000_FUNC_1 1
+
+typedef enum {
+ e1000_undefined = 0,
+ e1000_82575,
+ e1000_num_macs /* List is 1-based, so subtract 1 for true count. */
+} e1000_mac_type;
+
+typedef enum {
+ e1000_media_type_unknown = 0,
+ e1000_media_type_copper = 1,
+ e1000_media_type_fiber = 2,
+ e1000_media_type_internal_serdes = 3,
+ e1000_num_media_types
+} e1000_media_type;
+
+typedef enum {
+ e1000_nvm_unknown = 0,
+ e1000_nvm_none,
+ e1000_nvm_eeprom_spi,
+ e1000_nvm_eeprom_microwire,
+ e1000_nvm_flash_hw,
+ e1000_nvm_flash_sw
+} e1000_nvm_type;
+
+typedef enum {
+ e1000_nvm_override_none = 0,
+ e1000_nvm_override_spi_small,
+ e1000_nvm_override_spi_large,
+ e1000_nvm_override_microwire_small,
+ e1000_nvm_override_microwire_large
+} e1000_nvm_override;
+
+typedef enum {
+ e1000_phy_unknown = 0,
+ e1000_phy_none,
+ e1000_phy_m88,
+ e1000_phy_igp,
+ e1000_phy_igp_2,
+ e1000_phy_gg82563,
+ e1000_phy_igp_3,
+ e1000_phy_ife,
+ e1000_phy_bm
+} e1000_phy_type;
+
+typedef enum {
+ e1000_bus_type_unknown = 0,
+ e1000_bus_type_pci,
+ e1000_bus_type_pcix,
+ e1000_bus_type_pci_express,
+ e1000_bus_type_reserved
+} e1000_bus_type;
+
+typedef enum {
+ e1000_bus_speed_unknown = 0,
+ e1000_bus_speed_33,
+ e1000_bus_speed_66,
+ e1000_bus_speed_100,
+ e1000_bus_speed_120,
+ e1000_bus_speed_133,
+ e1000_bus_speed_2500,
+ e1000_bus_speed_5000,
+ e1000_bus_speed_reserved
+} e1000_bus_speed;
+
+typedef enum {
+ e1000_bus_width_unknown = 0,
+ e1000_bus_width_pcie_x1,
+ e1000_bus_width_pcie_x2,
+ e1000_bus_width_pcie_x4 = 4,
+ e1000_bus_width_pcie_x8 = 8,
+ e1000_bus_width_32,
+ e1000_bus_width_64,
+ e1000_bus_width_reserved
+} e1000_bus_width;
+
+typedef enum {
+ e1000_1000t_rx_status_not_ok = 0,
+ e1000_1000t_rx_status_ok,
+ e1000_1000t_rx_status_undefined = 0xFF
+} e1000_1000t_rx_status;
+
+typedef enum {
+ e1000_rev_polarity_normal = 0,
+ e1000_rev_polarity_reversed,
+ e1000_rev_polarity_undefined = 0xFF
+} e1000_rev_polarity;
+
+typedef enum {
+ e1000_fc_none = 0,
+ e1000_fc_rx_pause,
+ e1000_fc_tx_pause,
+ e1000_fc_full,
+ e1000_fc_default = 0xFF
+} e1000_fc_type;
+
+/* Receive Descriptor */
+struct e1000_rx_desc {
+ u64 buffer_addr; /* Address of the descriptor's data buffer */
+ u16 length; /* Length of data DMAed into data buffer */
+ u16 csum; /* Packet checksum */
+ u8 status; /* Descriptor status */
+ u8 errors; /* Descriptor Errors */
+ u16 special;
+};
+
+/* Receive Descriptor - Extended */
+union e1000_rx_desc_extended {
+ struct {
+ u64 buffer_addr;
+ u64 reserved;
+ } read;
+ struct {
+ struct {
+ u32 mrq; /* Multiple Rx Queues */
+ union {
+ u32 rss; /* RSS Hash */
+ struct {
+ u16 ip_id; /* IP id */
+ u16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ u32 status_error; /* ext status/error */
+ u16 length;
+ u16 vlan; /* VLAN tag */
+ } upper;
+ } wb; /* writeback */
+};
+
+#define MAX_PS_BUFFERS 4
+/* Receive Descriptor - Packet Split */
+union e1000_rx_desc_packet_split {
+ struct {
+ /* one buffer for protocol header(s), three data buffers */
+ u64 buffer_addr[MAX_PS_BUFFERS];
+ } read;
+ struct {
+ struct {
+ u32 mrq; /* Multiple Rx Queues */
+ union {
+ u32 rss; /* RSS Hash */
+ struct {
+ u16 ip_id; /* IP id */
+ u16 csum; /* Packet Checksum */
+ } csum_ip;
+ } hi_dword;
+ } lower;
+ struct {
+ u32 status_error; /* ext status/error */
+ u16 length0; /* length of buffer 0 */
+ u16 vlan; /* VLAN tag */
+ } middle;
+ struct {
+ u16 header_status;
+ u16 length[3]; /* length of buffers 1-3 */
+ } upper;
+ u64 reserved;
+ } wb; /* writeback */
+};
+
+/* Transmit Descriptor */
+struct e1000_tx_desc {
+ u64 buffer_addr; /* Address of the descriptor's data buffer */
+ union {
+ u32 data;
+ struct {
+ u16 length; /* Data buffer length */
+ u8 cso; /* Checksum offset */
+ u8 cmd; /* Descriptor control */
+ } flags;
+ } lower;
+ union {
+ u32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 css; /* Checksum start */
+ u16 special;
+ } fields;
+ } upper;
+};
+
+/* Offload Context Descriptor */
+struct e1000_context_desc {
+ union {
+ u32 ip_config;
+ struct {
+ u8 ipcss; /* IP checksum start */
+ u8 ipcso; /* IP checksum offset */
+ u16 ipcse; /* IP checksum end */
+ } ip_fields;
+ } lower_setup;
+ union {
+ u32 tcp_config;
+ struct {
+ u8 tucss; /* TCP checksum start */
+ u8 tucso; /* TCP checksum offset */
+ u16 tucse; /* TCP checksum end */
+ } tcp_fields;
+ } upper_setup;
+ u32 cmd_and_length;
+ union {
+ u32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 hdr_len; /* Header length */
+ u16 mss; /* Maximum segment size */
+ } fields;
+ } tcp_seg_setup;
+};
+
+/* Offload data descriptor */
+struct e1000_data_desc {
+ u64 buffer_addr; /* Address of the descriptor's buffer address */
+ union {
+ u32 data;
+ struct {
+ u16 length; /* Data buffer length */
+ u8 typ_len_ext;
+ u8 cmd;
+ } flags;
+ } lower;
+ union {
+ u32 data;
+ struct {
+ u8 status; /* Descriptor status */
+ u8 popts; /* Packet Options */
+ u16 special;
+ } fields;
+ } upper;
+};
+
+/* Statistics counters collected by the MAC */
+struct e1000_hw_stats {
+ u64 crcerrs;
+ u64 algnerrc;
+ u64 symerrs;
+ u64 rxerrc;
+ u64 mpc;
+ u64 scc;
+ u64 ecol;
+ u64 mcc;
+ u64 latecol;
+ u64 colc;
+ u64 dc;
+ u64 tncrs;
+ u64 sec;
+ u64 cexterr;
+ u64 rlec;
+ u64 xonrxc;
+ u64 xontxc;
+ u64 xoffrxc;
+ u64 xofftxc;
+ u64 fcruc;
+ u64 prc64;
+ u64 prc127;
+ u64 prc255;
+ u64 prc511;
+ u64 prc1023;
+ u64 prc1522;
+ u64 gprc;
+ u64 bprc;
+ u64 mprc;
+ u64 gptc;
+ u64 gorc;
+ u64 gotc;
+ u64 rnbc;
+ u64 ruc;
+ u64 rfc;
+ u64 roc;
+ u64 rjc;
+ u64 mgprc;
+ u64 mgpdc;
+ u64 mgptc;
+ u64 tor;
+ u64 tot;
+ u64 tpr;
+ u64 tpt;
+ u64 ptc64;
+ u64 ptc127;
+ u64 ptc255;
+ u64 ptc511;
+ u64 ptc1023;
+ u64 ptc1522;
+ u64 mptc;
+ u64 bptc;
+ u64 tsctc;
+ u64 tsctfc;
+ u64 iac;
+ u64 icrxptc;
+ u64 icrxatc;
+ u64 ictxptc;
+ u64 ictxatc;
+ u64 ictxqec;
+ u64 ictxqmtc;
+ u64 icrxdmtc;
+ u64 icrxoc;
+ u64 cbtmpc;
+ u64 htdpmc;
+ u64 cbrdpc;
+ u64 cbrmpc;
+ u64 rpthc;
+ u64 hgptc;
+ u64 htcbdpc;
+ u64 hgorc;
+ u64 hgotc;
+ u64 lenerrs;
+ u64 scvpc;
+ u64 hrmpc;
+};
+
+struct e1000_phy_stats {
+ u32 idle_errors;
+ u32 receive_errors;
+};
+
+struct e1000_host_mng_dhcp_cookie {
+ u32 signature;
+ u8 status;
+ u8 reserved0;
+ u16 vlan_id;
+ u32 reserved1;
+ u16 reserved2;
+ u8 reserved3;
+ u8 checksum;
+};
+
+/* Host Interface "Rev 1" */
+struct e1000_host_command_header {
+ u8 command_id;
+ u8 command_length;
+ u8 command_options;
+ u8 checksum;
+};
+
+#define E1000_HI_MAX_DATA_LENGTH 252
+struct e1000_host_command_info {
+ struct e1000_host_command_header command_header;
+ u8 command_data[E1000_HI_MAX_DATA_LENGTH];
+};
+
+/* Host Interface "Rev 2" */
+struct e1000_host_mng_command_header {
+ u8 command_id;
+ u8 checksum;
+ u16 reserved1;
+ u16 reserved2;
+ u16 command_length;
+};
+
+#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
+struct e1000_host_mng_command_info {
+ struct e1000_host_mng_command_header command_header;
+ u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
+};
+
+#include "igb_mac.h"
+#include "igb_phy.h"
+#include "igb_nvm.h"
+#include "igb_manage.h"
+
+struct e1000_functions {
+ /* Function pointers for the MAC. */
+ s32 (*init_mac_params)(struct e1000_hw *);
+ s32 (*blink_led)(struct e1000_hw *);
+ s32 (*check_for_link)(struct e1000_hw *);
+ bool (*check_mng_mode)(struct e1000_hw *hw);
+ s32 (*cleanup_led)(struct e1000_hw *);
+ void (*clear_hw_cntrs)(struct e1000_hw *);
+ void (*clear_vfta)(struct e1000_hw *);
+ s32 (*get_bus_info)(struct e1000_hw *);
+ s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
+ s32 (*led_on)(struct e1000_hw *);
+ s32 (*led_off)(struct e1000_hw *);
+ void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32, u32, u32);
+ void (*remove_device)(struct e1000_hw *);
+ s32 (*reset_hw)(struct e1000_hw *);
+ s32 (*init_hw)(struct e1000_hw *);
+ s32 (*setup_link)(struct e1000_hw *);
+ s32 (*setup_physical_interface)(struct e1000_hw *);
+ s32 (*setup_led)(struct e1000_hw *);
+ void (*write_vfta)(struct e1000_hw *, u32, u32);
+ void (*mta_set)(struct e1000_hw *, u32);
+ void (*config_collision_dist)(struct e1000_hw *);
+ void (*rar_set)(struct e1000_hw *, u8*, u32);
+ s32 (*read_mac_addr)(struct e1000_hw *);
+ s32 (*validate_mdi_setting)(struct e1000_hw *);
+ s32 (*mng_host_if_write)(struct e1000_hw *, u8*, u16, u16, u8*);
+ s32 (*mng_write_cmd_header)(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *);
+ s32 (*mng_enable_host_if)(struct e1000_hw *);
+ s32 (*wait_autoneg)(struct e1000_hw *);
+
+ /* Function pointers for the PHY. */
+ s32 (*init_phy_params)(struct e1000_hw *);
+ s32 (*acquire_phy)(struct e1000_hw *);
+ s32 (*check_polarity)(struct e1000_hw *);
+ s32 (*check_reset_block)(struct e1000_hw *);
+ s32 (*commit_phy)(struct e1000_hw *);
+ s32 (*force_speed_duplex)(struct e1000_hw *);
+ s32 (*get_cfg_done)(struct e1000_hw *hw);
+ s32 (*get_cable_length)(struct e1000_hw *);
+ s32 (*get_phy_info)(struct e1000_hw *);
+ s32 (*read_phy_reg)(struct e1000_hw *, u32, u16 *);
+ void (*release_phy)(struct e1000_hw *);
+ s32 (*reset_phy)(struct e1000_hw *);
+ s32 (*set_d0_lplu_state)(struct e1000_hw *, bool);
+ s32 (*set_d3_lplu_state)(struct e1000_hw *, bool);
+ s32 (*write_phy_reg)(struct e1000_hw *, u32, u16);
+ void (*power_up_phy)(struct e1000_hw *);
+ void (*power_down_phy)(struct e1000_hw *);
+
+ /* Function pointers for the NVM. */
+ s32 (*init_nvm_params)(struct e1000_hw *);
+ s32 (*acquire_nvm)(struct e1000_hw *);
+ s32 (*read_nvm)(struct e1000_hw *, u16, u16, u16 *);
+ void (*release_nvm)(struct e1000_hw *);
+ void (*reload_nvm)(struct e1000_hw *);
+ s32 (*update_nvm)(struct e1000_hw *);
+ s32 (*valid_led_default)(struct e1000_hw *, u16 *);
+ s32 (*validate_nvm)(struct e1000_hw *);
+ s32 (*write_nvm)(struct e1000_hw *, u16, u16, u16 *);
+};
+
+struct e1000_mac_info {
+ u8 addr[6];
+ u8 perm_addr[6];
+
+ e1000_mac_type type;
+
+ u32 collision_delta;
+ u32 ledctl_default;
+ u32 ledctl_mode1;
+ u32 ledctl_mode2;
+ u32 mc_filter_type;
+ u32 tx_packet_delta;
+ u32 txcw;
+
+ u16 current_ifs_val;
+ u16 ifs_max_val;
+ u16 ifs_min_val;
+ u16 ifs_ratio;
+ u16 ifs_step_size;
+ u16 mta_reg_count;
+ u16 rar_entry_count;
+
+ u8 forced_speed_duplex;
+
+ bool adaptive_ifs;
+ bool arc_subsystem_valid;
+ bool asf_firmware_present;
+ bool autoneg;
+ bool autoneg_failed;
+ bool disable_av;
+ bool disable_hw_init_bits;
+ bool get_link_status;
+ bool ifs_params_forced;
+ bool in_ifs_mode;
+ bool report_tx_early;
+ bool serdes_has_link;
+ bool tx_pkt_filtering;
+};
+
+struct e1000_phy_info {
+ e1000_phy_type type;
+
+ e1000_1000t_rx_status local_rx;
+ e1000_1000t_rx_status remote_rx;
+ e1000_ms_type ms_type;
+ e1000_ms_type original_ms_type;
+ e1000_rev_polarity cable_polarity;
+ e1000_smart_speed smart_speed;
+
+ u32 addr;
+ u32 id;
+ u32 reset_delay_us; /* in usec */
+ u32 revision;
+
+ e1000_media_type media_type;
+
+ u16 autoneg_advertised;
+ u16 autoneg_mask;
+ u16 cable_length;
+ u16 max_cable_length;
+ u16 min_cable_length;
+
+ u8 mdix;
+
+ bool disable_polarity_correction;
+ bool is_mdix;
+ bool polarity_correction;
+ bool reset_disable;
+ bool speed_downgraded;
+ bool autoneg_wait_to_complete;
+};
+
+struct e1000_nvm_info {
+ e1000_nvm_type type;
+ e1000_nvm_override override;
+
+ u32 flash_bank_size;
+ u32 flash_base_addr;
+
+ u16 word_size;
+ u16 delay_usec;
+ u16 address_bits;
+ u16 opcode_bits;
+ u16 page_size;
+};
+
+struct e1000_bus_info {
+ e1000_bus_type type;
+ e1000_bus_speed speed;
+ e1000_bus_width width;
+
+ u32 snoop;
+
+ u16 func;
+ u16 pci_cmd_word;
+};
+
+struct e1000_fc_info {
+ u32 high_water; /* Flow control high-water mark */
+ u32 low_water; /* Flow control low-water mark */
+ u16 pause_time; /* Flow control pause timer */
+ bool send_xon; /* Flow control send XON */
+ bool strict_ieee; /* Strict IEEE mode */
+ e1000_fc_type type; /* Type of flow control */
+ e1000_fc_type original_type;
+};
+
+struct e1000_hw {
+ void *back;
+ void *dev_spec;
+
+ u8 *hw_addr;
+ u8 *flash_address;
+ unsigned long io_base;
+
+ struct e1000_functions func;
+ struct e1000_mac_info mac;
+ struct e1000_fc_info fc;
+ struct e1000_phy_info phy;
+ struct e1000_nvm_info nvm;
+ struct e1000_bus_info bus;
+ struct e1000_host_mng_dhcp_cookie mng_cookie;
+
+ u32 dev_spec_size;
+
+ u16 device_id;
+ u16 subsystem_vendor_id;
+ u16 subsystem_device_id;
+ u16 vendor_id;
+
+ u8 revision_id;
+};
+
+/* These functions must be implemented by drivers */
+void e1000_pci_clear_mwi(struct e1000_hw *hw);
+void e1000_pci_set_mwi(struct e1000_hw *hw);
+s32 e1000_alloc_zeroed_dev_spec_struct(struct e1000_hw *hw, u32 size);
+s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_free_dev_spec_struct(struct e1000_hw *hw);
+void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _IGB_HW_H */
diff --git a/usr/src/uts/common/io/igb/igb_log.c b/usr/src/uts/common/io/igb/igb_log.c
new file mode 100644
index 0000000000..48b1e0d502
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_log.c
@@ -0,0 +1,93 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "igb_sw.h"
+
+#define LOG_BUF_LEN 128
+
+/*
+ * igb_notice - Report a run-time event (CE_NOTE, to console & log)
+ */
+void
+igb_notice(void *arg, const char *fmt, ...)
+{
+ igb_t *igbp = (igb_t *)arg;
+ char buf[LOG_BUF_LEN];
+ va_list ap;
+
+ va_start(ap, fmt);
+ (void) vsnprintf(buf, sizeof (buf), fmt, ap);
+ va_end(ap);
+
+ if (igbp != NULL)
+ cmn_err(CE_NOTE, "%s%d: %s", MODULE_NAME, igbp->instance, buf);
+ else
+ cmn_err(CE_NOTE, "%s: %s", MODULE_NAME, buf);
+}
+
+/*
+ * igb_log - Log a run-time event (CE_NOTE, to log only)
+ */
+void
+igb_log(void *arg, const char *fmt, ...)
+{
+ igb_t *igbp = (igb_t *)arg;
+ char buf[LOG_BUF_LEN];
+ va_list ap;
+
+ va_start(ap, fmt);
+ (void) vsnprintf(buf, sizeof (buf), fmt, ap);
+ va_end(ap);
+
+ if (igbp != NULL)
+ cmn_err(CE_NOTE, "!%s%d: %s", MODULE_NAME, igbp->instance, buf);
+ else
+ cmn_err(CE_NOTE, "!%s: %s", MODULE_NAME, buf);
+}
+
+/*
+ * igb_error - Log a run-time problem (CE_WARN, to log only)
+ */
+void
+igb_error(void *arg, const char *fmt, ...)
+{
+ igb_t *igbp = (igb_t *)arg;
+ char buf[LOG_BUF_LEN];
+ va_list ap;
+
+ va_start(ap, fmt);
+ (void) vsnprintf(buf, sizeof (buf), fmt, ap);
+ va_end(ap);
+
+ if (igbp != NULL)
+ cmn_err(CE_WARN, "!%s%d: %s", MODULE_NAME, igbp->instance, buf);
+ else
+ cmn_err(CE_WARN, "!%s: %s", MODULE_NAME, buf);
+}
diff --git a/usr/src/uts/common/io/igb/igb_mac.c b/usr/src/uts/common/io/igb/igb_mac.c
new file mode 100644
index 0000000000..37a87d191d
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_mac.c
@@ -0,0 +1,2071 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "igb_api.h"
+#include "igb_mac.h"
+
+/*
+ * e1000_remove_device_generic - Free device specific structure
+ * @hw: pointer to the HW structure
+ *
+ * If a device specific structure was allocated, this function will
+ * free it.
+ */
+void
+e1000_remove_device_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_remove_device_generic");
+
+ /* Freeing the dev_spec member of e1000_hw structure */
+ e1000_free_dev_spec_struct(hw);
+}
+
+/*
+ * e1000_get_bus_info_pci_generic - Get PCI(x) bus information
+ * @hw: pointer to the HW structure
+ *
+ * Determines and stores the system bus information for a particular
+ * network interface. The following bus information is determined and stored:
+ * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
+ */
+s32
+e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ u32 status = E1000_READ_REG(hw, E1000_STATUS);
+ s32 ret_val = E1000_SUCCESS;
+ u16 pci_header_type;
+
+ DEBUGFUNC("e1000_get_bus_info_pci_generic");
+
+ /* PCI or PCI-X? */
+ bus->type = (status & E1000_STATUS_PCIX_MODE)
+ ? e1000_bus_type_pcix : e1000_bus_type_pci;
+
+ /* Bus speed */
+ if (bus->type == e1000_bus_type_pci) {
+ bus->speed = (status & E1000_STATUS_PCI66)
+ ? e1000_bus_speed_66 : e1000_bus_speed_33;
+ } else {
+ switch (status & E1000_STATUS_PCIX_SPEED) {
+ case E1000_STATUS_PCIX_SPEED_66:
+ bus->speed = e1000_bus_speed_66;
+ break;
+ case E1000_STATUS_PCIX_SPEED_100:
+ bus->speed = e1000_bus_speed_100;
+ break;
+ case E1000_STATUS_PCIX_SPEED_133:
+ bus->speed = e1000_bus_speed_133;
+ break;
+ default:
+ bus->speed = e1000_bus_speed_reserved;
+ break;
+ }
+ }
+
+ /* Bus width */
+ bus->width = (status & E1000_STATUS_BUS64)
+ ? e1000_bus_width_64 : e1000_bus_width_32;
+
+ /* Which PCI(-X) function? */
+ e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
+ if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC)
+ bus->func = (status & E1000_STATUS_FUNC_MASK)
+ >> E1000_STATUS_FUNC_SHIFT;
+ else
+ bus->func = 0;
+
+ return (ret_val);
+}
+
+/*
+ * e1000_get_bus_info_pcie_generic - Get PCIe bus information
+ * @hw: pointer to the HW structure
+ *
+ * Determines and stores the system bus information for a particular
+ * network interface. The following bus information is determined and stored:
+ * bus speed, bus width, type (PCIe), and PCIe function.
+ */
+s32
+e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ s32 ret_val;
+ u32 status;
+ u16 pcie_link_status, pci_header_type;
+
+ DEBUGFUNC("e1000_get_bus_info_pcie_generic");
+
+ bus->type = e1000_bus_type_pci_express;
+ bus->speed = e1000_bus_speed_2500;
+
+ ret_val = e1000_read_pcie_cap_reg(hw,
+ PCIE_LINK_STATUS, &pcie_link_status);
+ if (ret_val)
+ bus->width = e1000_bus_width_unknown;
+ else
+ bus->width = (e1000_bus_width)((pcie_link_status &
+ PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
+
+ e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
+ if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ bus->func = (status & E1000_STATUS_FUNC_MASK)
+ >> E1000_STATUS_FUNC_SHIFT;
+ } else {
+ bus->func = 0;
+ }
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_clear_vfta_generic - Clear VLAN filter table
+ * @hw: pointer to the HW structure
+ *
+ * Clears the register array which contains the VLAN filter table by
+ * setting all the values to 0.
+ */
+void
+e1000_clear_vfta_generic(struct e1000_hw *hw)
+{
+ u32 offset;
+
+ DEBUGFUNC("e1000_clear_vfta_generic");
+
+ for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+}
+
+/*
+ * e1000_write_vfta_generic - Write value to VLAN filter table
+ * @hw: pointer to the HW structure
+ * @offset: register offset in VLAN filter table
+ * @value: register value written to VLAN filter table
+ *
+ * Writes value at the given offset in the register array which stores
+ * the VLAN filter table.
+ */
+void
+e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
+{
+ DEBUGFUNC("e1000_write_vfta_generic");
+
+ E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/*
+ * e1000_init_rx_addrs_generic - Initialize receive address's
+ * @hw: pointer to the HW structure
+ * @rar_count: receive address registers
+ *
+ * Setups the receive address registers by setting the base receive address
+ * register to the devices MAC address and clearing all the other receive
+ * address registers to 0.
+ */
+void
+e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
+{
+ u32 i;
+
+ DEBUGFUNC("e1000_init_rx_addrs_generic");
+
+ /* Setup the receive address */
+ DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+ e1000_rar_set_generic(hw, hw->mac.addr, 0);
+
+ /* Zero out the other (rar_entry_count - 1) receive addresses */
+ DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
+ for (i = 1; i < rar_count; i++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+}
+
+/*
+ * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
+ * @hw: pointer to the HW structure
+ *
+ * Checks the nvm for an alternate MAC address. An alternate MAC address
+ * can be setup by pre-boot software and must be treated like a permanent
+ * address and must override the actual permanent MAC address. If an
+ * alternate MAC address is found it is saved in the hw struct and
+ * programmed into RAR0 and the function returns success, otherwise the
+ * function returns an error.
+ */
+s32
+e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
+{
+ u32 i;
+ s32 ret_val = E1000_SUCCESS;
+ u16 offset, nvm_alt_mac_addr_offset, nvm_data;
+ u8 alt_mac_addr[ETH_ADDR_LEN];
+
+ DEBUGFUNC("e1000_check_alt_mac_addr_generic");
+
+ ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
+ &nvm_alt_mac_addr_offset);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (nvm_alt_mac_addr_offset == 0xFFFF) {
+ ret_val = -(E1000_NOT_IMPLEMENTED);
+ goto out;
+ }
+
+ if (hw->bus.func == E1000_FUNC_1)
+ nvm_alt_mac_addr_offset += ETH_ADDR_LEN / sizeof (u16);
+
+ for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+ offset = nvm_alt_mac_addr_offset + (i >> 1);
+ ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
+ alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
+ }
+
+ /* if multicast bit is set, the alternate address will not be used */
+ if (alt_mac_addr[0] & 0x01) {
+ ret_val = -(E1000_NOT_IMPLEMENTED);
+ goto out;
+ }
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i];
+
+ e1000_rar_set(hw, hw->mac.perm_addr, 0);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_rar_set_generic - Set receive address register
+ * @hw: pointer to the HW structure
+ * @addr: pointer to the receive address
+ * @index: receive address array register
+ *
+ * Sets the receive address array register at index to the address passed
+ * in by addr.
+ */
+void
+e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+ u32 rar_low, rar_high;
+
+ DEBUGFUNC("e1000_rar_set_generic");
+
+ /*
+ * HW expects these in little endian so we reverse the byte order
+ * from network order (big endian) to little endian
+ */
+ rar_low = ((u32) addr[0] |
+ ((u32) addr[1] << 8) |
+ ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+ rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+ /* If MAC address zero, no need to set the AV bit */
+ if (rar_low || rar_high) {
+ if (!hw->mac.disable_av)
+ rar_high |= E1000_RAH_AV;
+ }
+
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
+}
+
+/*
+ * e1000_mta_set_generic - Set multicast filter table address
+ * @hw: pointer to the HW structure
+ * @hash_value: determines the MTA register and bit to set
+ *
+ * The multicast table address is a register array of 32-bit registers.
+ * The hash_value is used to determine what register the bit is in, the
+ * current value is read, the new bit is OR'd in and the new value is
+ * written back into the register.
+ */
+void
+e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value)
+{
+ u32 hash_bit, hash_reg, mta;
+
+ DEBUGFUNC("e1000_mta_set_generic");
+ /*
+ * The MTA is a register array of 32-bit registers. It is
+ * treated like an array of (32*mta_reg_count) bits. We want to
+ * set bit BitArray[hash_value]. So we figure out what register
+ * the bit is in, read it, OR in the new bit, then write
+ * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
+ * mask to bits 31:5 of the hash value which gives us the
+ * register we're modifying. The hash bit within that register
+ * is determined by the lower 5 bits of the hash value.
+ */
+ hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
+ hash_bit = hash_value & 0x1F;
+
+ mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
+
+ mta |= (1 << hash_bit);
+
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/*
+ * e1000_update_mc_addr_list_generic - Update Multicast addresses
+ * @hw: pointer to the HW structure
+ * @mc_addr_list: array of multicast addresses to program
+ * @mc_addr_count: number of multicast addresses to program
+ * @rar_used_count: the first RAR register free to program
+ * @rar_count: total number of supported Receive Address Registers
+ *
+ * Updates the Receive Address Registers and Multicast Table Array.
+ * The caller must have a packed mc_addr_list of multicast addresses.
+ * The parameter rar_count will usually be hw->mac.rar_entry_count
+ * unless there are workarounds that change this.
+ */
+void
+e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count,
+ u32 rar_used_count, u32 rar_count)
+{
+ u32 hash_value;
+ u32 i;
+
+ DEBUGFUNC("e1000_update_mc_addr_list_generic");
+
+ /*
+ * Load the first set of multicast addresses into the exact
+ * filters (RAR). If there are not enough to fill the RAR
+ * array, clear the filters.
+ */
+ for (i = rar_used_count; i < rar_count; i++) {
+ if (mc_addr_count) {
+ e1000_rar_set(hw, mc_addr_list, i);
+ mc_addr_count--;
+ mc_addr_list += ETH_ADDR_LEN;
+ } else {
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
+ E1000_WRITE_FLUSH(hw);
+ E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+ }
+
+ /* Clear the old settings from the MTA */
+ DEBUGOUT("Clearing MTA\n");
+ for (i = 0; i < hw->mac.mta_reg_count; i++) {
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ /* Load any remaining multicast addresses into the hash table. */
+ for (; mc_addr_count > 0; mc_addr_count--) {
+ hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
+ DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
+ e1000_mta_set(hw, hash_value);
+ mc_addr_list += ETH_ADDR_LEN;
+ }
+}
+
+/*
+ * e1000_hash_mc_addr_generic - Generate a multicast hash value
+ * @hw: pointer to the HW structure
+ * @mc_addr: pointer to a multicast address
+ *
+ * Generates a multicast address hash value which is used to determine
+ * the multicast filter table array address and new table value. See
+ * e1000_mta_set_generic()
+ */
+u32
+e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
+{
+ u32 hash_value, hash_mask;
+ u8 bit_shift = 0;
+
+ DEBUGFUNC("e1000_hash_mc_addr_generic");
+
+ /* Register count multiplied by bits per register */
+ hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+ /*
+ * For a mc_filter_type of 0, bit_shift is the number of left-shifts
+ * where 0xFF would still fall within the hash mask.
+ */
+ while (hash_mask >> bit_shift != 0xFF)
+ bit_shift++;
+
+ /*
+ * The portion of the address that is used for the hash table
+ * is determined by the mc_filter_type setting.
+ * The algorithm is such that there is a total of 8 bits of shifting.
+ * The bit_shift for a mc_filter_type of 0 represents the number of
+ * left-shifts where the MSB of mc_addr[5] would still fall within
+ * the hash_mask. Case 0 does this exactly. Since there are a total
+ * of 8 bits of shifting, then mc_addr[4] will shift right the
+ * remaining number of bits. Thus 8 - bit_shift. The rest of the
+ * cases are a variation of this algorithm...essentially raising the
+ * number of bits to shift mc_addr[5] left, while still keeping the
+ * 8-bit shifting total.
+ *
+ * For example, given the following Destination MAC Address and an
+ * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
+ * we can see that the bit_shift for case 0 is 4. These are the hash
+ * values resulting from each mc_filter_type...
+ * [0] [1] [2] [3] [4] [5]
+ * 01 AA 00 12 34 56
+ * LSB MSB
+ *
+ * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
+ * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
+ * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
+ * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
+ */
+ switch (hw->mac.mc_filter_type) {
+ default:
+ case 0:
+ break;
+ case 1:
+ bit_shift += 1;
+ break;
+ case 2:
+ bit_shift += 2;
+ break;
+ case 3:
+ bit_shift += 4;
+ break;
+ }
+
+ hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+ (((u16) mc_addr[5]) << bit_shift)));
+
+ return (hash_value);
+}
+
+/*
+ * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
+ * @hw: pointer to the HW structure
+ *
+ * In certain situations, a system BIOS may report that the PCIx maximum
+ * memory read byte count (MMRBC) value is higher than than the actual
+ * value. We check the PCIx command regsiter with the current PCIx status
+ * regsiter.
+ */
+void
+e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
+{
+ u16 cmd_mmrbc;
+ u16 pcix_cmd;
+ u16 pcix_stat_hi_word;
+ u16 stat_mmrbc;
+
+ DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
+
+ /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
+ if (hw->bus.type != e1000_bus_type_pcix)
+ return;
+
+ e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+ e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
+ cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
+ PCIX_COMMAND_MMRBC_SHIFT;
+ stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+ PCIX_STATUS_HI_MMRBC_SHIFT;
+ if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+ stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+ if (cmd_mmrbc > stat_mmrbc) {
+ pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
+ pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+ e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+ }
+}
+
+/*
+ * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
+ * @hw: pointer to the HW structure
+ *
+ * Clears the base hardware counters by reading the counter registers.
+ */
+void
+e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
+
+ (void) E1000_READ_REG(hw, E1000_CRCERRS);
+ (void) E1000_READ_REG(hw, E1000_SYMERRS);
+ (void) E1000_READ_REG(hw, E1000_MPC);
+ (void) E1000_READ_REG(hw, E1000_SCC);
+ (void) E1000_READ_REG(hw, E1000_ECOL);
+ (void) E1000_READ_REG(hw, E1000_MCC);
+ (void) E1000_READ_REG(hw, E1000_LATECOL);
+ (void) E1000_READ_REG(hw, E1000_COLC);
+ (void) E1000_READ_REG(hw, E1000_DC);
+ (void) E1000_READ_REG(hw, E1000_SEC);
+ (void) E1000_READ_REG(hw, E1000_RLEC);
+ (void) E1000_READ_REG(hw, E1000_XONRXC);
+ (void) E1000_READ_REG(hw, E1000_XONTXC);
+ (void) E1000_READ_REG(hw, E1000_XOFFRXC);
+ (void) E1000_READ_REG(hw, E1000_XOFFTXC);
+ (void) E1000_READ_REG(hw, E1000_FCRUC);
+ (void) E1000_READ_REG(hw, E1000_GPRC);
+ (void) E1000_READ_REG(hw, E1000_BPRC);
+ (void) E1000_READ_REG(hw, E1000_MPRC);
+ (void) E1000_READ_REG(hw, E1000_GPTC);
+ (void) E1000_READ_REG(hw, E1000_GORCL);
+ (void) E1000_READ_REG(hw, E1000_GORCH);
+ (void) E1000_READ_REG(hw, E1000_GOTCL);
+ (void) E1000_READ_REG(hw, E1000_GOTCH);
+ (void) E1000_READ_REG(hw, E1000_RNBC);
+ (void) E1000_READ_REG(hw, E1000_RUC);
+ (void) E1000_READ_REG(hw, E1000_RFC);
+ (void) E1000_READ_REG(hw, E1000_ROC);
+ (void) E1000_READ_REG(hw, E1000_RJC);
+ (void) E1000_READ_REG(hw, E1000_TORL);
+ (void) E1000_READ_REG(hw, E1000_TORH);
+ (void) E1000_READ_REG(hw, E1000_TOTL);
+ (void) E1000_READ_REG(hw, E1000_TOTH);
+ (void) E1000_READ_REG(hw, E1000_TPR);
+ (void) E1000_READ_REG(hw, E1000_TPT);
+ (void) E1000_READ_REG(hw, E1000_MPTC);
+ (void) E1000_READ_REG(hw, E1000_BPTC);
+}
+
+/*
+ * e1000_check_for_copper_link_generic - Check for link (Copper)
+ * @hw: pointer to the HW structure
+ *
+ * Checks to see of the link status of the hardware has changed. If a
+ * change in link status has been detected, then we read the PHY registers
+ * to get the current speed/duplex if link exists.
+ */
+s32
+e1000_check_for_copper_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_check_for_copper_link");
+
+ /*
+ * We only want to go out to the PHY registers to see if Auto-Neg
+ * has completed and/or if our link status has changed. The
+ * get_link_status flag is set upon receiving a Link Status
+ * Change or Rx Sequence Error interrupt.
+ */
+ if (!mac->get_link_status) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /*
+ * First we want to see if the MII Status Register reports
+ * link. If so, then we want to get the current speed/duplex
+ * of the PHY.
+ */
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link)
+ goto out; /* No link detected */
+
+ mac->get_link_status = FALSE;
+
+ /*
+ * Check if there was DownShift, must be checked
+ * immediately after link-up
+ */
+ (void) e1000_check_downshift_generic(hw);
+
+ /*
+ * If we are forcing speed/duplex, then we simply return since
+ * we have already determined whether we have link or not.
+ */
+ if (!mac->autoneg) {
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ /*
+ * Auto-Neg is enabled. Auto Speed Detection takes care
+ * of MAC speed/duplex configuration. So we only need to
+ * configure Collision Distance in the MAC.
+ */
+ e1000_config_collision_dist_generic(hw);
+
+ /*
+ * Configure Flow Control now that Auto-Neg has completed.
+ * First, we need to restore the desired flow control
+ * settings because we may have had to re-autoneg with a
+ * different link partner.
+ */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_check_for_fiber_link_generic - Check for link (Fiber)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware. If link is not up and we have
+ * a signal, then we need to force link up.
+ */
+s32
+e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 rxcw;
+ u32 ctrl;
+ u32 status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_check_for_fiber_link_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+ /*
+ * If we don't have link (auto-negotiation failed or link partner
+ * cannot auto-negotiate), the cable is plugged in (we have signal),
+ * and our link partner is not trying to auto-negotiate with us (we
+ * are receiving idles or data), we need to force link up. We also
+ * need to give auto-negotiation time to complete, in case the cable
+ * was just plugged in. The autoneg_failed flag does this.
+ */
+ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+ if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
+ (!(rxcw & E1000_RXCW_C))) {
+ if (mac->autoneg_failed == 0) {
+ mac->autoneg_failed = 1;
+ goto out;
+ }
+ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ goto out;
+ }
+ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ /*
+ * If we are forcing link and we are receiving /C/ ordered
+ * sets, re-enable auto-negotiation in the TXCW register
+ * and disable forced link in the Device Control register
+ * in an attempt to auto-negotiate with our link partner.
+ */
+ DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ mac->serdes_has_link = TRUE;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ * @hw: pointer to the HW structure
+ *
+ * Checks for link up on the hardware. If link is not up and we have
+ * a signal, then we need to force link up.
+ */
+s32
+e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 rxcw;
+ u32 ctrl;
+ u32 status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_check_for_serdes_link_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+ /*
+ * If we don't have link (auto-negotiation failed or link partner
+ * cannot auto-negotiate), and our link partner is not trying to
+ * auto-negotiate with us (we are receiving idles or data),
+ * we need to force link up. We also need to give auto-negotiation
+ * time to complete.
+ */
+ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+ if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
+ if (mac->autoneg_failed == 0) {
+ mac->autoneg_failed = 1;
+ goto out;
+ }
+ DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
+
+ /* Disable auto-negotiation in the TXCW register */
+ E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+ /* Force link-up and also force full-duplex. */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Configure Flow Control after forcing link up. */
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error configuring flow control\n");
+ goto out;
+ }
+ } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ /*
+ * If we are forcing link and we are receiving /C/ ordered
+ * sets, re-enable auto-negotiation in the TXCW register
+ * and disable forced link in the Device Control register
+ * in an attempt to auto-negotiate with our link partner.
+ */
+ DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
+ E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+ E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+ mac->serdes_has_link = TRUE;
+ } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
+ /*
+ * If we force link for non-auto-negotiation switch, check
+ * link status based on MAC synchronization for internal
+ * serdes media type.
+ */
+ /* SYNCH bit and IV bit are sticky. */
+ usec_delay(10);
+ if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, E1000_RXCW)) {
+ if (!(rxcw & E1000_RXCW_IV)) {
+ mac->serdes_has_link = TRUE;
+ DEBUGOUT("SERDES: Link is up.\n");
+ }
+ } else {
+ mac->serdes_has_link = FALSE;
+ DEBUGOUT("SERDES: Link is down.\n");
+ }
+ }
+
+ if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ mac->serdes_has_link = (status & E1000_STATUS_LU)
+ ? TRUE : FALSE;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_setup_link_generic - Setup flow control and link settings
+ * @hw: pointer to the HW structure
+ *
+ * Determines which flow control settings to use, then configures flow
+ * control. Calls the appropriate media-specific link configuration
+ * function. Assuming the adapter has a valid link partner, a valid link
+ * should be established. Assumes the hardware has previously been reset
+ * and the transmitter and receiver are not enabled.
+ */
+s32
+e1000_setup_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_functions *func = &hw->func;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_link_generic");
+
+ /*
+ * In the case of the phy reset being blocked, we already have a link.
+ * We do not need to set it up again.
+ */
+ if (e1000_check_reset_block(hw))
+ goto out;
+
+ /*
+ * If flow control is set to default, set flow control based on
+ * the EEPROM flow control settings.
+ */
+ if (hw->fc.type == e1000_fc_default) {
+ ret_val = e1000_set_default_fc_generic(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ /*
+ * We want to save off the original Flow Control configuration just
+ * in case we get disconnected and then reconnected into a different
+ * hub or switch with different Flow Control capabilities.
+ */
+ hw->fc.original_type = hw->fc.type;
+
+ DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.type);
+
+ /* Call the necessary media_type subroutine to configure the link. */
+ ret_val = func->setup_physical_interface(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Initialize the flow control address, type, and PAUSE timer
+ * registers to their default values. This is done even if flow
+ * control is disabled, because it does not hurt anything to
+ * initialize these registers.
+ */
+ DEBUGOUT("Initializing the Flow Control address,type and timer regs\n");
+ E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+ E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+ E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+ E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+
+ ret_val = e1000_set_fc_watermarks_generic(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
+ * @hw: pointer to the HW structure
+ *
+ * Configures collision distance and flow control for fiber and serdes
+ * links. Upon successful setup, poll for link.
+ */
+s32
+e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /* Take the link out of reset */
+ ctrl &= ~E1000_CTRL_LRST;
+
+ e1000_config_collision_dist_generic(hw);
+
+ ret_val = e1000_commit_fc_settings_generic(hw);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Since auto-negotiation is enabled, take the link out of reset (the
+ * link will be in reset, because we previously reset the chip). This
+ * will restart auto-negotiation. If auto-negotiation is successful
+ * then the link-up status bit will be set and the flow control enable
+ * bits (RFCE and TFCE) will be set according to their negotiated value.
+ */
+ DEBUGOUT("Auto-negotiation enabled\n");
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+ msec_delay(1);
+
+ /*
+ * For these adapters, the SW defineable pin 1 is set when the optics
+ * detect a signal. If we have a signal, then poll for a "Link-Up"
+ * indication.
+ */
+ if (hw->phy.media_type == e1000_media_type_internal_serdes ||
+ (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
+ ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+ } else {
+ DEBUGOUT("No signal detected\n");
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_config_collision_dist_generic - Configure collision distance
+ * @hw: pointer to the HW structure
+ *
+ * Configures the collision distance to the default value and is used
+ * during link setup. Currently no func pointer exists and all
+ * implementations are handled in the generic version of this function.
+ */
+void
+e1000_config_collision_dist_generic(struct e1000_hw *hw)
+{
+ u32 tctl;
+
+ DEBUGFUNC("e1000_config_collision_dist_generic");
+
+ tctl = E1000_READ_REG(hw, E1000_TCTL);
+
+ tctl &= ~E1000_TCTL_COLD;
+ tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+ E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/*
+ * e1000_poll_fiber_serdes_link_generic - Poll for link up
+ * @hw: pointer to the HW structure
+ *
+ * Polls for link up by reading the status register, if link fails to come
+ * up with auto-negotiation, then the link is forced if a signal is detected.
+ */
+s32
+e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 i, status;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
+
+ /*
+ * If we have a signal (the cable is plugged in, or assumed true for
+ * serdes media) then poll for a "Link-Up" indication in the Device
+ * Status Register. Time-out if a link isn't seen in 500 milliseconds
+ * seconds (Auto-negotiation should complete in less than 500
+ * milliseconds even if the other end is doing it in SW).
+ */
+ for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
+ msec_delay(10);
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_LU)
+ break;
+ }
+ if (i == FIBER_LINK_UP_LIMIT) {
+ DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+ mac->autoneg_failed = 1;
+ /*
+ * AutoNeg failed to achieve a link, so we'll call
+ * mac->check_for_link. This routine will force the
+ * link up if we detect a signal. This will allow us to
+ * communicate with non-autonegotiating link partners.
+ */
+ ret_val = e1000_check_for_link(hw);
+ if (ret_val) {
+ DEBUGOUT("Error while checking for link\n");
+ goto out;
+ }
+ mac->autoneg_failed = 0;
+ } else {
+ mac->autoneg_failed = 0;
+ DEBUGOUT("Valid Link Found\n");
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_commit_fc_settings_generic - Configure flow control
+ * @hw: pointer to the HW structure
+ *
+ * Write the flow control settings to the Transmit Config Word Register (TXCW)
+ * base on the flow control settings in e1000_mac_info.
+ */
+s32
+e1000_commit_fc_settings_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 txcw;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_commit_fc_settings_generic");
+
+ /*
+ * Check for a software override of the flow control settings, and
+ * setup the device accordingly. If auto-negotiation is enabled, then
+ * software will have to set the "PAUSE" bits to the correct value in
+ * the Transmit Config Word Register (TXCW) and re-start auto-
+ * negotiation. However, if auto-negotiation is disabled, then
+ * software will have to manually configure the two flow control enable
+ * bits in the CTRL register.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames,
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames but we
+ * do not support receiving pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) are enabled.
+ */
+ switch (hw->fc.type) {
+ case e1000_fc_none:
+ /* Flow control completely disabled by a software over-ride. */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+ break;
+ case e1000_fc_rx_pause:
+ /*
+ * Rx Flow control is enabled and Tx Flow control is disabled
+ * by a software over-ride. Since there really isn't a way to
+ * advertise that we are capable of Rx Pause ONLY, we will
+ * advertise that we support both symmetric and asymmetric RX
+ * PAUSE. Later, we will disable the adapter's ability to send
+ * PAUSE frames.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ case e1000_fc_tx_pause:
+ /*
+ * Tx Flow control is enabled, and Rx Flow control is disabled,
+ * by a software over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+ break;
+ case e1000_fc_full:
+ /*
+ * Flow control (both Rx and Tx) is enabled by a software
+ * over-ride.
+ */
+ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ E1000_WRITE_REG(hw, E1000_TXCW, txcw);
+ mac->txcw = txcw;
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
+ * @hw: pointer to the HW structure
+ *
+ * Sets the flow control high/low threshold (watermark) registers. If
+ * flow control XON frame transmission is enabled, then set XON frame
+ * tansmission as well.
+ */
+s32
+e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u32 fcrtl = 0, fcrth = 0;
+
+ DEBUGFUNC("e1000_set_fc_watermarks_generic");
+
+ /*
+ * Set the flow control receive threshold registers. Normally,
+ * these registers will be set to a default threshold that may be
+ * adjusted later by the driver's runtime code. However, if the
+ * ability to transmit pause frames is not enabled, then these
+ * registers will be set to 0.
+ */
+ if (hw->fc.type & e1000_fc_tx_pause) {
+ /*
+ * We need to set up the Receive Threshold high and low water
+ * marks as well as (optionally) enabling the transmission of
+ * XON frames.
+ */
+ fcrtl = hw->fc.low_water;
+ if (hw->fc.send_xon)
+ fcrtl |= E1000_FCRTL_XONE;
+
+ fcrth = hw->fc.high_water;
+ }
+ E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
+ E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
+
+ return (ret_val);
+}
+
+/*
+ * e1000_set_default_fc_generic - Set flow control default values
+ * @hw: pointer to the HW structure
+ *
+ * Read the EEPROM for the default values for flow control and store the
+ * values.
+ */
+s32
+e1000_set_default_fc_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_set_default_fc_generic");
+
+ /*
+ * Read and store word 0x0F of the EEPROM. This word contains bits
+ * that determine the hardware's default PAUSE (flow control) mode,
+ * a bit that determines whether the HW defaults to enabling or
+ * disabling auto-negotiation, and the direction of the
+ * SW defined pins. If there is no SW over-ride of the flow
+ * control setting, then the variable hw->fc will
+ * be initialized based on a value in the EEPROM.
+ */
+ ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
+
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
+ hw->fc.type = e1000_fc_none;
+ else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
+ NVM_WORD0F_ASM_DIR)
+ hw->fc.type = e1000_fc_tx_pause;
+ else
+ hw->fc.type = e1000_fc_full;
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_force_mac_fc_generic - Force the MAC's flow control settings
+ * @hw: pointer to the HW structure
+ *
+ * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
+ * device control register to reflect the adapter settings. TFCE and RFCE
+ * need to be explicitly set by software when a copper PHY is used because
+ * autonegotiation is managed by the PHY rather than the MAC. Software must
+ * also configure these bits when link is forced on a fiber connection.
+ */
+s32
+e1000_force_mac_fc_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_force_mac_fc_generic");
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+ /*
+ * Because we didn't get link via the internal auto-negotiation
+ * mechanism (we either forced link or we got link via PHY
+ * auto-neg), we have to manually enable/disable transmit an
+ * receive flow control.
+ *
+ * The "Case" statement below enables/disable flow control
+ * according to the "hw->fc.type" parameter.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause
+ * frames but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * frames but we do not receive pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) is enabled.
+ * other: No other values should be possible at this point.
+ */
+ DEBUGOUT1("hw->fc.type = %u\n", hw->fc.type);
+
+ switch (hw->fc.type) {
+ case e1000_fc_none:
+ ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+ break;
+ case e1000_fc_rx_pause:
+ ctrl &= (~E1000_CTRL_TFCE);
+ ctrl |= E1000_CTRL_RFCE;
+ break;
+ case e1000_fc_tx_pause:
+ ctrl &= (~E1000_CTRL_RFCE);
+ ctrl |= E1000_CTRL_TFCE;
+ break;
+ case e1000_fc_full:
+ ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_config_fc_after_link_up_generic - Configures flow control after link
+ * @hw: pointer to the HW structure
+ *
+ * Checks the status of auto-negotiation after link up to ensure that the
+ * speed and duplex were not forced. If the link needed to be forced, then
+ * flow control needs to be forced also. If auto-negotiation is enabled
+ * and did not fail, then we configure flow control based on our link
+ * partner.
+ */
+s32
+e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val = E1000_SUCCESS;
+ u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
+ u16 speed, duplex;
+
+ DEBUGFUNC("e1000_config_fc_after_link_up_generic");
+
+ /*
+ * Check for the case where we have fiber media and auto-neg failed
+ * so we had to force link. In this case, we need to force the
+ * configuration of the MAC to match the "fc" parameter.
+ */
+ if (mac->autoneg_failed) {
+ if (hw->phy.media_type == e1000_media_type_fiber ||
+ hw->phy.media_type == e1000_media_type_internal_serdes)
+ ret_val = e1000_force_mac_fc_generic(hw);
+ } else {
+ if (hw->phy.media_type == e1000_media_type_copper)
+ ret_val = e1000_force_mac_fc_generic(hw);
+ }
+
+ if (ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ goto out;
+ }
+
+ /*
+ * Check for the case where we have copper media and auto-neg is
+ * enabled. In this case, we need to check and see if Auto-Neg
+ * has completed, and if so, how the PHY and link partner has
+ * flow control configured.
+ */
+ if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
+ /*
+ * Read the MII Status Register and check to see if AutoNeg
+ * has completed. We read this twice because this reg has
+ * some "sticky" (latched) bits.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
+ if (ret_val)
+ goto out;
+
+ if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+ DEBUGOUT("Copper PHY and Auto Neg "
+ "has not completed.\n");
+ goto out;
+ }
+
+ /*
+ * The AutoNeg process has completed, so we now need to
+ * read both the Auto Negotiation Advertisement
+ * Register (Address 4) and the Auto_Negotiation Base
+ * Page Ability Register (Address 5) to determine how
+ * flow control was negotiated.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
+ &mii_nway_adv_reg);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
+ &mii_nway_lp_ability_reg);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Two bits in the Auto Negotiation Advertisement Register
+ * (Address 4) and two bits in the Auto Negotiation Base
+ * Page Ability Register (Address 5) determine flow control
+ * for both the PHY and the link partner. The following
+ * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+ * 1999, describes these PAUSE resolution bits and how flow
+ * control is determined based upon these settings.
+ * NOTE: DC = Don't Care
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+ * ------|---------|-------|---------|--------------------
+ * 0 | 0 | DC | DC | e1000_fc_none
+ * 0 | 1 | 0 | DC | e1000_fc_none
+ * 0 | 1 | 1 | 0 | e1000_fc_none
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ * 1 | 0 | 0 | DC | e1000_fc_none
+ * 1 | DC | 1 | DC | e1000_fc_full
+ * 1 | 1 | 0 | 0 | e1000_fc_none
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ *
+ * Are both PAUSE bits set to 1? If so, this implies
+ * Symmetric Flow Control is enabled at both ends. The
+ * ASM_DIR bits are irrelevant per the spec.
+ *
+ * For Symmetric Flow Control:
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ * ------|---------|-------|---------|--------------------
+ * 1 | DC | 1 | DC | E1000_fc_full
+ *
+ */
+ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+ /*
+ * Now we need to check if the user selected Rx ONLY
+ * of pause frames. In this case, we had to advertise
+ * FULL flow control because we could not advertise RX
+ * ONLY. Hence, we must now check to see if we need to
+ * turn OFF the TRANSMISSION of PAUSE frames.
+ */
+ if (hw->fc.original_type == e1000_fc_full) {
+ hw->fc.type = e1000_fc_full;
+ DEBUGOUT("Flow Control = FULL.\r\n");
+ } else {
+ hw->fc.type = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = "
+ "RX PAUSE frames only.\r\n");
+ }
+ }
+ /*
+ * For receiving PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ * ------|---------|-------|---------|--------------------
+ * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ */
+ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc.type = e1000_fc_tx_pause;
+ DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
+ }
+ /*
+ * For transmitting PAUSE frames ONLY.
+ *
+ * LOCAL DEVICE | LINK PARTNER
+ * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+ * ------|---------|-------|---------|--------------------
+ * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ */
+ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ hw->fc.type = e1000_fc_rx_pause;
+ DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
+ } else {
+ /*
+ * Per the IEEE spec, at this point flow control
+ * should be disabled.
+ */
+ hw->fc.type = e1000_fc_none;
+ DEBUGOUT("Flow Control = NONE.\r\n");
+ }
+
+ /*
+ * Now we need to do one last check... If we auto-
+ * negotiated to HALF DUPLEX, flow control should not be
+ * enabled per IEEE 802.3 spec.
+ */
+ ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
+ if (ret_val) {
+ DEBUGOUT("Error getting link speed and duplex\n");
+ goto out;
+ }
+
+ if (duplex == HALF_DUPLEX)
+ hw->fc.type = e1000_fc_none;
+
+ /*
+ * Now we call a subroutine to actually force the MAC
+ * controller to use the correct flow control settings.
+ */
+ ret_val = e1000_force_mac_fc_generic(hw);
+ if (ret_val) {
+ DEBUGOUT("Error forcing flow control settings\n");
+ goto out;
+ }
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_get_speed_and_duplex_copper_generic - Retreive current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Read the status register for the current speed/duplex and store the current
+ * speed and duplex for copper connections.
+ */
+s32
+e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex)
+{
+ u32 status;
+
+ DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
+
+ status = E1000_READ_REG(hw, E1000_STATUS);
+ if (status & E1000_STATUS_SPEED_1000) {
+ *speed = SPEED_1000;
+ DEBUGOUT("1000 Mbs, ");
+ } else if (status & E1000_STATUS_SPEED_100) {
+ *speed = SPEED_100;
+ DEBUGOUT("100 Mbs, ");
+ } else {
+ *speed = SPEED_10;
+ DEBUGOUT("10 Mbs, ");
+ }
+
+ if (status & E1000_STATUS_FD) {
+ *duplex = FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ } else {
+ *duplex = HALF_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ }
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_get_speed_and_duplex_fiber_generic - Retreive current speed/duplex
+ * @hw: pointer to the HW structure
+ * @speed: stores the current speed
+ * @duplex: stores the current duplex
+ *
+ * Sets the speed and duplex to gigabit full duplex (the only possible option)
+ * for fiber/serdes links.
+ */
+s32
+e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex)
+{
+ DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
+ UNREFERENCED_PARAMETER(hw);
+
+ *speed = SPEED_1000;
+ *duplex = FULL_DUPLEX;
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_get_hw_semaphore_generic - Acquire hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Acquire the HW semaphore to access the PHY or NVM
+ */
+s32
+e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
+{
+ u32 swsm;
+ s32 ret_val = E1000_SUCCESS;
+ s32 timeout = hw->nvm.word_size + 1;
+ s32 i = 0;
+
+ DEBUGFUNC("e1000_get_hw_semaphore_generic");
+
+ /* Get the SW semaphore */
+ while (i < timeout) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ if (!(swsm & E1000_SWSM_SMBI))
+ break;
+
+ usec_delay(50);
+ i++;
+ }
+
+ if (i == timeout) {
+ DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ /* Get the FW semaphore. */
+ for (i = 0; i < timeout; i++) {
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+ /* Semaphore acquired if bit latched */
+ if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+ break;
+
+ usec_delay(50);
+ }
+
+ if (i == timeout) {
+ /* Release semaphores */
+ e1000_put_hw_semaphore_generic(hw);
+ DEBUGOUT("Driver can't access the NVM\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_put_hw_semaphore_generic - Release hardware semaphore
+ * @hw: pointer to the HW structure
+ *
+ * Release hardware semaphore used to access the PHY or NVM
+ */
+void
+e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
+{
+ u32 swsm;
+
+ DEBUGFUNC("e1000_put_hw_semaphore_generic");
+
+ swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+ swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+
+ E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/*
+ * e1000_get_auto_rd_done_generic - Check for auto read completion
+ * @hw: pointer to the HW structure
+ *
+ * Check EEPROM for Auto Read done bit.
+ */
+s32
+e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
+{
+ s32 i = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_get_auto_rd_done_generic");
+
+ while (i < AUTO_READ_DONE_TIMEOUT) {
+ if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
+ break;
+ msec_delay(1);
+ i++;
+ }
+
+ if (i == AUTO_READ_DONE_TIMEOUT) {
+ DEBUGOUT("Auto read by HW from NVM has not completed.\n");
+ ret_val = -E1000_ERR_RESET;
+ goto out;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_valid_led_default_generic - Verify a valid default LED config
+ * @hw: pointer to the HW structure
+ * @data: pointer to the NVM (EEPROM)
+ *
+ * Read the EEPROM for the current default LED configuration. If the
+ * LED configuration is not valid, set to a valid LED configuration.
+ */
+s32
+e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_valid_led_default_generic");
+
+ ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+
+ if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
+ *data = ID_LED_DEFAULT;
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_id_led_init_generic -
+ * @hw: pointer to the HW structure
+ *
+ */
+s32
+e1000_id_led_init_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ s32 ret_val;
+ const u32 ledctl_mask = 0x000000FF;
+ const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+ const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+ u16 data, i, temp;
+ const u16 led_mask = 0x0F;
+
+ DEBUGFUNC("e1000_id_led_init_generic");
+
+ ret_val = hw->func.valid_led_default(hw, &data);
+ if (ret_val)
+ goto out;
+
+ mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
+ mac->ledctl_mode1 = mac->ledctl_default;
+ mac->ledctl_mode2 = mac->ledctl_default;
+
+ for (i = 0; i < 4; i++) {
+ temp = (data >> (i << 2)) & led_mask;
+ switch (temp) {
+ case ID_LED_ON1_DEF2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_ON1_OFF2:
+ mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode1 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_OFF1_DEF2:
+ case ID_LED_OFF1_ON2:
+ case ID_LED_OFF1_OFF2:
+ mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode1 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ switch (temp) {
+ case ID_LED_DEF1_ON2:
+ case ID_LED_ON1_ON2:
+ case ID_LED_OFF1_ON2:
+ mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode2 |= ledctl_on << (i << 3);
+ break;
+ case ID_LED_DEF1_OFF2:
+ case ID_LED_ON1_OFF2:
+ case ID_LED_OFF1_OFF2:
+ mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+ mac->ledctl_mode2 |= ledctl_off << (i << 3);
+ break;
+ default:
+ /* Do nothing */
+ break;
+ }
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_setup_led_generic - Configures SW controllable LED
+ * @hw: pointer to the HW structure
+ *
+ * This prepares the SW controllable LED for use and saves the current state
+ * of the LED so it can be later restored.
+ */
+s32
+e1000_setup_led_generic(struct e1000_hw *hw)
+{
+ u32 ledctl;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_setup_led_generic");
+
+ if (hw->func.setup_led != e1000_setup_led_generic) {
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ if (hw->phy.media_type == e1000_media_type_fiber) {
+ ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+ hw->mac.ledctl_default = ledctl;
+ /* Turn off LED0 */
+ ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
+ E1000_LEDCTL_LED0_BLINK |
+ E1000_LEDCTL_LED0_MODE_MASK);
+ ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+ E1000_LEDCTL_LED0_MODE_SHIFT);
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+ } else if (hw->phy.media_type == e1000_media_type_copper) {
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_cleanup_led_generic - Set LED config to default operation
+ * @hw: pointer to the HW structure
+ *
+ * Remove the current LED configuration and set the LED configuration
+ * to the default value, saved from the EEPROM.
+ */
+s32
+e1000_cleanup_led_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_cleanup_led_generic");
+
+ if (hw->func.cleanup_led != e1000_cleanup_led_generic) {
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_blink_led_generic - Blink LED
+ * @hw: pointer to the HW structure
+ *
+ * Blink the led's which are set to be on.
+ */
+s32
+e1000_blink_led_generic(struct e1000_hw *hw)
+{
+ u32 ledctl_blink = 0;
+ u32 i;
+
+ DEBUGFUNC("e1000_blink_led_generic");
+
+ if (hw->phy.media_type == e1000_media_type_fiber) {
+ /* always blink LED0 for PCI-E fiber */
+ ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+ (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+ } else {
+ /*
+ * set the blink bit for each LED that's "on" (0x0E)
+ * in ledctl_mode2
+ */
+ ledctl_blink = hw->mac.ledctl_mode2;
+ for (i = 0; i < 4; i++)
+ if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
+ E1000_LEDCTL_MODE_LED_ON)
+ ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
+ (i * 8));
+ }
+
+ E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_led_on_generic - Turn LED on
+ * @hw: pointer to the HW structure
+ *
+ * Turn LED on.
+ */
+s32
+e1000_led_on_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_led_on_generic");
+
+ switch (hw->phy.media_type) {
+ case e1000_media_type_fiber:
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl &= ~E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ break;
+ case e1000_media_type_copper:
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+ break;
+ default:
+ break;
+ }
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_led_off_generic - Turn LED off
+ * @hw: pointer to the HW structure
+ *
+ * Turn LED off.
+ */
+s32
+e1000_led_off_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_led_off_generic");
+
+ switch (hw->phy.media_type) {
+ case e1000_media_type_fiber:
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_SWDPIN0;
+ ctrl |= E1000_CTRL_SWDPIO0;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ break;
+ case e1000_media_type_copper:
+ E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+ break;
+ default:
+ break;
+ }
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
+ * @hw: pointer to the HW structure
+ * @no_snoop: bitmap of snoop events
+ *
+ * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
+ */
+void
+e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
+{
+ u32 gcr;
+
+ DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
+
+ if (hw->bus.type != e1000_bus_type_pci_express)
+ return;
+
+ if (no_snoop) {
+ gcr = E1000_READ_REG(hw, E1000_GCR);
+ gcr &= ~(PCIE_NO_SNOOP_ALL);
+ gcr |= no_snoop;
+ E1000_WRITE_REG(hw, E1000_GCR, gcr);
+ }
+}
+
+/*
+ * e1000_disable_pcie_master_generic - Disables PCI-express master access
+ * @hw: pointer to the HW structure
+ *
+ * Returns 0 (E1000_SUCCESS) if successful, else returns -10
+ * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
+ * the master requests to be disabled.
+ *
+ * Disables PCI-Express master access and verifies there are no pending
+ * requests.
+ */
+s32
+e1000_disable_pcie_master_generic(struct e1000_hw *hw)
+{
+ u32 ctrl;
+ s32 timeout = MASTER_DISABLE_TIMEOUT;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_disable_pcie_master_generic");
+
+ if (hw->bus.type != e1000_bus_type_pci_express)
+ goto out;
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ while (timeout) {
+ if (!(E1000_READ_REG(hw, E1000_STATUS) &
+ E1000_STATUS_GIO_MASTER_ENABLE))
+ break;
+ usec_delay(100);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("Master requests are pending.\n");
+ ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
+ goto out;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
+ * @hw: pointer to the HW structure
+ *
+ * Reset the Adaptive Interframe Spacing throttle to default values.
+ */
+void
+e1000_reset_adaptive_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_reset_adaptive_generic");
+
+ if (!mac->adaptive_ifs) {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ return;
+ }
+
+ if (!mac->ifs_params_forced) {
+ mac->current_ifs_val = 0;
+ mac->ifs_min_val = IFS_MIN;
+ mac->ifs_max_val = IFS_MAX;
+ mac->ifs_step_size = IFS_STEP;
+ mac->ifs_ratio = IFS_RATIO;
+ }
+
+ mac->in_ifs_mode = FALSE;
+ E1000_WRITE_REG(hw, E1000_AIT, 0);
+}
+
+/*
+ * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
+ * @hw: pointer to the HW structure
+ *
+ * Update the Adaptive Interframe Spacing Throttle value based on the
+ * time between transmitted packets and time between collisions.
+ */
+void
+e1000_update_adaptive_generic(struct e1000_hw *hw)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+
+ DEBUGFUNC("e1000_update_adaptive_generic");
+
+ if (!mac->adaptive_ifs) {
+ DEBUGOUT("Not in Adaptive IFS mode!\n");
+ return;
+ }
+
+ if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
+ if (mac->tx_packet_delta > MIN_NUM_XMITS) {
+ mac->in_ifs_mode = TRUE;
+ if (mac->current_ifs_val < mac->ifs_max_val) {
+ if (!mac->current_ifs_val)
+ mac->current_ifs_val = mac->ifs_min_val;
+ else
+ mac->current_ifs_val +=
+ mac->ifs_step_size;
+ E1000_WRITE_REG(hw, E1000_AIT,
+ mac->current_ifs_val);
+ }
+ }
+ } else {
+ if (mac->in_ifs_mode &&
+ (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
+ mac->current_ifs_val = 0;
+ mac->in_ifs_mode = FALSE;
+ E1000_WRITE_REG(hw, E1000_AIT, 0);
+ }
+ }
+}
+
+/*
+ * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
+ * @hw: pointer to the HW structure
+ *
+ * Verify that when not using auto-negotitation that MDI/MDIx is correctly
+ * set, which is forced to MDI mode only.
+ */
+s32
+e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_validate_mdi_setting_generic");
+
+ if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
+ DEBUGOUT("Invalid MDI setting detected\n");
+ hw->phy.mdix = 1;
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
+ * @hw: pointer to the HW structure
+ * @reg: 32bit register offset such as E1000_SCTL
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Writes an address/data control type register. There are several of these
+ * and they all have the format address << 8 | data and bit 31 is polled for
+ * completion.
+ */
+s32
+e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+ u32 offset, u8 data)
+{
+ u32 i, regvalue = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
+
+ /* Set up the address and data */
+ regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
+ E1000_WRITE_REG(hw, reg, regvalue);
+
+ /* Poll the ready bit to see if the MDI read completed */
+ for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
+ usec_delay(5);
+ regvalue = E1000_READ_REG(hw, reg);
+ if (regvalue & E1000_GEN_CTL_READY)
+ break;
+ }
+ if (!(regvalue & E1000_GEN_CTL_READY)) {
+ DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return (ret_val);
+}
diff --git a/usr/src/uts/common/io/igb/igb_mac.h b/usr/src/uts/common/io/igb/igb_mac.h
new file mode 100644
index 0000000000..ac6abbb481
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_mac.h
@@ -0,0 +1,96 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#ifndef _IGB_MAC_H
+#define _IGB_MAC_H
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+ * Functions that should not be called directly from drivers but can be used
+ * by other files in this 'shared code'
+ */
+s32 e1000_blink_led_generic(struct e1000_hw *hw);
+s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw);
+s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw);
+s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_cleanup_led_generic(struct e1000_hw *hw);
+s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw);
+s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw);
+s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw);
+s32 e1000_force_mac_fc_generic(struct e1000_hw *hw);
+s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw);
+s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw);
+s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw);
+s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw);
+s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+ u16 *duplex);
+s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw,
+ u16 *speed, u16 *duplex);
+s32 e1000_id_led_init_generic(struct e1000_hw *hw);
+s32 e1000_led_on_generic(struct e1000_hw *hw);
+s32 e1000_led_off_generic(struct e1000_hw *hw);
+void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+ u8 *mc_addr_list, u32 mc_addr_count,
+ u32 rar_used_count, u32 rar_count);
+s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_set_default_fc_generic(struct e1000_hw *hw);
+s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw);
+s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw);
+s32 e1000_setup_led_generic(struct e1000_hw *hw);
+s32 e1000_setup_link_generic(struct e1000_hw *hw);
+s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
+s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+ u32 offset, u8 data);
+
+u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr);
+
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw);
+void e1000_clear_vfta_generic(struct e1000_hw *hw);
+void e1000_config_collision_dist_generic(struct e1000_hw *hw);
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count);
+void e1000_mta_set_generic(struct e1000_hw *hw, u32 hash_value);
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw);
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw);
+void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
+s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
+void e1000_remove_device_generic(struct e1000_hw *hw);
+void e1000_reset_adaptive_generic(struct e1000_hw *hw);
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop);
+void e1000_update_adaptive_generic(struct e1000_hw *hw);
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _IGB_MAC_H */
diff --git a/usr/src/uts/common/io/igb/igb_main.c b/usr/src/uts/common/io/igb/igb_main.c
new file mode 100644
index 0000000000..0f13a82cdb
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_main.c
@@ -0,0 +1,4012 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "igb_sw.h"
+
+static char ident[] = "Intel 1Gb Ethernet 1.1.0";
+
+/*
+ * Local function protoypes
+ */
+static int igb_register_mac(igb_t *);
+static int igb_identify_hardware(igb_t *);
+static int igb_regs_map(igb_t *);
+static void igb_init_properties(igb_t *);
+static int igb_init_driver_settings(igb_t *);
+static void igb_init_locks(igb_t *);
+static void igb_destroy_locks(igb_t *);
+static int igb_init(igb_t *);
+static int igb_chip_start(igb_t *);
+static void igb_chip_stop(igb_t *);
+static int igb_reset(igb_t *);
+static void igb_tx_clean(igb_t *);
+static boolean_t igb_tx_drain(igb_t *);
+static boolean_t igb_rx_drain(igb_t *);
+static int igb_alloc_rings(igb_t *);
+static int igb_init_rings(igb_t *);
+static void igb_free_rings(igb_t *);
+static void igb_fini_rings(igb_t *);
+static void igb_setup_rings(igb_t *);
+static void igb_setup_rx(igb_t *);
+static void igb_setup_tx(igb_t *);
+static void igb_setup_rx_ring(igb_rx_ring_t *);
+static void igb_setup_tx_ring(igb_tx_ring_t *);
+static void igb_setup_rss(igb_t *);
+static void igb_init_unicst(igb_t *);
+static void igb_setup_multicst(igb_t *);
+static void igb_get_phy_state(igb_t *);
+static void igb_get_conf(igb_t *);
+static int igb_get_prop(igb_t *, char *, int, int, int);
+static boolean_t igb_is_link_up(igb_t *);
+static boolean_t igb_link_check(igb_t *);
+static void igb_local_timer(void *);
+static void igb_arm_watchdog_timer(igb_t *);
+static void igb_start_watchdog_timer(igb_t *);
+static void igb_restart_watchdog_timer(igb_t *);
+static void igb_stop_watchdog_timer(igb_t *);
+static void igb_disable_adapter_interrupts(igb_t *);
+static void igb_enable_adapter_interrupts(igb_t *);
+static boolean_t is_valid_mac_addr(uint8_t *);
+static boolean_t igb_stall_check(igb_t *);
+static boolean_t igb_set_loopback_mode(igb_t *, uint32_t);
+static void igb_set_external_loopback(igb_t *);
+static void igb_set_internal_mac_loopback(igb_t *);
+static void igb_set_internal_phy_loopback(igb_t *);
+static void igb_set_internal_serdes_loopback(igb_t *);
+static boolean_t igb_find_mac_address(igb_t *);
+static int igb_alloc_intrs(igb_t *);
+static int igb_alloc_intrs_msix(igb_t *);
+static int igb_alloc_intrs_msi(igb_t *);
+static int igb_alloc_intrs_legacy(igb_t *);
+static int igb_add_intr_handlers(igb_t *);
+static void igb_rem_intr_handlers(igb_t *);
+static void igb_rem_intrs(igb_t *);
+static int igb_enable_intrs(igb_t *);
+static int igb_disable_intrs(igb_t *);
+static void igb_setup_adapter_msix(igb_t *);
+static uint_t igb_intr_legacy(void *, void *);
+static uint_t igb_intr_msi(void *, void *);
+static uint_t igb_intr_rx(void *, void *);
+static uint_t igb_intr_tx_other(void *, void *);
+static void igb_intr_rx_work(igb_rx_ring_t *);
+static void igb_intr_tx_work(igb_tx_ring_t *);
+static void igb_intr_other_work(igb_t *);
+static void igb_get_driver_control(struct e1000_hw *);
+static void igb_release_driver_control(struct e1000_hw *);
+
+static int igb_attach(dev_info_t *, ddi_attach_cmd_t);
+static int igb_detach(dev_info_t *, ddi_detach_cmd_t);
+static int igb_resume(dev_info_t *);
+static int igb_suspend(dev_info_t *);
+static void igb_unconfigure(dev_info_t *, igb_t *);
+
+static struct cb_ops igb_cb_ops = {
+ nulldev, /* cb_open */
+ nulldev, /* cb_close */
+ nodev, /* cb_strategy */
+ nodev, /* cb_print */
+ nodev, /* cb_dump */
+ nodev, /* cb_read */
+ nodev, /* cb_write */
+ nodev, /* cb_ioctl */
+ nodev, /* cb_devmap */
+ nodev, /* cb_mmap */
+ nodev, /* cb_segmap */
+ nochpoll, /* cb_chpoll */
+ ddi_prop_op, /* cb_prop_op */
+ NULL, /* cb_stream */
+ D_MP | D_HOTPLUG, /* cb_flag */
+ CB_REV, /* cb_rev */
+ nodev, /* cb_aread */
+ nodev /* cb_awrite */
+};
+
+static struct dev_ops igb_dev_ops = {
+ DEVO_REV, /* devo_rev */
+ 0, /* devo_refcnt */
+ NULL, /* devo_getinfo */
+ nulldev, /* devo_identify */
+ nulldev, /* devo_probe */
+ igb_attach, /* devo_attach */
+ igb_detach, /* devo_detach */
+ nodev, /* devo_reset */
+ &igb_cb_ops, /* devo_cb_ops */
+ NULL, /* devo_bus_ops */
+ ddi_power /* devo_power */
+};
+
+static struct modldrv igb_modldrv = {
+ &mod_driverops, /* Type of module. This one is a driver */
+ ident, /* Discription string */
+ &igb_dev_ops, /* driver ops */
+};
+
+static struct modlinkage igb_modlinkage = {
+ MODREV_1, &igb_modldrv, NULL
+};
+
+/* Access attributes for register mapping */
+ddi_device_acc_attr_t igb_regs_acc_attr = {
+ DDI_DEVICE_ATTR_V0,
+ DDI_STRUCTURE_LE_ACC,
+ DDI_STRICTORDER_ACC,
+};
+
+#define IGB_M_CALLBACK_FLAGS (MC_IOCTL | MC_GETCAPAB)
+
+static mac_callbacks_t igb_m_callbacks = {
+ IGB_M_CALLBACK_FLAGS,
+ igb_m_stat,
+ igb_m_start,
+ igb_m_stop,
+ igb_m_promisc,
+ igb_m_multicst,
+ igb_m_unicst,
+ igb_m_tx,
+ NULL,
+ igb_m_ioctl,
+ igb_m_getcapab
+};
+
+
+/*
+ * Module Initialization Functions
+ */
+
+int
+_init(void)
+{
+ int status;
+
+ mac_init_ops(&igb_dev_ops, MODULE_NAME);
+
+ status = mod_install(&igb_modlinkage);
+
+ if (status != DDI_SUCCESS) {
+ mac_fini_ops(&igb_dev_ops);
+ }
+
+ return (status);
+}
+
+int
+_fini(void)
+{
+ int status;
+
+ status = mod_remove(&igb_modlinkage);
+
+ if (status == DDI_SUCCESS) {
+ mac_fini_ops(&igb_dev_ops);
+ }
+
+ return (status);
+
+}
+
+int
+_info(struct modinfo *modinfop)
+{
+ int status;
+
+ status = mod_info(&igb_modlinkage, modinfop);
+
+ return (status);
+}
+
+/*
+ * igb_attach - driver attach
+ *
+ * This function is the device specific initialization entry
+ * point. This entry point is required and must be written.
+ * The DDI_ATTACH command must be provided in the attach entry
+ * point. When attach() is called with cmd set to DDI_ATTACH,
+ * all normal kernel services (such as kmem_alloc(9F)) are
+ * available for use by the driver.
+ *
+ * The attach() function will be called once for each instance
+ * of the device on the system with cmd set to DDI_ATTACH.
+ * Until attach() succeeds, the only driver entry points which
+ * may be called are open(9E) and getinfo(9E).
+ */
+static int
+igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
+{
+ igb_t *igb;
+ struct igb_osdep *osdep;
+ struct e1000_hw *hw;
+ int instance;
+
+ /*
+ * Check the command and perform corresponding operations
+ */
+ switch (cmd) {
+ default:
+ return (DDI_FAILURE);
+
+ case DDI_RESUME:
+ return (igb_resume(devinfo));
+
+ case DDI_ATTACH:
+ break;
+ }
+
+ /* Get the device instance */
+ instance = ddi_get_instance(devinfo);
+
+ /* Allocate memory for the instance data structure */
+ igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP);
+
+ igb->dip = devinfo;
+ igb->instance = instance;
+
+ hw = &igb->hw;
+ osdep = &igb->osdep;
+ hw->back = osdep;
+ osdep->igb = igb;
+
+ /* Attach the instance pointer to the dev_info data structure */
+ ddi_set_driver_private(devinfo, igb);
+
+ /*
+ * Map PCI config space registers
+ */
+ if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
+ igb_error(igb, "Failed to map PCI configurations");
+ goto attach_fail;
+ }
+ igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
+
+ /*
+ * Identify the chipset family
+ */
+ if (igb_identify_hardware(igb) != IGB_SUCCESS) {
+ igb_error(igb, "Failed to identify hardware");
+ goto attach_fail;
+ }
+
+ /*
+ * Map device registers
+ */
+ if (igb_regs_map(igb) != IGB_SUCCESS) {
+ igb_error(igb, "Failed to map device registers");
+ goto attach_fail;
+ }
+ igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
+
+ /*
+ * Initialize driver parameters
+ */
+ igb_init_properties(igb);
+ igb->attach_progress |= ATTACH_PROGRESS_PROPS;
+
+ /*
+ * Allocate interrupts
+ */
+ if (igb_alloc_intrs(igb) != IGB_SUCCESS) {
+ igb_error(igb, "Failed to allocate interrupts");
+ goto attach_fail;
+ }
+ igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR;
+
+ /*
+ * Allocate rx/tx rings based on the ring numbers.
+ * The actual numbers of rx/tx rings are decided by the number of
+ * allocated interrupt vectors, so we should allocate the rings after
+ * interrupts are allocated.
+ */
+ if (igb_alloc_rings(igb) != IGB_SUCCESS) {
+ igb_error(igb, "Failed to allocate rx and tx rings");
+ goto attach_fail;
+ }
+ igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS;
+
+ /*
+ * Add interrupt handlers
+ */
+ if (igb_add_intr_handlers(igb) != IGB_SUCCESS) {
+ igb_error(igb, "Failed to add interrupt handlers");
+ goto attach_fail;
+ }
+ igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
+
+ /*
+ * Initialize driver parameters
+ */
+ if (igb_init_driver_settings(igb) != IGB_SUCCESS) {
+ igb_error(igb, "Failed to initialize driver settings");
+ goto attach_fail;
+ }
+
+ /*
+ * Initialize mutexes for this device.
+ * Do this before enabling the interrupt handler and
+ * register the softint to avoid the condition where
+ * interrupt handler can try using uninitialized mutex
+ */
+ igb_init_locks(igb);
+ igb->attach_progress |= ATTACH_PROGRESS_LOCKS;
+
+ /*
+ * Initialize chipset hardware
+ */
+ if (igb_init(igb) != IGB_SUCCESS) {
+ igb_error(igb, "Failed to initialize adapter");
+ goto attach_fail;
+ }
+ igb->attach_progress |= ATTACH_PROGRESS_INIT;
+
+ /*
+ * Initialize DMA and hardware settings for rx/tx rings
+ */
+ if (igb_init_rings(igb) != IGB_SUCCESS) {
+ igb_error(igb, "Failed to initialize rings");
+ goto attach_fail;
+ }
+ igb->attach_progress |= ATTACH_PROGRESS_INIT_RINGS;
+
+ /*
+ * Initialize statistics
+ */
+ if (igb_init_stats(igb) != IGB_SUCCESS) {
+ igb_error(igb, "Failed to initialize statistics");
+ goto attach_fail;
+ }
+ igb->attach_progress |= ATTACH_PROGRESS_STATS;
+
+ /*
+ * Initialize NDD parameters
+ */
+ if (igb_nd_init(igb) != IGB_SUCCESS) {
+ igb_error(igb, "Failed to initialize ndd");
+ goto attach_fail;
+ }
+ igb->attach_progress |= ATTACH_PROGRESS_NDD;
+
+ /*
+ * Register the driver to the MAC
+ */
+ if (igb_register_mac(igb) != IGB_SUCCESS) {
+ igb_error(igb, "Failed to register MAC");
+ goto attach_fail;
+ }
+ igb->attach_progress |= ATTACH_PROGRESS_MAC;
+
+ /*
+ * Now that mutex locks are initialized, and the chip is also
+ * initialized, enable interrupts.
+ */
+ if (igb_enable_intrs(igb) != IGB_SUCCESS) {
+ igb_error(igb, "Failed to enable DDI interrupts");
+ goto attach_fail;
+ }
+ igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
+
+ igb->igb_state |= IGB_INITIALIZED;
+
+ return (DDI_SUCCESS);
+
+attach_fail:
+ igb_unconfigure(devinfo, igb);
+ return (DDI_FAILURE);
+}
+
+/*
+ * igb_detach - driver detach
+ *
+ * The detach() function is the complement of the attach routine.
+ * If cmd is set to DDI_DETACH, detach() is used to remove the
+ * state associated with a given instance of a device node
+ * prior to the removal of that instance from the system.
+ *
+ * The detach() function will be called once for each instance
+ * of the device for which there has been a successful attach()
+ * once there are no longer any opens on the device.
+ *
+ * Interrupts routine are disabled, All memory allocated by this
+ * driver are freed.
+ */
+static int
+igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
+{
+ igb_t *igb;
+
+ /*
+ * Check detach command
+ */
+ switch (cmd) {
+ default:
+ return (DDI_FAILURE);
+
+ case DDI_SUSPEND:
+ return (igb_suspend(devinfo));
+
+ case DDI_DETACH:
+ break;
+ }
+
+
+ /*
+ * Get the pointer to the driver private data structure
+ */
+ igb = (igb_t *)ddi_get_driver_private(devinfo);
+ if (igb == NULL)
+ return (DDI_FAILURE);
+
+ /*
+ * Unregister MAC. If failed, we have to fail the detach
+ */
+ if (mac_unregister(igb->mac_hdl) != 0) {
+ igb_error(igb, "Failed to unregister MAC");
+ return (DDI_FAILURE);
+ }
+ igb->attach_progress &= ~ATTACH_PROGRESS_MAC;
+
+ /*
+ * If the device is still running, it needs to be stopped first.
+ * This check is necessary because under some specific circumstances,
+ * the detach routine can be called without stopping the interface
+ * first.
+ */
+ mutex_enter(&igb->gen_lock);
+ if (igb->igb_state & IGB_STARTED) {
+ igb->igb_state &= ~IGB_STARTED;
+ igb_stop(igb);
+ mutex_exit(&igb->gen_lock);
+ /* Disable and stop the watchdog timer */
+ igb_disable_watchdog_timer(igb);
+ } else
+ mutex_exit(&igb->gen_lock);
+
+ /*
+ * Check if there are still rx buffers held by the upper layer.
+ * If so, fail the detach.
+ */
+ if (!igb_rx_drain(igb))
+ return (DDI_FAILURE);
+
+ /*
+ * Do the remaining unconfigure routines
+ */
+ igb_unconfigure(devinfo, igb);
+
+ return (DDI_SUCCESS);
+}
+
+static void
+igb_unconfigure(dev_info_t *devinfo, igb_t *igb)
+{
+ /*
+ * Disable interrupt
+ */
+ if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
+ (void) igb_disable_intrs(igb);
+ }
+
+ /*
+ * Unregister MAC
+ */
+ if (igb->attach_progress & ATTACH_PROGRESS_MAC) {
+ (void) mac_unregister(igb->mac_hdl);
+ }
+
+ /*
+ * Free ndd parameters
+ */
+ if (igb->attach_progress & ATTACH_PROGRESS_NDD) {
+ igb_nd_cleanup(igb);
+ }
+
+ /*
+ * Free statistics
+ */
+ if (igb->attach_progress & ATTACH_PROGRESS_STATS) {
+ kstat_delete((kstat_t *)igb->igb_ks);
+ }
+
+ /*
+ * Remove interrupt handlers
+ */
+ if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
+ igb_rem_intr_handlers(igb);
+ }
+
+ /*
+ * Remove interrupts
+ */
+ if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) {
+ igb_rem_intrs(igb);
+ }
+
+ /*
+ * Remove driver properties
+ */
+ if (igb->attach_progress & ATTACH_PROGRESS_PROPS) {
+ (void) ddi_prop_remove_all(devinfo);
+ }
+
+ /*
+ * Release the DMA resources of rx/tx rings
+ */
+ if (igb->attach_progress & ATTACH_PROGRESS_INIT_RINGS) {
+ igb_fini_rings(igb);
+ }
+
+ /*
+ * Stop the chipset
+ */
+ if (igb->attach_progress & ATTACH_PROGRESS_INIT) {
+ mutex_enter(&igb->gen_lock);
+ igb_chip_stop(igb);
+ mutex_exit(&igb->gen_lock);
+ }
+
+ /*
+ * Free register handle
+ */
+ if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
+ if (igb->osdep.reg_handle != NULL)
+ ddi_regs_map_free(&igb->osdep.reg_handle);
+ }
+
+ /*
+ * Free PCI config handle
+ */
+ if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
+ if (igb->osdep.cfg_handle != NULL)
+ pci_config_teardown(&igb->osdep.cfg_handle);
+ }
+
+ /*
+ * Free locks
+ */
+ if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) {
+ igb_destroy_locks(igb);
+ }
+
+ /*
+ * Free the rx/tx rings
+ */
+ if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) {
+ igb_free_rings(igb);
+ }
+
+ /*
+ * Free device specific structure
+ */
+ e1000_remove_device(&igb->hw);
+
+ /*
+ * Free the driver data structure
+ */
+ kmem_free(igb, sizeof (igb_t));
+
+ ddi_set_driver_private(devinfo, NULL);
+}
+
+/*
+ * igb_register_mac - Register the driver and its function pointers with
+ * the GLD interface
+ */
+static int
+igb_register_mac(igb_t *igb)
+{
+ struct e1000_hw *hw = &igb->hw;
+ mac_register_t *mac;
+ int status;
+
+ if ((mac = mac_alloc(MAC_VERSION)) == NULL)
+ return (IGB_FAILURE);
+
+ mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
+ mac->m_driver = igb;
+ mac->m_dip = igb->dip;
+ mac->m_src_addr = hw->mac.addr;
+ mac->m_callbacks = &igb_m_callbacks;
+ mac->m_min_sdu = 0;
+ mac->m_max_sdu = igb->max_frame_size -
+ sizeof (struct ether_vlan_header) - ETHERFCSL;
+
+ status = mac_register(mac, &igb->mac_hdl);
+
+ mac_free(mac);
+
+ return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE);
+}
+
+/*
+ * igb_identify_hardware - Identify the type of the chipset
+ */
+static int
+igb_identify_hardware(igb_t *igb)
+{
+ struct e1000_hw *hw = &igb->hw;
+ struct igb_osdep *osdep = &igb->osdep;
+
+ /*
+ * Get the device id
+ */
+ hw->vendor_id =
+ pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
+ hw->device_id =
+ pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
+ hw->revision_id =
+ pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
+ hw->subsystem_device_id =
+ pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
+ hw->subsystem_vendor_id =
+ pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
+
+ /*
+ * Set the mac type of the adapter based on the device id
+ */
+ if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
+ return (IGB_FAILURE);
+ }
+
+ return (IGB_SUCCESS);
+}
+
+/*
+ * igb_regs_map - Map the device registers
+ */
+static int
+igb_regs_map(igb_t *igb)
+{
+ dev_info_t *devinfo = igb->dip;
+ struct e1000_hw *hw = &igb->hw;
+ struct igb_osdep *osdep = &igb->osdep;
+ off_t mem_size;
+
+ /*
+ * First get the size of device registers to be mapped.
+ */
+ if (ddi_dev_regsize(devinfo, 1, &mem_size) != DDI_SUCCESS) {
+ return (IGB_FAILURE);
+ }
+
+ /*
+ * Call ddi_regs_map_setup() to map registers
+ */
+ if ((ddi_regs_map_setup(devinfo, 1,
+ (caddr_t *)&hw->hw_addr, 0,
+ mem_size, &igb_regs_acc_attr,
+ &osdep->reg_handle)) != DDI_SUCCESS) {
+ return (IGB_FAILURE);
+ }
+
+ return (IGB_SUCCESS);
+}
+
+/*
+ * igb_init_properties - Initialize driver properties
+ */
+static void
+igb_init_properties(igb_t *igb)
+{
+ /*
+ * Get conf file properties, including link settings
+ * jumbo frames, ring number, descriptor number, etc.
+ */
+ igb_get_conf(igb);
+}
+
+/*
+ * igb_init_driver_settings - Initialize driver settings
+ *
+ * The settings include hardware function pointers, bus information,
+ * rx/tx rings settings, link state, and any other parameters that
+ * need to be setup during driver initialization.
+ */
+static int
+igb_init_driver_settings(igb_t *igb)
+{
+ struct e1000_hw *hw = &igb->hw;
+ igb_rx_ring_t *rx_ring;
+ igb_tx_ring_t *tx_ring;
+ uint32_t rx_size;
+ uint32_t tx_size;
+ int i;
+
+ /*
+ * Initialize chipset specific hardware function pointers
+ */
+ if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
+ return (IGB_FAILURE);
+ }
+
+ /*
+ * Get bus information
+ */
+ if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
+ return (IGB_FAILURE);
+ }
+
+ /*
+ * Set rx buffer size
+ * The IP header alignment room is counted in the calculation.
+ * The rx buffer size is in unit of 1K that is required by the
+ * chipset hardware.
+ */
+ rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM;
+ igb->rx_buf_size = ((rx_size >> 10) +
+ ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
+
+ /*
+ * Set tx buffer size
+ */
+ tx_size = igb->max_frame_size;
+ igb->tx_buf_size = ((tx_size >> 10) +
+ ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
+
+ /*
+ * Initialize rx/tx rings parameters
+ */
+ for (i = 0; i < igb->num_rx_rings; i++) {
+ rx_ring = &igb->rx_rings[i];
+ rx_ring->index = i;
+ rx_ring->igb = igb;
+
+ rx_ring->ring_size = igb->rx_ring_size;
+ rx_ring->free_list_size = igb->rx_ring_size;
+ rx_ring->copy_thresh = igb->rx_copy_thresh;
+ rx_ring->limit_per_intr = igb->rx_limit_per_intr;
+ }
+
+ for (i = 0; i < igb->num_tx_rings; i++) {
+ tx_ring = &igb->tx_rings[i];
+ tx_ring->index = i;
+ tx_ring->igb = igb;
+ if (igb->tx_head_wb_enable)
+ tx_ring->tx_recycle = igb_tx_recycle_head_wb;
+ else
+ tx_ring->tx_recycle = igb_tx_recycle_legacy;
+
+ tx_ring->ring_size = igb->tx_ring_size;
+ tx_ring->free_list_size = igb->tx_ring_size +
+ (igb->tx_ring_size >> 1);
+ tx_ring->copy_thresh = igb->tx_copy_thresh;
+ tx_ring->recycle_thresh = igb->tx_recycle_thresh;
+ tx_ring->overload_thresh = igb->tx_overload_thresh;
+ tx_ring->resched_thresh = igb->tx_resched_thresh;
+ }
+
+ /*
+ * Initialize values of interrupt throttling rate
+ */
+ for (i = 1; i < MAX_NUM_EITR; i++)
+ igb->intr_throttling[i] = igb->intr_throttling[0];
+
+ /*
+ * The initial link state should be "unknown"
+ */
+ igb->link_state = LINK_STATE_UNKNOWN;
+
+ return (IGB_SUCCESS);
+}
+
+/*
+ * igb_init_locks - Initialize locks
+ */
+static void
+igb_init_locks(igb_t *igb)
+{
+ igb_rx_ring_t *rx_ring;
+ igb_tx_ring_t *tx_ring;
+ int i;
+
+ for (i = 0; i < igb->num_rx_rings; i++) {
+ rx_ring = &igb->rx_rings[i];
+ mutex_init(&rx_ring->rx_lock, NULL,
+ MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
+ mutex_init(&rx_ring->recycle_lock, NULL,
+ MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
+ }
+
+ for (i = 0; i < igb->num_tx_rings; i++) {
+ tx_ring = &igb->tx_rings[i];
+ mutex_init(&tx_ring->tx_lock, NULL,
+ MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
+ mutex_init(&tx_ring->recycle_lock, NULL,
+ MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
+ mutex_init(&tx_ring->tcb_head_lock, NULL,
+ MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
+ mutex_init(&tx_ring->tcb_tail_lock, NULL,
+ MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
+ }
+
+ mutex_init(&igb->gen_lock, NULL,
+ MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
+
+ mutex_init(&igb->watchdog_lock, NULL,
+ MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
+}
+
+/*
+ * igb_destroy_locks - Destroy locks
+ */
+static void
+igb_destroy_locks(igb_t *igb)
+{
+ igb_rx_ring_t *rx_ring;
+ igb_tx_ring_t *tx_ring;
+ int i;
+
+ for (i = 0; i < igb->num_rx_rings; i++) {
+ rx_ring = &igb->rx_rings[i];
+ mutex_destroy(&rx_ring->rx_lock);
+ mutex_destroy(&rx_ring->recycle_lock);
+ }
+
+ for (i = 0; i < igb->num_tx_rings; i++) {
+ tx_ring = &igb->tx_rings[i];
+ mutex_destroy(&tx_ring->tx_lock);
+ mutex_destroy(&tx_ring->recycle_lock);
+ mutex_destroy(&tx_ring->tcb_head_lock);
+ mutex_destroy(&tx_ring->tcb_tail_lock);
+ }
+
+ mutex_destroy(&igb->gen_lock);
+ mutex_destroy(&igb->watchdog_lock);
+}
+
+static int
+igb_resume(dev_info_t *devinfo)
+{
+ igb_t *igb;
+
+ igb = (igb_t *)ddi_get_driver_private(devinfo);
+ if (igb == NULL)
+ return (DDI_FAILURE);
+
+ mutex_enter(&igb->gen_lock);
+
+ if (igb->igb_state & IGB_STARTED) {
+ if (igb_start(igb) != IGB_SUCCESS) {
+ mutex_exit(&igb->gen_lock);
+ return (DDI_FAILURE);
+ }
+
+ /*
+ * Enable and start the watchdog timer
+ */
+ igb_enable_watchdog_timer(igb);
+ }
+
+ igb->igb_state &= ~IGB_SUSPENDED;
+
+ mutex_exit(&igb->gen_lock);
+
+ return (DDI_SUCCESS);
+}
+
+static int
+igb_suspend(dev_info_t *devinfo)
+{
+ igb_t *igb;
+
+ igb = (igb_t *)ddi_get_driver_private(devinfo);
+ if (igb == NULL)
+ return (DDI_FAILURE);
+
+ mutex_enter(&igb->gen_lock);
+
+ igb->igb_state |= IGB_SUSPENDED;
+
+ igb_stop(igb);
+
+ mutex_exit(&igb->gen_lock);
+
+ /*
+ * Disable and stop the watchdog timer
+ */
+ igb_disable_watchdog_timer(igb);
+
+ return (DDI_SUCCESS);
+}
+
+/*
+ * igb_init - Initialize the device
+ */
+static int
+igb_init(igb_t *igb)
+{
+ struct e1000_hw *hw = &igb->hw;
+ uint32_t pba;
+ uint32_t high_water;
+
+ mutex_enter(&igb->gen_lock);
+
+ /*
+ * Reset chipset to put the hardware in a known state
+ * before we try to do anything with the eeprom
+ */
+ (void) e1000_reset_hw(hw);
+
+ /*
+ * NVM validation
+ */
+ if (e1000_validate_nvm_checksum(hw) < 0) {
+ /*
+ * Some PCI-E parts fail the first check due to
+ * the link being in sleep state. Call it again,
+ * if it fails a second time its a real issue.
+ */
+ if (e1000_validate_nvm_checksum(hw) < 0) {
+ igb_error(igb,
+ "Invalid NVM checksum. Please contact "
+ "the vendor to update the NVM.");
+ goto init_fail;
+ }
+ }
+
+ /*
+ * Set the FIFO size
+ */
+ pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
+ E1000_WRITE_REG(hw, E1000_PBA, pba);
+
+ /*
+ * Setup flow control
+ *
+ * These parameters set thresholds for the adapter's generation(Tx)
+ * and response(Rx) to Ethernet PAUSE frames. These are just threshold
+ * settings. Flow control is enabled or disabled in the configuration
+ * file.
+ * High-water mark is set down from the top of the rx fifo (not
+ * sensitive to max_frame_size) and low-water is set just below
+ * high-water mark.
+ * The high water mark must be low enough to fit one full frame above
+ * it in the rx FIFO. Should be the lower of:
+ * 90% of the Rx FIFO size, or the full Rx FIFO size minus one full
+ * frame.
+ */
+ high_water = min(((pba << 10) * 9 / 10),
+ ((pba << 10) - igb->max_frame_size));
+
+ hw->fc.high_water = high_water & 0xFFF8;
+ hw->fc.low_water = hw->fc.high_water - 8;
+ hw->fc.pause_time = E1000_FC_PAUSE_TIME;
+ hw->fc.send_xon = B_TRUE;
+
+ /*
+ * Reset the chipset hardware the second time to validate
+ * the PBA setting.
+ */
+ (void) e1000_reset_hw(hw);
+
+ /*
+ * Don't wait for auto-negotiation to complete
+ */
+ hw->phy.autoneg_wait_to_complete = B_FALSE;
+
+ /*
+ * Copper options
+ */
+ if (hw->phy.media_type == e1000_media_type_copper) {
+ hw->phy.mdix = 0; /* AUTO_ALL_MODES */
+ hw->phy.disable_polarity_correction = B_FALSE;
+ hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
+ }
+
+ /*
+ * Initialize link settings
+ */
+ (void) igb_setup_link(igb, B_FALSE);
+
+ /*
+ * Initialize the chipset hardware
+ */
+ if (igb_chip_start(igb) != IGB_SUCCESS) {
+ goto init_fail;
+ }
+
+ mutex_exit(&igb->gen_lock);
+ return (IGB_SUCCESS);
+
+init_fail:
+ /*
+ * Reset PHY if possible
+ */
+ if (e1000_check_reset_block(hw) == E1000_SUCCESS)
+ (void) e1000_phy_hw_reset(hw);
+
+ mutex_exit(&igb->gen_lock);
+ return (IGB_FAILURE);
+}
+
+/*
+ * igb_init_rings - Allocate DMA resources for all rx/tx rings and
+ * initialize relevant hardware settings.
+ */
+static int
+igb_init_rings(igb_t *igb)
+{
+ int i;
+
+ /*
+ * Allocate buffers for all the rx/tx rings
+ */
+ if (igb_alloc_dma(igb) != IGB_SUCCESS)
+ return (IGB_FAILURE);
+
+ /*
+ * Setup the rx/tx rings
+ */
+ mutex_enter(&igb->gen_lock);
+
+ for (i = 0; i < igb->num_rx_rings; i++)
+ mutex_enter(&igb->rx_rings[i].rx_lock);
+ for (i = 0; i < igb->num_tx_rings; i++)
+ mutex_enter(&igb->tx_rings[i].tx_lock);
+
+ igb_setup_rings(igb);
+
+ for (i = igb->num_tx_rings - 1; i >= 0; i--)
+ mutex_exit(&igb->tx_rings[i].tx_lock);
+ for (i = igb->num_rx_rings - 1; i >= 0; i--)
+ mutex_exit(&igb->rx_rings[i].rx_lock);
+
+ mutex_exit(&igb->gen_lock);
+
+ return (IGB_SUCCESS);
+}
+
+/*
+ * igb_fini_rings - Release DMA resources of all rx/tx rings
+ */
+static void
+igb_fini_rings(igb_t *igb)
+{
+ /*
+ * Release the DMA/memory resources of rx/tx rings
+ */
+ igb_free_dma(igb);
+}
+
+/*
+ * igb_chip_start - Initialize and start the chipset hardware
+ */
+static int
+igb_chip_start(igb_t *igb)
+{
+ struct e1000_hw *hw = &igb->hw;
+ int i;
+
+ ASSERT(mutex_owned(&igb->gen_lock));
+
+ /*
+ * Get the mac address
+ * This function should handle SPARC case correctly.
+ */
+ if (!igb_find_mac_address(igb)) {
+ igb_error(igb, "Failed to get the mac address");
+ return (IGB_FAILURE);
+ }
+
+ /* Validate mac address */
+ if (!is_valid_mac_addr(hw->mac.addr)) {
+ igb_error(igb, "Invalid mac address");
+ return (IGB_FAILURE);
+ }
+
+ /* Disable wakeup control by default */
+ E1000_WRITE_REG(hw, E1000_WUC, 0);
+
+ /*
+ * Configure/Initialize hardware
+ */
+ if (e1000_init_hw(hw) != E1000_SUCCESS) {
+ igb_error(igb, "Failed to initialize hardware");
+ return (IGB_FAILURE);
+ }
+
+ /*
+ * Make sure driver has control
+ */
+ igb_get_driver_control(hw);
+
+ /*
+ * Setup MSI-X interrupts
+ */
+ if (igb->intr_type == DDI_INTR_TYPE_MSIX)
+ igb_setup_adapter_msix(igb);
+
+ /*
+ * Initialize unicast addresses.
+ */
+ igb_init_unicst(igb);
+
+ /*
+ * Setup and initialize the mctable structures.
+ */
+ igb_setup_multicst(igb);
+
+ /*
+ * Set interrupt throttling rate
+ */
+ for (i = 0; i < igb->intr_cnt; i++)
+ E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]);
+
+ /* Enable PCI-E master */
+ if (hw->bus.type == e1000_bus_type_pci_express) {
+ e1000_enable_pciex_master(hw);
+ }
+
+ /*
+ * Save the state of the phy
+ */
+ igb_get_phy_state(igb);
+
+ return (IGB_SUCCESS);
+}
+
+/*
+ * igb_chip_stop - Stop the chipset hardware
+ */
+static void
+igb_chip_stop(igb_t *igb)
+{
+ struct e1000_hw *hw = &igb->hw;
+
+ ASSERT(mutex_owned(&igb->gen_lock));
+
+ /* Tell firmware driver is no longer in control */
+ igb_release_driver_control(hw);
+
+ /*
+ * Reset the chipset
+ */
+ (void) e1000_reset_hw(hw);
+
+ /*
+ * Reset PHY if possible
+ */
+ if (e1000_check_reset_block(hw) == E1000_SUCCESS)
+ (void) e1000_phy_hw_reset(hw);
+}
+
+/*
+ * igb_reset - Reset the chipset and restart the driver.
+ *
+ * It involves stopping and re-starting the chipset,
+ * and re-configuring the rx/tx rings.
+ */
+static int
+igb_reset(igb_t *igb)
+{
+ int i;
+
+ mutex_enter(&igb->gen_lock);
+
+ ASSERT(igb->igb_state & IGB_STARTED);
+
+ /*
+ * Disable the adapter interrupts to stop any rx/tx activities
+ * before draining pending data and resetting hardware.
+ */
+ igb_disable_adapter_interrupts(igb);
+
+ /*
+ * Drain the pending transmit packets
+ */
+ (void) igb_tx_drain(igb);
+
+ for (i = 0; i < igb->num_rx_rings; i++)
+ mutex_enter(&igb->rx_rings[i].rx_lock);
+ for (i = 0; i < igb->num_tx_rings; i++)
+ mutex_enter(&igb->tx_rings[i].tx_lock);
+
+ /*
+ * Stop the chipset hardware
+ */
+ igb_chip_stop(igb);
+
+ /*
+ * Clean the pending tx data/resources
+ */
+ igb_tx_clean(igb);
+
+ /*
+ * Start the chipset hardware
+ */
+ if (igb_chip_start(igb) != IGB_SUCCESS) {
+ goto reset_failure;
+ }
+
+ /*
+ * Setup the rx/tx rings
+ */
+ igb_setup_rings(igb);
+
+ /*
+ * Enable adapter interrupts
+ * The interrupts must be enabled after the driver state is START
+ */
+ igb_enable_adapter_interrupts(igb);
+
+ for (i = igb->num_tx_rings - 1; i >= 0; i--)
+ mutex_exit(&igb->tx_rings[i].tx_lock);
+ for (i = igb->num_rx_rings - 1; i >= 0; i--)
+ mutex_exit(&igb->rx_rings[i].rx_lock);
+
+ mutex_exit(&igb->gen_lock);
+
+ return (IGB_SUCCESS);
+
+reset_failure:
+ for (i = igb->num_tx_rings - 1; i >= 0; i--)
+ mutex_exit(&igb->tx_rings[i].tx_lock);
+ for (i = igb->num_rx_rings - 1; i >= 0; i--)
+ mutex_exit(&igb->rx_rings[i].rx_lock);
+
+ mutex_exit(&igb->gen_lock);
+
+ return (IGB_FAILURE);
+}
+
+/*
+ * igb_tx_clean - Clean the pending transmit packets and DMA resources
+ */
+static void
+igb_tx_clean(igb_t *igb)
+{
+ igb_tx_ring_t *tx_ring;
+ tx_control_block_t *tcb;
+ link_list_t pending_list;
+ uint32_t desc_num;
+ int i, j;
+
+ LINK_LIST_INIT(&pending_list);
+
+ for (i = 0; i < igb->num_tx_rings; i++) {
+ tx_ring = &igb->tx_rings[i];
+
+ mutex_enter(&tx_ring->recycle_lock);
+
+ /*
+ * Clean the pending tx data - the pending packets in the
+ * work_list that have no chances to be transmitted again.
+ *
+ * We must ensure the chipset is stopped or the link is down
+ * before cleaning the transmit packets.
+ */
+ desc_num = 0;
+ for (j = 0; j < tx_ring->ring_size; j++) {
+ tcb = tx_ring->work_list[j];
+ if (tcb != NULL) {
+ desc_num += tcb->desc_num;
+
+ tx_ring->work_list[j] = NULL;
+
+ igb_free_tcb(tcb);
+
+ LIST_PUSH_TAIL(&pending_list, &tcb->link);
+ }
+ }
+
+ if (desc_num > 0) {
+ atomic_add_32(&tx_ring->tbd_free, desc_num);
+ ASSERT(tx_ring->tbd_free == tx_ring->ring_size);
+
+ /*
+ * Reset the head and tail pointers of the tbd ring
+ */
+ tx_ring->tbd_head = 0;
+ tx_ring->tbd_tail = 0;
+
+ E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0);
+ E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0);
+ }
+
+ mutex_exit(&tx_ring->recycle_lock);
+
+ /*
+ * Add the tx control blocks in the pending list to
+ * the free list.
+ */
+ igb_put_free_list(tx_ring, &pending_list);
+ }
+}
+
+/*
+ * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted
+ */
+static boolean_t
+igb_tx_drain(igb_t *igb)
+{
+ igb_tx_ring_t *tx_ring;
+ boolean_t done;
+ int i, j;
+
+ /*
+ * Wait for a specific time to allow pending tx packets
+ * to be transmitted.
+ *
+ * Check the counter tbd_free to see if transmission is done.
+ * No lock protection is needed here.
+ *
+ * Return B_TRUE if all pending packets have been transmitted;
+ * Otherwise return B_FALSE;
+ */
+ for (i = 0; i < TX_DRAIN_TIME; i++) {
+
+ done = B_TRUE;
+ for (j = 0; j < igb->num_tx_rings; j++) {
+ tx_ring = &igb->tx_rings[j];
+ done = done &&
+ (tx_ring->tbd_free == tx_ring->ring_size);
+ }
+
+ if (done)
+ break;
+
+ msec_delay(1);
+ }
+
+ return (done);
+}
+
+/*
+ * igb_rx_drain - Wait for all rx buffers to be released by upper layer
+ */
+static boolean_t
+igb_rx_drain(igb_t *igb)
+{
+ igb_rx_ring_t *rx_ring;
+ boolean_t done;
+ int i, j;
+
+ /*
+ * Polling the rx free list to check if those rx buffers held by
+ * the upper layer are released.
+ *
+ * Check the counter rcb_free to see if all pending buffers are
+ * released. No lock protection is needed here.
+ *
+ * Return B_TRUE if all pending buffers have been released;
+ * Otherwise return B_FALSE;
+ */
+ for (i = 0; i < RX_DRAIN_TIME; i++) {
+
+ done = B_TRUE;
+ for (j = 0; j < igb->num_rx_rings; j++) {
+ rx_ring = &igb->rx_rings[j];
+ done = done &&
+ (rx_ring->rcb_free == rx_ring->free_list_size);
+ }
+
+ if (done)
+ break;
+
+ msec_delay(1);
+ }
+
+ return (done);
+}
+
+/*
+ * igb_start - Start the driver/chipset
+ */
+int
+igb_start(igb_t *igb)
+{
+ int i;
+
+ ASSERT(mutex_owned(&igb->gen_lock));
+
+ for (i = 0; i < igb->num_rx_rings; i++)
+ mutex_enter(&igb->rx_rings[i].rx_lock);
+ for (i = 0; i < igb->num_tx_rings; i++)
+ mutex_enter(&igb->tx_rings[i].tx_lock);
+
+ /*
+ * Start the chipset hardware
+ */
+ if (igb_chip_start(igb) != IGB_SUCCESS) {
+ goto start_failure;
+ }
+
+ /*
+ * Setup the rx/tx rings
+ */
+ igb_setup_rings(igb);
+
+ /*
+ * Enable adapter interrupts
+ * The interrupts must be enabled after the driver state is START
+ */
+ igb_enable_adapter_interrupts(igb);
+
+ for (i = igb->num_tx_rings - 1; i >= 0; i--)
+ mutex_exit(&igb->tx_rings[i].tx_lock);
+ for (i = igb->num_rx_rings - 1; i >= 0; i--)
+ mutex_exit(&igb->rx_rings[i].rx_lock);
+
+ return (IGB_SUCCESS);
+
+start_failure:
+ for (i = igb->num_tx_rings - 1; i >= 0; i--)
+ mutex_exit(&igb->tx_rings[i].tx_lock);
+ for (i = igb->num_rx_rings - 1; i >= 0; i--)
+ mutex_exit(&igb->rx_rings[i].rx_lock);
+
+ return (IGB_FAILURE);
+}
+
+/*
+ * igb_stop - Stop the driver/chipset
+ */
+void
+igb_stop(igb_t *igb)
+{
+ int i;
+
+ ASSERT(mutex_owned(&igb->gen_lock));
+
+ /*
+ * Disable the adapter interrupts
+ */
+ igb_disable_adapter_interrupts(igb);
+
+ /*
+ * Drain the pending tx packets
+ */
+ (void) igb_tx_drain(igb);
+
+ for (i = 0; i < igb->num_rx_rings; i++)
+ mutex_enter(&igb->rx_rings[i].rx_lock);
+ for (i = 0; i < igb->num_tx_rings; i++)
+ mutex_enter(&igb->tx_rings[i].tx_lock);
+
+ /*
+ * Stop the chipset hardware
+ */
+ igb_chip_stop(igb);
+
+ /*
+ * Clean the pending tx data/resources
+ */
+ igb_tx_clean(igb);
+
+ for (i = igb->num_tx_rings - 1; i >= 0; i--)
+ mutex_exit(&igb->tx_rings[i].tx_lock);
+ for (i = igb->num_rx_rings - 1; i >= 0; i--)
+ mutex_exit(&igb->rx_rings[i].rx_lock);
+}
+
+/*
+ * igb_alloc_rings - Allocate memory space for rx/tx rings
+ */
+static int
+igb_alloc_rings(igb_t *igb)
+{
+ /*
+ * Allocate memory space for rx rings
+ */
+ igb->rx_rings = kmem_zalloc(
+ sizeof (igb_rx_ring_t) * igb->num_rx_rings,
+ KM_NOSLEEP);
+
+ if (igb->rx_rings == NULL) {
+ return (IGB_FAILURE);
+ }
+
+ /*
+ * Allocate memory space for tx rings
+ */
+ igb->tx_rings = kmem_zalloc(
+ sizeof (igb_tx_ring_t) * igb->num_tx_rings,
+ KM_NOSLEEP);
+
+ if (igb->tx_rings == NULL) {
+ kmem_free(igb->rx_rings,
+ sizeof (igb_rx_ring_t) * igb->num_rx_rings);
+ igb->rx_rings = NULL;
+ return (IGB_FAILURE);
+ }
+
+ return (IGB_SUCCESS);
+}
+
+/*
+ * igb_free_rings - Free the memory space of rx/tx rings.
+ */
+static void
+igb_free_rings(igb_t *igb)
+{
+ if (igb->rx_rings != NULL) {
+ kmem_free(igb->rx_rings,
+ sizeof (igb_rx_ring_t) * igb->num_rx_rings);
+ igb->rx_rings = NULL;
+ }
+
+ if (igb->tx_rings != NULL) {
+ kmem_free(igb->tx_rings,
+ sizeof (igb_tx_ring_t) * igb->num_tx_rings);
+ igb->tx_rings = NULL;
+ }
+}
+
+/*
+ * igb_setup_rings - Setup rx/tx rings
+ */
+static void
+igb_setup_rings(igb_t *igb)
+{
+ /*
+ * Setup the rx/tx rings, including the following:
+ *
+ * 1. Setup the descriptor ring and the control block buffers;
+ * 2. Initialize necessary registers for receive/transmit;
+ * 3. Initialize software pointers/parameters for receive/transmit;
+ */
+ igb_setup_rx(igb);
+
+ igb_setup_tx(igb);
+}
+
+static void
+igb_setup_rx_ring(igb_rx_ring_t *rx_ring)
+{
+ igb_t *igb = rx_ring->igb;
+ struct e1000_hw *hw = &igb->hw;
+ rx_control_block_t *rcb;
+ union e1000_adv_rx_desc *rbd;
+ uint32_t size;
+ uint32_t buf_low;
+ uint32_t buf_high;
+ uint32_t reg_val;
+ int i;
+
+ ASSERT(mutex_owned(&rx_ring->rx_lock));
+ ASSERT(mutex_owned(&igb->gen_lock));
+
+ for (i = 0; i < igb->rx_ring_size; i++) {
+ rcb = rx_ring->work_list[i];
+ rbd = &rx_ring->rbd_ring[i];
+
+ rbd->read.pkt_addr = rcb->rx_buf.dma_address;
+ rbd->read.hdr_addr = NULL;
+ }
+
+ /*
+ * Initialize the length register
+ */
+ size = rx_ring->ring_size * sizeof (union e1000_adv_rx_desc);
+ E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size);
+
+ /*
+ * Initialize the base address registers
+ */
+ buf_low = (uint32_t)rx_ring->rbd_area.dma_address;
+ buf_high = (uint32_t)(rx_ring->rbd_area.dma_address >> 32);
+ E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high);
+ E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low);
+
+ /*
+ * Setup head & tail pointers
+ */
+ E1000_WRITE_REG(hw, E1000_RDT(rx_ring->index), rx_ring->ring_size - 1);
+ E1000_WRITE_REG(hw, E1000_RDH(rx_ring->index), 0);
+
+ rx_ring->rbd_next = 0;
+
+ /*
+ * Note: Considering the case that the chipset is being reset
+ * and there are still some buffers held by the upper layer,
+ * we should not reset the values of rcb_head, rcb_tail and
+ * rcb_free;
+ */
+ if (igb->igb_state == IGB_UNKNOWN) {
+ rx_ring->rcb_head = 0;
+ rx_ring->rcb_tail = 0;
+ rx_ring->rcb_free = rx_ring->free_list_size;
+ }
+
+ /*
+ * Setup the Receive Descriptor Control Register (RXDCTL)
+ */
+ reg_val = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index));
+ reg_val |= E1000_RXDCTL_QUEUE_ENABLE;
+ reg_val &= 0xFFF00000;
+ reg_val |= 16; /* pthresh */
+ reg_val |= 8 << 8; /* hthresh */
+ reg_val |= 1 << 16; /* wthresh */
+ E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), reg_val);
+
+ /*
+ * Setup the Split and Replication Receive Control Register.
+ * Set the rx buffer size and the advanced descriptor type.
+ */
+ reg_val = (igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) |
+ E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
+
+ E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index), reg_val);
+}
+
+static void
+igb_setup_rx(igb_t *igb)
+{
+ igb_rx_ring_t *rx_ring;
+ struct e1000_hw *hw = &igb->hw;
+ uint32_t reg_val;
+ int i;
+
+ for (i = 0; i < igb->num_rx_rings; i++) {
+ rx_ring = &igb->rx_rings[i];
+ igb_setup_rx_ring(rx_ring);
+ }
+
+ /*
+ * Setup the Receive Control Register (RCTL), and ENABLE the
+ * receiver. The initial configuration is to: Enable the receiver,
+ * accept broadcasts, discard bad packets (and long packets),
+ * disable VLAN filter checking, set the receive descriptor
+ * minimum threshold size to 1/2, and the receive buffer size to
+ * 2k.
+ */
+ reg_val = E1000_RCTL_EN | /* Enable Receive Unit */
+ E1000_RCTL_BAM | /* Accept Broadcast Packets */
+ E1000_RCTL_LPE | /* Large Packet Enable bit */
+ (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
+ E1000_RCTL_RDMTS_HALF |
+ E1000_RCTL_SECRC | /* Strip Ethernet CRC */
+ E1000_RCTL_LBM_NO; /* Loopback Mode = none */
+
+ E1000_WRITE_REG(hw, E1000_RCTL, reg_val);
+
+ /*
+ * Setup the Rx Long Packet Max Length register
+ */
+ E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size);
+
+ /*
+ * Hardware checksum settings
+ */
+ if (igb->rx_hcksum_enable) {
+ reg_val =
+ E1000_RXCSUM_TUOFL | /* TCP/UDP checksum */
+ E1000_RXCSUM_IPOFL; /* IP checksum */
+
+ E1000_WRITE_REG(hw, E1000_RXCSUM, reg_val);
+ }
+
+ /*
+ * Setup RSS for multiple receive queues
+ */
+ if (igb->num_rx_rings > 1)
+ igb_setup_rss(igb);
+}
+
+static void
+igb_setup_tx_ring(igb_tx_ring_t *tx_ring)
+{
+ igb_t *igb = tx_ring->igb;
+ struct e1000_hw *hw = &igb->hw;
+ uint32_t size;
+ uint32_t buf_low;
+ uint32_t buf_high;
+ uint32_t reg_val;
+
+ ASSERT(mutex_owned(&tx_ring->tx_lock));
+ ASSERT(mutex_owned(&igb->gen_lock));
+
+ /*
+ * Initialize the length register
+ */
+ size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc);
+ E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size);
+
+ /*
+ * Initialize the base address registers
+ */
+ buf_low = (uint32_t)tx_ring->tbd_area.dma_address;
+ buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32);
+ E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low);
+ E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high);
+
+ /*
+ * Setup head & tail pointers
+ */
+ E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0);
+ E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0);
+
+ /*
+ * Setup head write-back
+ */
+ if (igb->tx_head_wb_enable) {
+ /*
+ * The memory of the head write-back is allocated using
+ * the extra tbd beyond the tail of the tbd ring.
+ */
+ tx_ring->tbd_head_wb = (uint32_t *)
+ ((uintptr_t)tx_ring->tbd_area.address + size);
+
+ buf_low = (uint32_t)
+ (tx_ring->tbd_area.dma_address + size);
+ buf_high = (uint32_t)
+ ((tx_ring->tbd_area.dma_address + size) >> 32);
+
+ /* Set the head write-back enable bit */
+ buf_low |= E1000_TX_HEAD_WB_ENABLE;
+
+ E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low);
+ E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high);
+
+ /*
+ * Turn off relaxed ordering for head write back or it will
+ * cause problems with the tx recycling
+ */
+ reg_val = E1000_READ_REG(hw,
+ E1000_DCA_TXCTRL(tx_ring->index));
+ reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
+ E1000_WRITE_REG(hw,
+ E1000_DCA_TXCTRL(tx_ring->index), reg_val);
+ } else {
+ tx_ring->tbd_head_wb = NULL;
+ }
+
+ tx_ring->tbd_head = 0;
+ tx_ring->tbd_tail = 0;
+ tx_ring->tbd_free = tx_ring->ring_size;
+
+ /*
+ * Note: Considering the case that the chipset is being reset,
+ * and there are still some buffers held by the upper layer,
+ * we should not reset the values of tcb_head, tcb_tail.
+ */
+ if (igb->igb_state == IGB_UNKNOWN) {
+ tx_ring->tcb_head = 0;
+ tx_ring->tcb_tail = 0;
+ tx_ring->tcb_free = tx_ring->free_list_size;
+ } else {
+ ASSERT(tx_ring->tcb_free == tx_ring->free_list_size);
+ }
+
+ /*
+ * Initialize hardware checksum offload settings
+ */
+ tx_ring->hcksum_context.hcksum_flags = 0;
+ tx_ring->hcksum_context.ip_hdr_len = 0;
+ tx_ring->hcksum_context.mac_hdr_len = 0;
+ tx_ring->hcksum_context.l4_proto = 0;
+}
+
+static void
+igb_setup_tx(igb_t *igb)
+{
+ igb_tx_ring_t *tx_ring;
+ struct e1000_hw *hw = &igb->hw;
+ uint32_t reg_val;
+ int i;
+
+ for (i = 0; i < igb->num_tx_rings; i++) {
+ tx_ring = &igb->tx_rings[i];
+ igb_setup_tx_ring(tx_ring);
+ }
+
+ /*
+ * Setup the Transmit Control Register (TCTL)
+ */
+ reg_val = E1000_TCTL_PSP | E1000_TCTL_EN |
+ (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) |
+ (E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT) |
+ E1000_TCTL_RTLC;
+
+ /* Enable the MULR bit */
+ if (hw->bus.type == e1000_bus_type_pci_express)
+ reg_val |= E1000_TCTL_MULR;
+
+ E1000_WRITE_REG(hw, E1000_TCTL, reg_val);
+
+ /*
+ * Set the default values for the Tx Inter Packet Gap timer
+ */
+ if (hw->phy.media_type == e1000_media_type_fiber)
+ reg_val = DEFAULT_82543_TIPG_IPGT_FIBER;
+ else
+ reg_val = DEFAULT_82543_TIPG_IPGT_COPPER;
+ reg_val |=
+ DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
+ reg_val |=
+ DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
+
+ E1000_WRITE_REG(hw, E1000_TIPG, reg_val);
+}
+
+/*
+ * igb_setup_rss - Setup receive-side scaling feature
+ */
+static void
+igb_setup_rss(igb_t *igb)
+{
+ struct e1000_hw *hw = &igb->hw;
+ uint32_t i, mrqc, rxcsum;
+ int shift;
+ uint32_t random;
+ union e1000_reta {
+ uint32_t dword;
+ uint8_t bytes[4];
+ } reta;
+
+ /* Setup the Redirection Table */
+ shift = 6;
+ for (i = 0; i < (32 * 4); i++) {
+ reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift;
+ if ((i & 3) == 3) {
+ E1000_WRITE_REG(hw,
+ (E1000_RETA(0) + (i & ~3)), reta.dword);
+ }
+ }
+
+ /* Fill out hash function seeds */
+ for (i = 0; i < 10; i++) {
+ (void) random_get_pseudo_bytes((uint8_t *)&random,
+ sizeof (uint32_t));
+ E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
+ }
+
+ /* Setup the Multiple Receive Queue Control register */
+ mrqc = E1000_MRQC_ENABLE_RSS_4Q;
+ mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
+ E1000_MRQC_RSS_FIELD_IPV4_TCP |
+ E1000_MRQC_RSS_FIELD_IPV6 |
+ E1000_MRQC_RSS_FIELD_IPV6_TCP |
+ E1000_MRQC_RSS_FIELD_IPV4_UDP |
+ E1000_MRQC_RSS_FIELD_IPV6_UDP |
+ E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
+ E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
+
+ E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
+
+ /*
+ * Disable Packet Checksum to enable RSS for multiple receive queues.
+ *
+ * The Packet Checksum is not ethernet CRC. It is another kind of
+ * checksum offloading provided by the 82575 chipset besides the IP
+ * header checksum offloading and the TCP/UDP checksum offloading.
+ * The Packet Checksum is by default computed over the entire packet
+ * from the first byte of the DA through the last byte of the CRC,
+ * including the Ethernet and IP headers.
+ *
+ * It is a hardware limitation that Packet Checksum is mutually
+ * exclusive with RSS.
+ */
+ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
+ rxcsum |= E1000_RXCSUM_PCSD;
+ E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
+}
+
+/*
+ * igb_init_unicst - Initialize the unicast addresses
+ */
+static void
+igb_init_unicst(igb_t *igb)
+{
+ struct e1000_hw *hw = &igb->hw;
+ int slot;
+
+ /*
+ * Here we should consider two situations:
+ *
+ * 1. Chipset is initialized the first time
+ * Initialize the multiple unicast addresses, and
+ * save the default mac address.
+ *
+ * 2. Chipset is reset
+ * Recover the multiple unicast addresses from the
+ * software data structure to the RAR registers.
+ */
+ if (!igb->unicst_init) {
+ /* Initialize the multiple unicast addresses */
+ igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
+
+ igb->unicst_avail = igb->unicst_total - 1;
+
+ /* Store the default mac address */
+ e1000_rar_set(hw, hw->mac.addr, 0);
+
+ bcopy(hw->mac.addr, igb->unicst_addr[0].mac.addr,
+ ETHERADDRL);
+ igb->unicst_addr[0].mac.set = 1;
+
+ for (slot = 1; slot < igb->unicst_total; slot++)
+ igb->unicst_addr[slot].mac.set = 0;
+
+ igb->unicst_init = B_TRUE;
+ } else {
+ /* Recover the default mac address */
+ bcopy(igb->unicst_addr[0].mac.addr, hw->mac.addr,
+ ETHERADDRL);
+
+ /* Store the default mac address */
+ e1000_rar_set(hw, hw->mac.addr, 0);
+
+ /* Re-configure the RAR registers */
+ for (slot = 1; slot < igb->unicst_total; slot++)
+ e1000_rar_set(hw,
+ igb->unicst_addr[slot].mac.addr, slot);
+ }
+}
+
+/*
+ * igb_unicst_set - Set the unicast address to the specified slot
+ */
+int
+igb_unicst_set(igb_t *igb, const uint8_t *mac_addr,
+ mac_addr_slot_t slot)
+{
+ struct e1000_hw *hw = &igb->hw;
+
+ ASSERT(mutex_owned(&igb->gen_lock));
+
+ /*
+ * Save the unicast address in the software data structure
+ */
+ bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
+
+ /*
+ * Set the unicast address to the RAR register
+ */
+ e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
+
+ return (0);
+}
+
+/*
+ * igb_multicst_add - Add a multicst address
+ */
+int
+igb_multicst_add(igb_t *igb, const uint8_t *multiaddr)
+{
+ ASSERT(mutex_owned(&igb->gen_lock));
+
+ if ((multiaddr[0] & 01) == 0) {
+ return (EINVAL);
+ }
+
+ if (igb->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) {
+ return (ENOENT);
+ }
+
+ bcopy(multiaddr,
+ &igb->mcast_table[igb->mcast_count], ETHERADDRL);
+ igb->mcast_count++;
+
+ /*
+ * Update the multicast table in the hardware
+ */
+ igb_setup_multicst(igb);
+
+ return (0);
+}
+
+/*
+ * igb_multicst_remove - Remove a multicst address
+ */
+int
+igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr)
+{
+ int i;
+
+ ASSERT(mutex_owned(&igb->gen_lock));
+
+ for (i = 0; i < igb->mcast_count; i++) {
+ if (bcmp(multiaddr, &igb->mcast_table[i],
+ ETHERADDRL) == 0) {
+ for (i++; i < igb->mcast_count; i++) {
+ igb->mcast_table[i - 1] =
+ igb->mcast_table[i];
+ }
+ igb->mcast_count--;
+ break;
+ }
+ }
+
+ /*
+ * Update the multicast table in the hardware
+ */
+ igb_setup_multicst(igb);
+
+ return (0);
+}
+
+/*
+ * igb_setup_multicast - setup multicast data structures
+ *
+ * This routine initializes all of the multicast related structures
+ * and save them in the hardware registers.
+ */
+static void
+igb_setup_multicst(igb_t *igb)
+{
+ uint8_t *mc_addr_list;
+ uint32_t mc_addr_count;
+ struct e1000_hw *hw = &igb->hw;
+
+ ASSERT(mutex_owned(&igb->gen_lock));
+
+ ASSERT(igb->mcast_count <= MAX_NUM_MULTICAST_ADDRESSES);
+
+ mc_addr_list = (uint8_t *)igb->mcast_table;
+ mc_addr_count = igb->mcast_count;
+
+ /*
+ * Update the multicase addresses to the MTA registers
+ */
+ e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
+ igb->unicst_total, hw->mac.rar_entry_count);
+}
+
+/*
+ * igb_get_conf - Get driver configurations set in driver.conf
+ *
+ * This routine gets user-configured values out of the configuration
+ * file igb.conf.
+ *
+ * For each configurable value, there is a minimum, a maximum, and a
+ * default.
+ * If user does not configure a value, use the default.
+ * If user configures below the minimum, use the minumum.
+ * If user configures above the maximum, use the maxumum.
+ */
+static void
+igb_get_conf(igb_t *igb)
+{
+ struct e1000_hw *hw = &igb->hw;
+ uint32_t default_mtu;
+ uint32_t flow_control;
+
+ /*
+ * igb driver supports the following user configurations:
+ *
+ * Link configurations:
+ * adv_autoneg_cap
+ * adv_1000fdx_cap
+ * adv_100fdx_cap
+ * adv_100hdx_cap
+ * adv_10fdx_cap
+ * adv_10hdx_cap
+ * Note: 1000hdx is not supported.
+ *
+ * Jumbo frame configuration:
+ * default_mtu
+ *
+ * Ethernet flow control configuration:
+ * flow_control
+ *
+ * Multiple rings configurations:
+ * tx_queue_number
+ * tx_ring_size
+ * rx_queue_number
+ * rx_ring_size
+ *
+ * Call igb_get_prop() to get the value for a specific
+ * configuration parameter.
+ */
+
+ /*
+ * Link configurations
+ */
+ igb->param_adv_autoneg_cap = igb_get_prop(igb,
+ PROP_ADV_AUTONEG_CAP, 0, 1, 1);
+ igb->param_adv_1000fdx_cap = igb_get_prop(igb,
+ PROP_ADV_1000FDX_CAP, 0, 1, 1);
+ igb->param_adv_100fdx_cap = igb_get_prop(igb,
+ PROP_ADV_100FDX_CAP, 0, 1, 1);
+ igb->param_adv_100hdx_cap = igb_get_prop(igb,
+ PROP_ADV_100HDX_CAP, 0, 1, 1);
+ igb->param_adv_10fdx_cap = igb_get_prop(igb,
+ PROP_ADV_10FDX_CAP, 0, 1, 1);
+ igb->param_adv_10hdx_cap = igb_get_prop(igb,
+ PROP_ADV_10HDX_CAP, 0, 1, 1);
+
+ /*
+ * Jumbo frame configurations
+ */
+ default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
+ MIN_MTU, MAX_MTU, DEFAULT_MTU);
+
+ igb->max_frame_size = default_mtu +
+ sizeof (struct ether_vlan_header) + ETHERFCSL;
+
+ /*
+ * Ethernet flow control configuration
+ */
+ flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL,
+ e1000_fc_none, 4, e1000_fc_full);
+ if (flow_control == 4)
+ flow_control = e1000_fc_default;
+
+ hw->fc.type = flow_control;
+
+ /*
+ * Multiple rings configurations
+ */
+ igb->num_tx_rings = igb_get_prop(igb, PROP_TX_QUEUE_NUM,
+ MIN_TX_QUEUE_NUM, MAX_TX_QUEUE_NUM, DEFAULT_TX_QUEUE_NUM);
+ igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE,
+ MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE);
+
+ igb->num_rx_rings = igb_get_prop(igb, PROP_RX_QUEUE_NUM,
+ MIN_RX_QUEUE_NUM, MAX_RX_QUEUE_NUM, DEFAULT_RX_QUEUE_NUM);
+ igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE,
+ MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE);
+
+ /*
+ * Tunable used to force an interrupt type. The only use is
+ * for testing of the lesser interrupt types.
+ * 0 = don't force interrupt type
+ * 1 = force interrupt type MSIX
+ * 2 = force interrupt type MSI
+ * 3 = force interrupt type Legacy
+ */
+ igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE,
+ IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_MSI);
+
+ igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE,
+ 0, 1, 1);
+ igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE,
+ 0, 1, 1);
+ igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE,
+ 0, 1, 0);
+ igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE,
+ 0, 1, 1);
+
+ igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD,
+ MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD,
+ DEFAULT_TX_COPY_THRESHOLD);
+ igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD,
+ MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
+ DEFAULT_TX_RECYCLE_THRESHOLD);
+ igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD,
+ MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD,
+ DEFAULT_TX_OVERLOAD_THRESHOLD);
+ igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD,
+ MIN_TX_RESCHED_THRESHOLD, MAX_TX_RESCHED_THRESHOLD,
+ DEFAULT_TX_RESCHED_THRESHOLD);
+
+ igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD,
+ MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD,
+ DEFAULT_RX_COPY_THRESHOLD);
+ igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR,
+ MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR,
+ DEFAULT_RX_LIMIT_PER_INTR);
+
+ igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING,
+ MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
+ DEFAULT_INTR_THROTTLING);
+}
+
+/*
+ * igb_get_prop - Get a property value out of the configuration file igb.conf
+ *
+ * Caller provides the name of the property, a default value, a minimum
+ * value, and a maximum value.
+ *
+ * Return configured value of the property, with default, minimum and
+ * maximum properly applied.
+ */
+static int
+igb_get_prop(igb_t *igb,
+ char *propname, /* name of the property */
+ int minval, /* minimum acceptable value */
+ int maxval, /* maximim acceptable value */
+ int defval) /* default value */
+{
+ int value;
+
+ /*
+ * Call ddi_prop_get_int() to read the conf settings
+ */
+ value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip,
+ DDI_PROP_DONTPASS, propname, defval);
+
+ if (value > maxval)
+ value = maxval;
+
+ if (value < minval)
+ value = minval;
+
+ return (value);
+}
+
+/*
+ * igb_setup_link - Using the link properties to setup the link
+ */
+int
+igb_setup_link(igb_t *igb, boolean_t setup_hw)
+{
+ struct e1000_mac_info *mac;
+ struct e1000_phy_info *phy;
+ boolean_t invalid;
+
+ mac = &igb->hw.mac;
+ phy = &igb->hw.phy;
+ invalid = B_FALSE;
+
+ if (igb->param_adv_autoneg_cap == 1) {
+ mac->autoneg = B_TRUE;
+ phy->autoneg_advertised = 0;
+
+ /*
+ * 1000hdx is not supported for autonegotiation
+ */
+ if (igb->param_adv_1000fdx_cap == 1)
+ phy->autoneg_advertised |= ADVERTISE_1000_FULL;
+
+ if (igb->param_adv_100fdx_cap == 1)
+ phy->autoneg_advertised |= ADVERTISE_100_FULL;
+
+ if (igb->param_adv_100hdx_cap == 1)
+ phy->autoneg_advertised |= ADVERTISE_100_HALF;
+
+ if (igb->param_adv_10fdx_cap == 1)
+ phy->autoneg_advertised |= ADVERTISE_10_FULL;
+
+ if (igb->param_adv_10hdx_cap == 1)
+ phy->autoneg_advertised |= ADVERTISE_10_HALF;
+
+ if (phy->autoneg_advertised == 0)
+ invalid = B_TRUE;
+ } else {
+ mac->autoneg = B_FALSE;
+
+ /*
+ * 1000fdx and 1000hdx are not supported for forced link
+ */
+ if (igb->param_adv_100fdx_cap == 1)
+ mac->forced_speed_duplex = ADVERTISE_100_FULL;
+ else if (igb->param_adv_100hdx_cap == 1)
+ mac->forced_speed_duplex = ADVERTISE_100_HALF;
+ else if (igb->param_adv_10fdx_cap == 1)
+ mac->forced_speed_duplex = ADVERTISE_10_FULL;
+ else if (igb->param_adv_10hdx_cap == 1)
+ mac->forced_speed_duplex = ADVERTISE_10_HALF;
+ else
+ invalid = B_TRUE;
+ }
+
+ if (invalid) {
+ igb_notice(igb, "Invalid link settings. Setup link to "
+ "autonegotiation with full link capabilities.");
+ mac->autoneg = B_TRUE;
+ phy->autoneg_advertised = ADVERTISE_1000_FULL |
+ ADVERTISE_100_FULL | ADVERTISE_100_HALF |
+ ADVERTISE_10_FULL | ADVERTISE_10_HALF;
+ }
+
+ if (setup_hw) {
+ if (e1000_setup_link(&igb->hw) != E1000_SUCCESS)
+ return (IGB_FAILURE);
+ }
+
+ return (IGB_SUCCESS);
+}
+
+
+/*
+ * igb_is_link_up - Check if the link is up
+ */
+static boolean_t
+igb_is_link_up(igb_t *igb)
+{
+ struct e1000_hw *hw = &igb->hw;
+ boolean_t link_up;
+
+ ASSERT(mutex_owned(&igb->gen_lock));
+
+ (void) e1000_check_for_link(hw);
+
+ if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) ||
+ ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
+ (hw->mac.serdes_has_link))) {
+ link_up = B_TRUE;
+ } else {
+ link_up = B_FALSE;
+ }
+
+ return (link_up);
+}
+
+/*
+ * igb_link_check - Link status processing
+ */
+static boolean_t
+igb_link_check(igb_t *igb)
+{
+ struct e1000_hw *hw = &igb->hw;
+ uint16_t speed = 0, duplex = 0;
+ boolean_t link_changed = B_FALSE;
+
+ ASSERT(mutex_owned(&igb->gen_lock));
+
+ if (igb_is_link_up(igb)) {
+ /*
+ * The Link is up, check whether it was marked as down earlier
+ */
+ if (igb->link_state != LINK_STATE_UP) {
+ (void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
+ igb->link_speed = speed;
+ igb->link_duplex = duplex;
+ igb->link_state = LINK_STATE_UP;
+ igb->link_down_timeout = 0;
+ link_changed = B_TRUE;
+ }
+ } else {
+ if (igb->link_state != LINK_STATE_DOWN) {
+ igb->link_speed = 0;
+ igb->link_duplex = 0;
+ igb->link_state = LINK_STATE_DOWN;
+ link_changed = B_TRUE;
+ }
+
+ if (igb->igb_state & IGB_STARTED) {
+ if (igb->link_down_timeout < MAX_LINK_DOWN_TIMEOUT) {
+ igb->link_down_timeout++;
+ } else if (igb->link_down_timeout ==
+ MAX_LINK_DOWN_TIMEOUT) {
+ igb_tx_clean(igb);
+ igb->link_down_timeout++;
+ }
+ }
+ }
+
+ return (link_changed);
+}
+
+/*
+ * igb_local_timer - driver watchdog function
+ *
+ * This function will handle the transmit stall check, link status check and
+ * other routines.
+ */
+static void
+igb_local_timer(void *arg)
+{
+ igb_t *igb = (igb_t *)arg;
+ struct e1000_hw *hw = &igb->hw;
+ boolean_t link_changed;
+
+ if (igb_stall_check(igb)) {
+ igb->reset_count++;
+ (void) igb_reset(igb);
+ }
+
+ mutex_enter(&igb->gen_lock);
+ link_changed = igb_link_check(igb);
+ mutex_exit(&igb->gen_lock);
+
+ if (link_changed)
+ mac_link_update(igb->mac_hdl, igb->link_state);
+
+ /*
+ * Set Timer Interrupts
+ */
+ if (igb->intr_type != DDI_INTR_TYPE_MSIX)
+ E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
+
+ igb_restart_watchdog_timer(igb);
+}
+
+/*
+ * igb_stall_check - check for transmit stall
+ *
+ * This function checks if the adapter is stalled (in transmit).
+ *
+ * It is called each time the watchdog timeout is invoked.
+ * If the transmit descriptor reclaim continuously fails,
+ * the watchdog value will increment by 1. If the watchdog
+ * value exceeds the threshold, the igb is assumed to
+ * have stalled and need to be reset.
+ */
+static boolean_t
+igb_stall_check(igb_t *igb)
+{
+ igb_tx_ring_t *tx_ring;
+ boolean_t result;
+ int i;
+
+ if (igb->link_state != LINK_STATE_UP)
+ return (B_FALSE);
+
+ /*
+ * If any tx ring is stalled, we'll reset the chipset
+ */
+ result = B_FALSE;
+ for (i = 0; i < igb->num_tx_rings; i++) {
+ tx_ring = &igb->tx_rings[i];
+
+ if (tx_ring->recycle_fail > 0)
+ tx_ring->stall_watchdog++;
+ else
+ tx_ring->stall_watchdog = 0;
+
+ if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) {
+ result = B_TRUE;
+ break;
+ }
+ }
+
+ if (result) {
+ tx_ring->stall_watchdog = 0;
+ tx_ring->recycle_fail = 0;
+ }
+
+ return (result);
+}
+
+
+/*
+ * is_valid_mac_addr - Check if the mac address is valid
+ */
+static boolean_t
+is_valid_mac_addr(uint8_t *mac_addr)
+{
+ const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
+ const uint8_t addr_test2[6] =
+ { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
+
+ if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
+ !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
+ return (B_FALSE);
+
+ return (B_TRUE);
+}
+
+static boolean_t
+igb_find_mac_address(igb_t *igb)
+{
+ struct e1000_hw *hw = &igb->hw;
+#ifdef __sparc
+ uchar_t *bytes;
+ struct ether_addr sysaddr;
+ uint_t nelts;
+ int err;
+ boolean_t found = B_FALSE;
+
+ /*
+ * The "vendor's factory-set address" may already have
+ * been extracted from the chip, but if the property
+ * "local-mac-address" is set we use that instead.
+ *
+ * We check whether it looks like an array of 6
+ * bytes (which it should, if OBP set it). If we can't
+ * make sense of it this way, we'll ignore it.
+ */
+ err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
+ DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
+ if (err == DDI_PROP_SUCCESS) {
+ if (nelts == ETHERADDRL) {
+ while (nelts--)
+ hw->mac.addr[nelts] = bytes[nelts];
+ found = B_TRUE;
+ }
+ ddi_prop_free(bytes);
+ }
+
+ /*
+ * Look up the OBP property "local-mac-address?". If the user has set
+ * 'local-mac-address? = false', use "the system address" instead.
+ */
+ if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0,
+ "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
+ if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
+ if (localetheraddr(NULL, &sysaddr) != 0) {
+ bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
+ found = B_TRUE;
+ }
+ }
+ ddi_prop_free(bytes);
+ }
+
+ /*
+ * Finally(!), if there's a valid "mac-address" property (created
+ * if we netbooted from this interface), we must use this instead
+ * of any of the above to ensure that the NFS/install server doesn't
+ * get confused by the address changing as Solaris takes over!
+ */
+ err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
+ DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
+ if (err == DDI_PROP_SUCCESS) {
+ if (nelts == ETHERADDRL) {
+ while (nelts--)
+ hw->mac.addr[nelts] = bytes[nelts];
+ found = B_TRUE;
+ }
+ ddi_prop_free(bytes);
+ }
+
+ if (found) {
+ bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
+ return (B_TRUE);
+ }
+#endif
+
+ /*
+ * Read the device MAC address from the EEPROM
+ */
+ if (e1000_read_mac_addr(hw) != E1000_SUCCESS)
+ return (B_FALSE);
+
+ return (B_TRUE);
+}
+
+#pragma inline(igb_arm_watchdog_timer)
+
+static void
+igb_arm_watchdog_timer(igb_t *igb)
+{
+ /*
+ * Fire a watchdog timer
+ */
+ igb->watchdog_tid =
+ timeout(igb_local_timer,
+ (void *)igb, 1 * drv_usectohz(1000000));
+
+}
+
+/*
+ * igb_enable_watchdog_timer - Enable and start the driver watchdog timer
+ */
+void
+igb_enable_watchdog_timer(igb_t *igb)
+{
+ mutex_enter(&igb->watchdog_lock);
+
+ if (!igb->watchdog_enable) {
+ igb->watchdog_enable = B_TRUE;
+ igb->watchdog_start = B_TRUE;
+ igb_arm_watchdog_timer(igb);
+ }
+
+ mutex_exit(&igb->watchdog_lock);
+
+}
+
+/*
+ * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer
+ */
+void
+igb_disable_watchdog_timer(igb_t *igb)
+{
+ timeout_id_t tid;
+
+ mutex_enter(&igb->watchdog_lock);
+
+ igb->watchdog_enable = B_FALSE;
+ igb->watchdog_start = B_FALSE;
+ tid = igb->watchdog_tid;
+ igb->watchdog_tid = 0;
+
+ mutex_exit(&igb->watchdog_lock);
+
+ if (tid != 0)
+ (void) untimeout(tid);
+
+}
+
+/*
+ * igb_start_watchdog_timer - Start the driver watchdog timer
+ */
+static void
+igb_start_watchdog_timer(igb_t *igb)
+{
+ mutex_enter(&igb->watchdog_lock);
+
+ if (igb->watchdog_enable) {
+ if (!igb->watchdog_start) {
+ igb->watchdog_start = B_TRUE;
+ igb_arm_watchdog_timer(igb);
+ }
+ }
+
+ mutex_exit(&igb->watchdog_lock);
+}
+
+/*
+ * igb_restart_watchdog_timer - Restart the driver watchdog timer
+ */
+static void
+igb_restart_watchdog_timer(igb_t *igb)
+{
+ mutex_enter(&igb->watchdog_lock);
+
+ if (igb->watchdog_start)
+ igb_arm_watchdog_timer(igb);
+
+ mutex_exit(&igb->watchdog_lock);
+}
+
+/*
+ * igb_stop_watchdog_timer - Stop the driver watchdog timer
+ */
+static void
+igb_stop_watchdog_timer(igb_t *igb)
+{
+ timeout_id_t tid;
+
+ mutex_enter(&igb->watchdog_lock);
+
+ igb->watchdog_start = B_FALSE;
+ tid = igb->watchdog_tid;
+ igb->watchdog_tid = 0;
+
+ mutex_exit(&igb->watchdog_lock);
+
+ if (tid != 0)
+ (void) untimeout(tid);
+}
+
+/*
+ * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts
+ */
+static void
+igb_disable_adapter_interrupts(igb_t *igb)
+{
+ struct e1000_hw *hw = &igb->hw;
+
+ /*
+ * Set the IMC register to mask all the interrupts,
+ * including the tx interrupts.
+ */
+ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
+
+ /*
+ * Additional disabling for MSI-X
+ */
+ if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
+ E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
+ E1000_WRITE_REG(hw, E1000_EIAC, 0x0);
+ }
+
+ E1000_WRITE_FLUSH(hw);
+}
+
+/*
+ * igb_enable_adapter_interrupts - Mask/enable all hardware interrupts
+ */
+static void
+igb_enable_adapter_interrupts(igb_t *igb)
+{
+ struct e1000_hw *hw = &igb->hw;
+ uint32_t reg;
+
+ if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
+ /* Interrupt enabling for MSI-X */
+ E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
+ E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
+ E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
+
+ /* Enable MSI-X PBA support */
+ reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ reg |= E1000_CTRL_EXT_PBA_CLR;
+
+ /* Non-selective interrupt clear-on-read */
+ reg |= E1000_CTRL_EXT_IRCA; /* Called NSICR in the EAS */
+
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
+ } else {
+ /* Interrupt enabling for MSI and legacy */
+ E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
+ }
+
+ E1000_WRITE_FLUSH(hw);
+}
+
+/*
+ * Loopback Support
+ */
+static lb_property_t lb_normal =
+ { normal, "normal", IGB_LB_NONE };
+static lb_property_t lb_external =
+ { external, "External", IGB_LB_EXTERNAL };
+static lb_property_t lb_mac =
+ { internal, "MAC", IGB_LB_INTERNAL_MAC };
+static lb_property_t lb_phy =
+ { internal, "PHY", IGB_LB_INTERNAL_PHY };
+static lb_property_t lb_serdes =
+ { internal, "SerDes", IGB_LB_INTERNAL_SERDES };
+
+enum ioc_reply
+igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)
+{
+ lb_info_sz_t *lbsp;
+ lb_property_t *lbpp;
+ struct e1000_hw *hw;
+ uint32_t *lbmp;
+ uint32_t size;
+ uint32_t value;
+
+ hw = &igb->hw;
+
+ if (mp->b_cont == NULL)
+ return (IOC_INVAL);
+
+ switch (iocp->ioc_cmd) {
+ default:
+ return (IOC_INVAL);
+
+ case LB_GET_INFO_SIZE:
+ size = sizeof (lb_info_sz_t);
+ if (iocp->ioc_count != size)
+ return (IOC_INVAL);
+
+ value = sizeof (lb_normal);
+ value += sizeof (lb_mac);
+ if (hw->phy.media_type == e1000_media_type_copper)
+ value += sizeof (lb_phy);
+ else
+ value += sizeof (lb_serdes);
+ value += sizeof (lb_external);
+
+ lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
+ *lbsp = value;
+ break;
+
+ case LB_GET_INFO:
+ value = sizeof (lb_normal);
+ value += sizeof (lb_mac);
+ if (hw->phy.media_type == e1000_media_type_copper)
+ value += sizeof (lb_phy);
+ else
+ value += sizeof (lb_serdes);
+ value += sizeof (lb_external);
+
+ size = value;
+ if (iocp->ioc_count != size)
+ return (IOC_INVAL);
+
+ value = 0;
+ lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
+
+ lbpp[value++] = lb_normal;
+ lbpp[value++] = lb_mac;
+ if (hw->phy.media_type == e1000_media_type_copper)
+ lbpp[value++] = lb_phy;
+ else
+ lbpp[value++] = lb_serdes;
+ lbpp[value++] = lb_external;
+ break;
+
+ case LB_GET_MODE:
+ size = sizeof (uint32_t);
+ if (iocp->ioc_count != size)
+ return (IOC_INVAL);
+
+ lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
+ *lbmp = igb->loopback_mode;
+ break;
+
+ case LB_SET_MODE:
+ size = 0;
+ if (iocp->ioc_count != sizeof (uint32_t))
+ return (IOC_INVAL);
+
+ lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
+ if (!igb_set_loopback_mode(igb, *lbmp))
+ return (IOC_INVAL);
+ break;
+ }
+
+ iocp->ioc_count = size;
+ iocp->ioc_error = 0;
+
+ return (IOC_REPLY);
+}
+
+/*
+ * igb_set_loopback_mode - Setup loopback based on the loopback mode
+ */
+static boolean_t
+igb_set_loopback_mode(igb_t *igb, uint32_t mode)
+{
+ struct e1000_hw *hw;
+
+ if (mode == igb->loopback_mode)
+ return (B_TRUE);
+
+ hw = &igb->hw;
+
+ igb->loopback_mode = mode;
+
+ if (mode == IGB_LB_NONE) {
+ /* Reset the chip */
+ hw->phy.autoneg_wait_to_complete = B_TRUE;
+ (void) igb_reset(igb);
+ hw->phy.autoneg_wait_to_complete = B_FALSE;
+ return (B_TRUE);
+ }
+
+ mutex_enter(&igb->gen_lock);
+
+ switch (mode) {
+ default:
+ mutex_exit(&igb->gen_lock);
+ return (B_FALSE);
+
+ case IGB_LB_EXTERNAL:
+ igb_set_external_loopback(igb);
+ break;
+
+ case IGB_LB_INTERNAL_MAC:
+ igb_set_internal_mac_loopback(igb);
+ break;
+
+ case IGB_LB_INTERNAL_PHY:
+ igb_set_internal_phy_loopback(igb);
+ break;
+
+ case IGB_LB_INTERNAL_SERDES:
+ igb_set_internal_serdes_loopback(igb);
+ break;
+ }
+
+ mutex_exit(&igb->gen_lock);
+
+ return (B_TRUE);
+}
+
+/*
+ * igb_set_external_loopback - Set the external loopback mode
+ */
+static void
+igb_set_external_loopback(igb_t *igb)
+{
+ struct e1000_hw *hw;
+
+ hw = &igb->hw;
+
+ /* Set phy to known state */
+ (void) e1000_phy_hw_reset(hw);
+
+ (void) e1000_write_phy_reg(hw, 0x0, 0x0140);
+ (void) e1000_write_phy_reg(hw, 0x9, 0x1b00);
+ (void) e1000_write_phy_reg(hw, 0x12, 0x1610);
+ (void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c);
+}
+
+/*
+ * igb_set_internal_mac_loopback - Set the internal MAC loopback mode
+ */
+static void
+igb_set_internal_mac_loopback(igb_t *igb)
+{
+ struct e1000_hw *hw;
+ uint32_t ctrl;
+ uint32_t rctl;
+
+ hw = &igb->hw;
+
+ /* Set the Receive Control register */
+ rctl = E1000_READ_REG(hw, E1000_RCTL);
+ rctl &= ~E1000_RCTL_LBM_TCVR;
+ rctl |= E1000_RCTL_LBM_MAC;
+ E1000_WRITE_REG(hw, E1000_RCTL, rctl);
+
+ /* Set the Device Control register */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
+ ctrl |= (E1000_CTRL_SLU | /* Force link up */
+ E1000_CTRL_FRCSPD | /* Force speed */
+ E1000_CTRL_FRCDPX | /* Force duplex */
+ E1000_CTRL_SPD_1000 | /* Force speed to 1000 */
+ E1000_CTRL_FD); /* Force full duplex */
+ ctrl &= ~E1000_CTRL_ILOS; /* Clear ILOS when there's a link */
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+}
+
+/*
+ * igb_set_internal_phy_loopback - Set the internal PHY loopback mode
+ */
+static void
+igb_set_internal_phy_loopback(igb_t *igb)
+{
+ struct e1000_hw *hw;
+ uint32_t ctrl_ext;
+ uint16_t phy_ctrl;
+ uint16_t phy_pconf;
+
+ hw = &igb->hw;
+
+ /* Set link mode to PHY (00b) in the Extended Control register */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ /*
+ * Set PHY control register (0x4140):
+ * Set full duplex mode
+ * Set loopback bit
+ * Clear auto-neg enable bit
+ * Set PHY speed
+ */
+ phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK;
+ (void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
+
+ /* Set the link disable bit in the Port Configuration register */
+ (void) e1000_read_phy_reg(hw, 0x10, &phy_pconf);
+ phy_pconf |= (uint16_t)1 << 14;
+ (void) e1000_write_phy_reg(hw, 0x10, phy_pconf);
+}
+
+/*
+ * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode
+ */
+static void
+igb_set_internal_serdes_loopback(igb_t *igb)
+{
+ struct e1000_hw *hw;
+ uint32_t ctrl_ext;
+ uint32_t ctrl;
+ uint32_t pcs_lctl;
+ uint32_t connsw;
+
+ hw = &igb->hw;
+
+ /* Set link mode to SerDes (11b) in the Extended Control register */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+
+ /* Configure the SerDes to loopback */
+ E1000_WRITE_REG(hw, E1000_SCTL, 0x410);
+
+ /* Set Device Control register */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_FD | /* Force full duplex */
+ E1000_CTRL_SLU); /* Force link up */
+ ctrl &= ~(E1000_CTRL_RFCE | /* Disable receive flow control */
+ E1000_CTRL_TFCE | /* Disable transmit flow control */
+ E1000_CTRL_LRST); /* Clear link reset */
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+ /* Set PCS Link Control register */
+ pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL);
+ pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK |
+ E1000_PCS_LCTL_FSD |
+ E1000_PCS_LCTL_FDV_FULL |
+ E1000_PCS_LCTL_FLV_LINK_UP);
+ pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE;
+ E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl);
+
+ /* Set the Copper/Fiber Switch Control - CONNSW register */
+ connsw = E1000_READ_REG(hw, E1000_CONNSW);
+ connsw &= ~E1000_CONNSW_ENRGSRC;
+ E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
+}
+
+#pragma inline(igb_intr_rx_work)
+/*
+ * igb_intr_rx_work - rx processing of ISR
+ */
+static void
+igb_intr_rx_work(igb_rx_ring_t *rx_ring)
+{
+ mblk_t *mp;
+
+ mutex_enter(&rx_ring->rx_lock);
+ mp = igb_rx(rx_ring);
+ mutex_exit(&rx_ring->rx_lock);
+
+ if (mp != NULL)
+ mac_rx(rx_ring->igb->mac_hdl, NULL, mp);
+}
+
+#pragma inline(igb_intr_tx_work)
+/*
+ * igb_intr_tx_work - tx processing of ISR
+ */
+static void
+igb_intr_tx_work(igb_tx_ring_t *tx_ring)
+{
+ /* Recycle the tx descriptors */
+ tx_ring->tx_recycle(tx_ring);
+
+ /* Schedule the re-transmit */
+ if (tx_ring->reschedule &&
+ (tx_ring->tbd_free >= tx_ring->resched_thresh)) {
+ tx_ring->reschedule = B_FALSE;
+ mac_tx_update(tx_ring->igb->mac_hdl);
+ IGB_DEBUG_STAT(tx_ring->stat_reschedule);
+ }
+}
+
+#pragma inline(igb_intr_other_work)
+/*
+ * igb_intr_other_work - other processing of ISR
+ */
+static void
+igb_intr_other_work(igb_t *igb)
+{
+ boolean_t link_changed;
+
+ igb_stop_watchdog_timer(igb);
+
+ mutex_enter(&igb->gen_lock);
+
+ /*
+ * Because we got a link-status-change interrupt, force
+ * e1000_check_for_link() to look at phy
+ */
+ igb->hw.mac.get_link_status = B_TRUE;
+
+ /* igb_link_check takes care of link status change */
+ link_changed = igb_link_check(igb);
+
+ /* Get new phy state */
+ igb_get_phy_state(igb);
+
+ mutex_exit(&igb->gen_lock);
+
+ if (link_changed)
+ mac_link_update(igb->mac_hdl, igb->link_state);
+
+ igb_start_watchdog_timer(igb);
+}
+
+/*
+ * igb_intr_legacy - Interrupt handler for legacy interrupts
+ */
+static uint_t
+igb_intr_legacy(void *arg1, void *arg2)
+{
+ igb_t *igb = (igb_t *)arg1;
+ igb_tx_ring_t *tx_ring;
+ uint32_t icr;
+ mblk_t *mp;
+ boolean_t tx_reschedule;
+ boolean_t link_changed;
+ uint_t result;
+
+ _NOTE(ARGUNUSED(arg2));
+
+ mutex_enter(&igb->gen_lock);
+
+ if (igb->igb_state & IGB_SUSPENDED) {
+ mutex_exit(&igb->gen_lock);
+ return (DDI_INTR_UNCLAIMED);
+ }
+
+ mp = NULL;
+ tx_reschedule = B_FALSE;
+ link_changed = B_FALSE;
+ icr = E1000_READ_REG(&igb->hw, E1000_ICR);
+
+ if (icr & E1000_ICR_INT_ASSERTED) {
+ /*
+ * E1000_ICR_INT_ASSERTED bit was set:
+ * Read(Clear) the ICR, claim this interrupt,
+ * look for work to do.
+ */
+ ASSERT(igb->num_rx_rings == 1);
+ ASSERT(igb->num_tx_rings == 1);
+
+ if (icr & E1000_ICR_RXT0) {
+ mp = igb_rx(&igb->rx_rings[0]);
+ }
+
+ if (icr & E1000_ICR_TXDW) {
+ tx_ring = &igb->tx_rings[0];
+
+ /* Recycle the tx descriptors */
+ tx_ring->tx_recycle(tx_ring);
+
+ /* Schedule the re-transmit */
+ tx_reschedule = (tx_ring->reschedule &&
+ (tx_ring->tbd_free >= tx_ring->resched_thresh));
+ }
+
+ if (icr & E1000_ICR_LSC) {
+ /*
+ * Because we got a link-status-change interrupt, force
+ * e1000_check_for_link() to look at phy
+ */
+ igb->hw.mac.get_link_status = B_TRUE;
+
+ /* igb_link_check takes care of link status change */
+ link_changed = igb_link_check(igb);
+
+ /* Get new phy state */
+ igb_get_phy_state(igb);
+ }
+
+ result = DDI_INTR_CLAIMED;
+ } else {
+ /*
+ * E1000_ICR_INT_ASSERTED bit was not set:
+ * Don't claim this interrupt.
+ */
+ result = DDI_INTR_UNCLAIMED;
+ }
+
+ mutex_exit(&igb->gen_lock);
+
+ /*
+ * Do the following work outside of the gen_lock
+ */
+ if (mp != NULL)
+ mac_rx(igb->mac_hdl, NULL, mp);
+
+ if (tx_reschedule) {
+ tx_ring->reschedule = B_FALSE;
+ mac_tx_update(igb->mac_hdl);
+ IGB_DEBUG_STAT(tx_ring->stat_reschedule);
+ }
+
+ if (link_changed)
+ mac_link_update(igb->mac_hdl, igb->link_state);
+
+ return (result);
+}
+
+/*
+ * igb_intr_msi - Interrupt handler for MSI
+ */
+static uint_t
+igb_intr_msi(void *arg1, void *arg2)
+{
+ igb_t *igb = (igb_t *)arg1;
+ uint32_t icr;
+
+ _NOTE(ARGUNUSED(arg2));
+
+ icr = E1000_READ_REG(&igb->hw, E1000_ICR);
+
+ /*
+ * For MSI interrupt, we have only one vector,
+ * so we have only one rx ring and one tx ring enabled.
+ */
+ ASSERT(igb->num_rx_rings == 1);
+ ASSERT(igb->num_tx_rings == 1);
+
+ if (icr & E1000_ICR_RXT0) {
+ igb_intr_rx_work(&igb->rx_rings[0]);
+ }
+
+ if (icr & E1000_ICR_TXDW) {
+ igb_intr_tx_work(&igb->tx_rings[0]);
+ }
+
+ if (icr & E1000_ICR_LSC) {
+ igb_intr_other_work(igb);
+ }
+
+ return (DDI_INTR_CLAIMED);
+}
+
+/*
+ * igb_intr_rx - Interrupt handler for rx
+ */
+static uint_t
+igb_intr_rx(void *arg1, void *arg2)
+{
+ igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1;
+
+ _NOTE(ARGUNUSED(arg2));
+
+ /*
+ * Only used via MSI-X vector so don't check cause bits
+ * and only clean the given ring.
+ */
+ igb_intr_rx_work(rx_ring);
+
+ return (DDI_INTR_CLAIMED);
+}
+
+/*
+ * igb_intr_tx_other - Interrupt handler for both tx and other
+ *
+ * Always look for Tx cleanup work. Only look for other work if the right
+ * bits are set in the Interrupt Cause Register.
+ */
+static uint_t
+igb_intr_tx_other(void *arg1, void *arg2)
+{
+ igb_t *igb = (igb_t *)arg1;
+ uint32_t icr;
+
+ _NOTE(ARGUNUSED(arg2));
+
+ icr = E1000_READ_REG(&igb->hw, E1000_ICR);
+
+ /*
+ * Always look for Tx cleanup work. We don't have separate
+ * transmit vectors, so we have only one tx ring enabled.
+ */
+ ASSERT(igb->num_tx_rings == 1);
+ igb_intr_tx_work(&igb->tx_rings[0]);
+
+ /*
+ * Check for "other" causes.
+ */
+ if (icr & E1000_ICR_LSC) {
+ igb_intr_other_work(igb);
+ }
+
+ return (DDI_INTR_CLAIMED);
+}
+
+/*
+ * igb_alloc_intrs - Allocate interrupts for the driver
+ *
+ * Normal sequence is to try MSI-X; if not sucessful, try MSI;
+ * if not successful, try Legacy.
+ * igb->intr_force can be used to force sequence to start with
+ * any of the 3 types.
+ * If MSI-X is not used, number of tx/rx rings is forced to 1.
+ */
+static int
+igb_alloc_intrs(igb_t *igb)
+{
+ dev_info_t *devinfo;
+ int intr_types;
+ int rc;
+
+ devinfo = igb->dip;
+
+ /* Get supported interrupt types */
+ rc = ddi_intr_get_supported_types(devinfo, &intr_types);
+
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb,
+ "Get supported interrupt types failed: %d", rc);
+ return (IGB_FAILURE);
+ }
+ IGB_DEBUGLOG_1(igb, "Supported interrupt types: %x", intr_types);
+
+ igb->intr_type = 0;
+
+ /* Install MSI-X interrupts */
+ if ((intr_types & DDI_INTR_TYPE_MSIX) &&
+ (igb->intr_force <= IGB_INTR_MSIX)) {
+ rc = igb_alloc_intrs_msix(igb);
+
+ if (rc == IGB_SUCCESS)
+ return (IGB_SUCCESS);
+
+ igb_log(igb,
+ "Allocate MSI-X failed, trying MSI interrupts...");
+ }
+
+ /* MSI-X not used, force rings to 1 */
+ igb->num_rx_rings = 1;
+ igb->num_tx_rings = 1;
+ igb_log(igb,
+ "MSI-X not used, force rx and tx queue number to 1");
+
+ /* Install MSI interrupts */
+ if ((intr_types & DDI_INTR_TYPE_MSI) &&
+ (igb->intr_force <= IGB_INTR_MSI)) {
+ rc = igb_alloc_intrs_msi(igb);
+
+ if (rc == IGB_SUCCESS)
+ return (IGB_SUCCESS);
+
+ igb_log(igb,
+ "Allocate MSI failed, trying Legacy interrupts...");
+ }
+
+ /* Install legacy interrupts */
+ if (intr_types & DDI_INTR_TYPE_FIXED) {
+ rc = igb_alloc_intrs_legacy(igb);
+
+ if (rc == IGB_SUCCESS)
+ return (IGB_SUCCESS);
+
+ igb_log(igb,
+ "Allocate Legacy interrupts failed");
+ }
+
+ /* If none of the 3 types succeeded, return failure */
+ return (IGB_FAILURE);
+}
+
+/*
+ * igb_alloc_intrs_msix - Allocate the MSIX interrupts
+ *
+ * If fewer than 2 vectors are available, return failure.
+ * Upon success, this sets the number of Rx rings to a number that
+ * matches the vectors available for Rx interrupts.
+ */
+static int
+igb_alloc_intrs_msix(igb_t *igb)
+{
+ dev_info_t *devinfo;
+ int request, count, avail, actual;
+ int rx_rings;
+ int rc;
+
+ devinfo = igb->dip;
+
+ /*
+ * Currently only 1 tx ring is supported. More tx rings
+ * will be supported with future enhancement.
+ */
+ if (igb->num_tx_rings > 1) {
+ igb->num_tx_rings = 1;
+ igb_log(igb,
+ "Use only 1 MSI-X vector for tx, "
+ "force tx queue number to 1");
+ }
+
+ /*
+ * Best number of vectors for the adapter is
+ * # rx rings + # tx rings + 1 for other
+ * But currently we only support number of vectors of
+ * # rx rings + 1 for tx & other
+ */
+ request = igb->num_rx_rings + 1;
+ IGB_DEBUGLOG_1(igb, "MSI-X interrupts requested: %d", request);
+
+ /* Get number of supported interrupts */
+ rc = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_MSIX, &count);
+ if ((rc != DDI_SUCCESS) || (count == 0)) {
+ igb_log(igb,
+ "Get interrupt number failed. Return: %d, count: %d",
+ rc, count);
+ return (IGB_FAILURE);
+ }
+ IGB_DEBUGLOG_1(igb, "MSI-X interrupts supported: %d", count);
+
+ /* Get number of available interrupts */
+ rc = ddi_intr_get_navail(devinfo, DDI_INTR_TYPE_MSIX, &avail);
+ if ((rc != DDI_SUCCESS) || (avail == 0)) {
+ igb_log(igb,
+ "Get interrupt available number failed. "
+ "Return: %d, available: %d", rc, avail);
+ return (IGB_FAILURE);
+ }
+ IGB_DEBUGLOG_1(igb, "MSI-X interrupts available: %d", avail);
+
+ if (avail < request) {
+ igb_log(igb,
+ "Request %d MSI-X vectors, %d available",
+ request, avail);
+ request = avail;
+ }
+
+ actual = 0;
+ igb->intr_cnt = 0;
+
+ /* Allocate an array of interrupt handles */
+ igb->intr_size = request * sizeof (ddi_intr_handle_t);
+ igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
+
+ /* Call ddi_intr_alloc() */
+ rc = ddi_intr_alloc(devinfo, igb->htable, DDI_INTR_TYPE_MSIX, 0,
+ request, &actual, DDI_INTR_ALLOC_NORMAL);
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb, "Allocate MSI-X interrupts failed. "
+ "return: %d, request: %d, actual: %d",
+ rc, request, actual);
+ goto alloc_msix_fail;
+ }
+ IGB_DEBUGLOG_1(igb, "MSI-X interrupts actually allocated: %d", actual);
+
+ igb->intr_cnt = actual;
+
+ /*
+ * Now we know the actual number of vectors. Here we assume that
+ * tx and other will share 1 vector and all remaining (must be at
+ * least 1 remaining) will be used for rx.
+ */
+ if (actual < 2) {
+ igb_log(igb, "Insufficient MSI-X interrupts available: %d",
+ actual);
+ goto alloc_msix_fail;
+ }
+
+ rx_rings = actual - 1;
+ if (rx_rings < igb->num_rx_rings) {
+ igb_log(igb, "MSI-X vectors force Rx queue number to %d",
+ rx_rings);
+ igb->num_rx_rings = rx_rings;
+ }
+
+ /* Get priority for first vector, assume remaining are all the same */
+ rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb,
+ "Get interrupt priority failed: %d", rc);
+ goto alloc_msix_fail;
+ }
+
+ rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb,
+ "Get interrupt cap failed: %d", rc);
+ goto alloc_msix_fail;
+ }
+
+ igb->intr_type = DDI_INTR_TYPE_MSIX;
+
+ return (IGB_SUCCESS);
+
+alloc_msix_fail:
+ igb_rem_intrs(igb);
+
+ return (IGB_FAILURE);
+}
+
+/*
+ * igb_alloc_intrs_msi - Allocate the MSI interrupts
+ */
+static int
+igb_alloc_intrs_msi(igb_t *igb)
+{
+ dev_info_t *devinfo;
+ int request, count, avail, actual;
+ int rc;
+
+ devinfo = igb->dip;
+
+ /* Request 1 MSI interrupt vector */
+ request = 1;
+ IGB_DEBUGLOG_1(igb, "MSI interrupts requested: %d", request);
+
+ /* Get number of supported interrupts */
+ rc = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_MSI, &count);
+ if ((rc != DDI_SUCCESS) || (count == 0)) {
+ igb_log(igb,
+ "Get MSI supported number failed. Return: %d, count: %d",
+ rc, count);
+ return (IGB_FAILURE);
+ }
+ IGB_DEBUGLOG_1(igb, "MSI interrupts supported: %d", count);
+
+ /* Get number of available interrupts */
+ rc = ddi_intr_get_navail(devinfo, DDI_INTR_TYPE_MSI, &avail);
+ if ((rc != DDI_SUCCESS) || (avail == 0)) {
+ igb_log(igb,
+ "Get MSI available number failed. "
+ "Return: %d, available: %d", rc, avail);
+ return (IGB_FAILURE);
+ }
+ IGB_DEBUGLOG_1(igb, "MSI interrupts available: %d", avail);
+
+ actual = 0;
+ igb->intr_cnt = 0;
+
+ /* Allocate an array of interrupt handles */
+ igb->intr_size = request * sizeof (ddi_intr_handle_t);
+ igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
+
+ /* Call ddi_intr_alloc() */
+ rc = ddi_intr_alloc(devinfo, igb->htable, DDI_INTR_TYPE_MSI, 0,
+ request, &actual, DDI_INTR_ALLOC_NORMAL);
+ if ((rc != DDI_SUCCESS) || (actual == 0)) {
+ igb_log(igb,
+ "Allocate MSI interrupts failed: %d", rc);
+ goto alloc_msi_fail;
+ }
+
+ ASSERT(actual == 1);
+ igb->intr_cnt = actual;
+
+ /* Get priority for first msi, assume remaining are all the same */
+ rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb,
+ "Get interrupt priority failed: %d", rc);
+ goto alloc_msi_fail;
+ }
+
+ rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb,
+ "Get interrupt cap failed: %d\n", rc);
+ goto alloc_msi_fail;
+
+ }
+
+ igb->intr_type = DDI_INTR_TYPE_MSI;
+
+ return (IGB_SUCCESS);
+
+alloc_msi_fail:
+ igb_rem_intrs(igb);
+
+ return (IGB_FAILURE);
+}
+
+/*
+ * igb_alloc_intrs_legacy - Allocate the Legacy interrupts
+ */
+static int
+igb_alloc_intrs_legacy(igb_t *igb)
+{
+ dev_info_t *devinfo;
+ int request, count, avail, actual;
+ int rc;
+
+ devinfo = igb->dip;
+
+ /* Request 1 Legacy interrupt vector */
+ request = 1;
+ IGB_DEBUGLOG_1(igb, "Legacy interrupts requested: %d", request);
+
+ /* Get number of supported interrupts */
+ rc = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_FIXED, &count);
+ if ((rc != DDI_SUCCESS) || (count == 0)) {
+ igb_log(igb,
+ "Get Legacy supported number failed. Return: %d, count: %d",
+ rc, count);
+ return (IGB_FAILURE);
+ }
+ IGB_DEBUGLOG_1(igb, "Legacy interrupts supported: %d", count);
+
+ /* Get number of available interrupts */
+ rc = ddi_intr_get_navail(devinfo, DDI_INTR_TYPE_FIXED, &avail);
+ if ((rc != DDI_SUCCESS) || (avail == 0)) {
+ igb_log(igb,
+ "Get Legacy available number failed. "
+ "Return: %d, available: %d", rc, avail);
+ return (IGB_FAILURE);
+ }
+ IGB_DEBUGLOG_1(igb, "Legacy interrupts available: %d", avail);
+
+ actual = 0;
+ igb->intr_cnt = 0;
+
+ /* Allocate an array of interrupt handles */
+ igb->intr_size = request * sizeof (ddi_intr_handle_t);
+ igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
+
+ /* Call ddi_intr_alloc() */
+ rc = ddi_intr_alloc(devinfo, igb->htable, DDI_INTR_TYPE_FIXED, 0,
+ request, &actual, DDI_INTR_ALLOC_NORMAL);
+ if ((rc != DDI_SUCCESS) || (actual == 0)) {
+ igb_log(igb,
+ "Allocate Legacy interrupts failed: %d", rc);
+ goto alloc_legacy_fail;
+ }
+
+ ASSERT(actual == 1);
+ igb->intr_cnt = actual;
+
+ /* Get priority for first msi, assume remaining are all the same */
+ rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb,
+ "Get interrupt priority failed: %d", rc);
+ goto alloc_legacy_fail;
+ }
+
+ rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb,
+ "Get interrupt cap failed: %d\n", rc);
+ goto alloc_legacy_fail;
+ }
+
+ igb->intr_type = DDI_INTR_TYPE_FIXED;
+
+ return (IGB_SUCCESS);
+
+alloc_legacy_fail:
+ igb_rem_intrs(igb);
+
+ return (IGB_FAILURE);
+}
+
+/*
+ * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type
+ *
+ * Before adding the interrupt handlers, the interrupt vectors have
+ * been allocated, and the rx/tx rings have also been allocated.
+ */
+static int
+igb_add_intr_handlers(igb_t *igb)
+{
+ igb_rx_ring_t *rx_ring;
+ int vector;
+ int rc;
+ int i;
+
+ vector = 0;
+
+ switch (igb->intr_type) {
+ case DDI_INTR_TYPE_MSIX:
+ /* Add interrupt handler for tx + other */
+ rc = ddi_intr_add_handler(igb->htable[vector],
+ (ddi_intr_handler_t *)igb_intr_tx_other,
+ (void *)igb, NULL);
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb,
+ "Add tx/other interrupt handler failed: %d", rc);
+ return (IGB_FAILURE);
+ }
+ vector++;
+
+ /* Add interrupt handler for each rx ring */
+ for (i = 0; i < igb->num_rx_rings; i++) {
+ rx_ring = &igb->rx_rings[i];
+
+ rc = ddi_intr_add_handler(igb->htable[vector],
+ (ddi_intr_handler_t *)igb_intr_rx,
+ (void *)rx_ring, NULL);
+
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb,
+ "Add rx interrupt handler failed. "
+ "return: %d, rx ring: %d", rc, i);
+ for (vector--; vector >= 0; vector--) {
+ (void) ddi_intr_remove_handler(
+ igb->htable[vector]);
+ }
+ return (IGB_FAILURE);
+ }
+
+ rx_ring->intr_vector = vector;
+
+ vector++;
+ }
+ break;
+
+ case DDI_INTR_TYPE_MSI:
+ /* Add interrupt handlers for the only vector */
+ rc = ddi_intr_add_handler(igb->htable[vector],
+ (ddi_intr_handler_t *)igb_intr_msi,
+ (void *)igb, NULL);
+
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb,
+ "Add MSI interrupt handler failed: %d", rc);
+ return (IGB_FAILURE);
+ }
+
+ rx_ring = &igb->rx_rings[0];
+ rx_ring->intr_vector = vector;
+
+ vector++;
+ break;
+
+ case DDI_INTR_TYPE_FIXED:
+ /* Add interrupt handlers for the only vector */
+ rc = ddi_intr_add_handler(igb->htable[vector],
+ (ddi_intr_handler_t *)igb_intr_legacy,
+ (void *)igb, NULL);
+
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb,
+ "Add legacy interrupt handler failed: %d", rc);
+ return (IGB_FAILURE);
+ }
+
+ rx_ring = &igb->rx_rings[0];
+ rx_ring->intr_vector = vector;
+
+ vector++;
+ break;
+
+ default:
+ return (IGB_FAILURE);
+ }
+
+ ASSERT(vector == igb->intr_cnt);
+
+ return (IGB_SUCCESS);
+}
+
+/*
+ * igb_setup_adapter_msix - setup the adapter to use MSI-X interrupts
+ *
+ * For each vector enabled on the adapter, Set the MSIXBM register accordingly
+ */
+static void
+igb_setup_adapter_msix(igb_t *igb)
+{
+ uint32_t eims = 0;
+ int i, vector;
+ struct e1000_hw *hw = &igb->hw;
+
+ /*
+ * Set vector for Tx + Other causes
+ * NOTE assumption that there is only one of these and it is vector 0
+ */
+ vector = 0;
+ igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER;
+ E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask);
+
+ vector++;
+ for (i = 0; i < igb->num_rx_rings; i++) {
+ /*
+ * Set vector for each rx ring
+ */
+ eims = (E1000_EICR_RX_QUEUE0 << i);
+ E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
+
+ /*
+ * Accumulate bits to enable in igb_enable_adapter_interrupts()
+ */
+ igb->eims_mask |= eims;
+
+ vector++;
+ }
+
+ ASSERT(vector == igb->intr_cnt);
+
+ /*
+ * Disable IAM for ICR interrupt bits
+ */
+ E1000_WRITE_REG(hw, E1000_IAM, 0);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/*
+ * igb_rem_intr_handlers - remove the interrupt handlers
+ */
+static void
+igb_rem_intr_handlers(igb_t *igb)
+{
+ int i;
+ int rc;
+
+ for (i = 0; i < igb->intr_cnt; i++) {
+ rc = ddi_intr_remove_handler(igb->htable[i]);
+ if (rc != DDI_SUCCESS) {
+ IGB_DEBUGLOG_1(igb,
+ "Remove intr handler failed: %d", rc);
+ }
+ }
+}
+
+/*
+ * igb_rem_intrs - remove the allocated interrupts
+ */
+static void
+igb_rem_intrs(igb_t *igb)
+{
+ int i;
+ int rc;
+
+ for (i = 0; i < igb->intr_cnt; i++) {
+ rc = ddi_intr_free(igb->htable[i]);
+ if (rc != DDI_SUCCESS) {
+ IGB_DEBUGLOG_1(igb,
+ "Free intr failed: %d", rc);
+ }
+ }
+
+ kmem_free(igb->htable, igb->intr_size);
+ igb->htable = NULL;
+}
+
+/*
+ * igb_enable_intrs - enable all the ddi interrupts
+ */
+static int
+igb_enable_intrs(igb_t *igb)
+{
+ int i;
+ int rc;
+
+ /* Enable interrupts */
+ if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
+ /* Call ddi_intr_block_enable() for MSI */
+ rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt);
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb,
+ "Enable block intr failed: %d", rc);
+ return (IGB_FAILURE);
+ }
+ } else {
+ /* Call ddi_intr_enable() for Legacy/MSI non block enable */
+ for (i = 0; i < igb->intr_cnt; i++) {
+ rc = ddi_intr_enable(igb->htable[i]);
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb,
+ "Enable intr failed: %d", rc);
+ return (IGB_FAILURE);
+ }
+ }
+ }
+
+ return (IGB_SUCCESS);
+}
+
+/*
+ * igb_disable_intrs - disable all the ddi interrupts
+ */
+static int
+igb_disable_intrs(igb_t *igb)
+{
+ int i;
+ int rc;
+
+ /* Disable all interrupts */
+ if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
+ rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt);
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb,
+ "Disable block intr failed: %d", rc);
+ return (IGB_FAILURE);
+ }
+ } else {
+ for (i = 0; i < igb->intr_cnt; i++) {
+ rc = ddi_intr_disable(igb->htable[i]);
+ if (rc != DDI_SUCCESS) {
+ igb_log(igb,
+ "Disable intr failed: %d", rc);
+ return (IGB_FAILURE);
+ }
+ }
+ }
+
+ return (IGB_SUCCESS);
+}
+
+/*
+ * igb_get_phy_state - Get and save the parameters read from PHY registers
+ */
+static void
+igb_get_phy_state(igb_t *igb)
+{
+ struct e1000_hw *hw = &igb->hw;
+ uint16_t phy_ctrl;
+ uint16_t phy_status;
+ uint16_t phy_an_adv;
+ uint16_t phy_an_exp;
+ uint16_t phy_ext_status;
+ uint16_t phy_1000t_ctrl;
+ uint16_t phy_1000t_status;
+ uint16_t phy_lp_able;
+
+ ASSERT(mutex_owned(&igb->gen_lock));
+
+ (void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
+ (void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+ (void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv);
+ (void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp);
+ (void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
+ (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl);
+ (void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_1000t_status);
+ (void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able);
+
+ igb->param_autoneg_cap =
+ (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
+ igb->param_pause_cap =
+ (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
+ igb->param_asym_pause_cap =
+ (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
+ igb->param_1000fdx_cap = ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
+ (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
+ igb->param_1000hdx_cap = ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
+ (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
+ igb->param_100t4_cap =
+ (phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
+ igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) ||
+ (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
+ igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) ||
+ (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
+ igb->param_10fdx_cap =
+ (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
+ igb->param_10hdx_cap =
+ (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
+ igb->param_rem_fault =
+ (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0;
+
+ igb->param_adv_autoneg_cap = hw->mac.autoneg;
+ igb->param_adv_pause_cap =
+ (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
+ igb->param_adv_asym_pause_cap =
+ (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
+ igb->param_adv_1000hdx_cap =
+ (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
+ igb->param_adv_100t4_cap =
+ (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
+ igb->param_adv_rem_fault =
+ (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0;
+ if (igb->param_adv_autoneg_cap == 1) {
+ igb->param_adv_1000fdx_cap =
+ (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
+ igb->param_adv_100fdx_cap =
+ (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
+ igb->param_adv_100hdx_cap =
+ (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
+ igb->param_adv_10fdx_cap =
+ (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
+ igb->param_adv_10hdx_cap =
+ (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
+ }
+
+ igb->param_lp_autoneg_cap =
+ (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
+ igb->param_lp_pause_cap =
+ (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
+ igb->param_lp_asym_pause_cap =
+ (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
+ igb->param_lp_1000fdx_cap =
+ (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
+ igb->param_lp_1000hdx_cap =
+ (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
+ igb->param_lp_100t4_cap =
+ (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
+ igb->param_lp_100fdx_cap =
+ (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
+ igb->param_lp_100hdx_cap =
+ (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
+ igb->param_lp_10fdx_cap =
+ (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
+ igb->param_lp_10hdx_cap =
+ (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
+ igb->param_lp_rem_fault =
+ (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0;
+}
+
+/*
+ * igb_get_driver_control
+ */
+static void
+igb_get_driver_control(struct e1000_hw *hw)
+{
+ uint32_t ctrl_ext;
+
+ /* Notify firmware that driver is in control of device */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+}
+
+/*
+ * igb_release_driver_control
+ */
+static void
+igb_release_driver_control(struct e1000_hw *hw)
+{
+ uint32_t ctrl_ext;
+
+ /* Notify firmware that driver is no longer in control of device */
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+}
+
+/*
+ * igb_atomic_reserve - Atomic decrease operation
+ */
+int
+igb_atomic_reserve(uint32_t *count_p, uint32_t n)
+{
+ uint32_t oldval;
+ uint32_t newval;
+
+ /* ATOMICALLY */
+ do {
+ oldval = *count_p;
+ if (oldval < n)
+ return (-1);
+ newval = oldval - n;
+ } while (atomic_cas_32(count_p, oldval, newval) != oldval);
+
+ return (newval);
+}
diff --git a/usr/src/uts/common/io/igb/igb_manage.c b/usr/src/uts/common/io/igb/igb_manage.c
new file mode 100644
index 0000000000..6cf9459e99
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_manage.c
@@ -0,0 +1,393 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "igb_api.h"
+#include "igb_manage.h"
+
+static u8 e1000_calculate_checksum(u8 *buffer, u32 length);
+
+/*
+ * e1000_calculate_checksum - Calculate checksum for buffer
+ * @buffer: pointer to EEPROM
+ * @length: size of EEPROM to calculate a checksum for
+ *
+ * Calculates the checksum for some buffer on a specified length. The
+ * checksum calculated is returned.
+ */
+static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
+{
+ u32 i;
+ u8 sum = 0;
+
+ DEBUGFUNC("e1000_calculate_checksum");
+
+ if (!buffer)
+ return (0);
+
+ for (i = 0; i < length; i++)
+ sum += buffer[i];
+
+ return (u8) (0 - sum);
+}
+
+/*
+ * e1000_mng_enable_host_if_generic - Checks host interface is enabled
+ * @hw: pointer to the HW structure
+ *
+ * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
+ *
+ * This function checks whether the HOST IF is enabled for command operaton
+ * and also checks whether the previous command is completed. It busy waits
+ * in case of previous command is not completed.
+ */
+s32
+e1000_mng_enable_host_if_generic(struct e1000_hw *hw)
+{
+ u32 hicr;
+ s32 ret_val = E1000_SUCCESS;
+ u8 i;
+
+ DEBUGFUNC("e1000_mng_enable_host_if_generic");
+
+ /* Check that the host interface is enabled. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if ((hicr & E1000_HICR_EN) == 0) {
+ DEBUGOUT("E1000_HOST_EN bit disabled.\n");
+ ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+ goto out;
+ }
+ /* check the previous command is completed */
+ for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ if (!(hicr & E1000_HICR_C))
+ break;
+ msec_delay_irq(1);
+ }
+
+ if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
+ DEBUGOUT("Previous command timeout failed .\n");
+ ret_val = -E1000_ERR_HOST_INTERFACE_COMMAND;
+ goto out;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_check_mng_mode_generic - Generic check managament mode
+ * @hw: pointer to the HW structure
+ *
+ * Reads the firmware semaphore register and returns true (>0) if
+ * manageability is enabled, else false (0).
+ */
+bool
+e1000_check_mng_mode_generic(struct e1000_hw *hw)
+{
+ u32 fwsm;
+
+ DEBUGFUNC("e1000_check_mng_mode_generic");
+
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+
+ return ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
+}
+
+/*
+ * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on TX
+ * @hw: pointer to the HW structure
+ *
+ * Enables packet filtering on transmit packets if manageability is enabled
+ * and host interface is enabled.
+ */
+bool
+e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw)
+{
+ struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
+ u32 *buffer = (u32 *)&hw->mng_cookie;
+ u32 offset;
+ s32 ret_val, hdr_csum, csum;
+ u8 i, len;
+ bool tx_filter = TRUE;
+
+ DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic");
+
+ /* No manageability, no filtering */
+ if (!e1000_check_mng_mode(hw)) {
+ tx_filter = FALSE;
+ goto out;
+ }
+
+ /*
+ * If we can't read from the host interface for whatever
+ * reason, disable filtering.
+ */
+ ret_val = e1000_mng_enable_host_if(hw);
+ if (ret_val != E1000_SUCCESS) {
+ tx_filter = FALSE;
+ goto out;
+ }
+
+ /* Read in the header. Length and offset are in dwords. */
+ len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
+ offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
+ for (i = 0; i < len; i++) {
+ *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw,
+ E1000_HOST_IF, offset + i);
+ }
+ hdr_csum = hdr->checksum;
+ hdr->checksum = 0;
+ csum = e1000_calculate_checksum((u8 *)hdr,
+ E1000_MNG_DHCP_COOKIE_LENGTH);
+ /*
+ * If either the checksums or signature don't match, then
+ * the cookie area isn't considered valid, in which case we
+ * take the safe route of assuming Tx filtering is enabled.
+ */
+ if (hdr_csum != csum)
+ goto out;
+ if (hdr->signature != E1000_IAMT_SIGNATURE)
+ goto out;
+
+ /* Cookie area is valid, make the final check for filtering. */
+ if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING))
+ tx_filter = FALSE;
+
+out:
+ hw->mac.tx_pkt_filtering = tx_filter;
+ return (tx_filter);
+}
+
+/*
+ * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface
+ * @length: size of the buffer
+ *
+ * Writes the DHCP information to the host interface.
+ */
+s32
+e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer,
+ u16 length)
+{
+ struct e1000_host_mng_command_header hdr;
+ s32 ret_val;
+ u32 hicr;
+
+ DEBUGFUNC("e1000_mng_write_dhcp_info_generic");
+
+ hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
+ hdr.command_length = length;
+ hdr.reserved1 = 0;
+ hdr.reserved2 = 0;
+ hdr.checksum = 0;
+
+ /* Enable the host interface */
+ ret_val = e1000_mng_enable_host_if(hw);
+ if (ret_val)
+ goto out;
+
+ /* Populate the host interface with the contents of "buffer". */
+ ret_val = e1000_mng_host_if_write(hw, buffer, length,
+ sizeof (hdr), &(hdr.checksum));
+ if (ret_val)
+ goto out;
+
+ /* Write the manageability command header */
+ ret_val = e1000_mng_write_cmd_header(hw, &hdr);
+ if (ret_val)
+ goto out;
+
+ /* Tell the ARC a new command is pending. */
+ hicr = E1000_READ_REG(hw, E1000_HICR);
+ E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_mng_write_cmd_header_generic - Writes manageability command header
+ * @hw: pointer to the HW structure
+ * @hdr: pointer to the host interface command header
+ *
+ * Writes the command header after does the checksum calculation.
+ */
+s32
+e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr)
+{
+ u16 i, length = sizeof (struct e1000_host_mng_command_header);
+
+ DEBUGFUNC("e1000_mng_write_cmd_header_generic");
+
+ /* Write the whole command header structure with new checksum. */
+
+ hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
+
+ length >>= 2;
+ /* Write the relevant command block into the ram area. */
+ for (i = 0; i < length; i++) {
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i,
+ *((u32 *)(uintptr_t)hdr + i));
+ E1000_WRITE_FLUSH(hw);
+ }
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_mng_host_if_write_generic - Write to the manageability host interface
+ * @hw: pointer to the HW structure
+ * @buffer: pointer to the host interface buffer
+ * @length: size of the buffer
+ * @offset: location in the buffer to write to
+ * @sum: sum of the data (not checksum)
+ *
+ * This function writes the buffer content at the offset given on the host if.
+ * It also does alignment considerations to do the writes in most efficient
+ * way. Also fills up the sum of the buffer in *buffer parameter.
+ */
+s32
+e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
+ u16 length, u16 offset, u8 *sum)
+{
+ u8 *tmp;
+ u8 *bufptr = buffer;
+ u32 data = 0;
+ s32 ret_val = E1000_SUCCESS;
+ u16 remaining, i, j, prev_bytes;
+
+ DEBUGFUNC("e1000_mng_host_if_write_generic");
+
+ /* sum = only sum of the data and it is not checksum */
+
+ if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
+ ret_val = -E1000_ERR_PARAM;
+ goto out;
+ }
+
+ tmp = (u8 *)&data;
+ prev_bytes = offset & 0x3;
+ offset >>= 2;
+
+ if (prev_bytes) {
+ data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset);
+ for (j = prev_bytes; j < sizeof (u32); j++) {
+ *(tmp + j) = *bufptr++;
+ *sum += *(tmp + j);
+ }
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data);
+ length -= j - prev_bytes;
+ offset++;
+ }
+
+ remaining = length & 0x3;
+ length -= remaining;
+
+ /* Calculate length in DWORDs */
+ length >>= 2;
+
+ /*
+ * The device driver writes the relevant command block into the
+ * ram area.
+ */
+ for (i = 0; i < length; i++) {
+ for (j = 0; j < sizeof (u32); j++) {
+ *(tmp + j) = *bufptr++;
+ *sum += *(tmp + j);
+ }
+
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
+ offset + i, data);
+ }
+ if (remaining) {
+ for (j = 0; j < sizeof (u32); j++) {
+ if (j < remaining)
+ *(tmp + j) = *bufptr++;
+ else
+ *(tmp + j) = 0;
+
+ *sum += *(tmp + j);
+ }
+ E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF,
+ offset + i, data);
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_enable_mng_pass_thru - Enable processing of ARP's
+ * @hw: pointer to the HW structure
+ *
+ * Verifies the hardware needs to allow ARPs to be processed by the host.
+ */
+bool
+e1000_enable_mng_pass_thru(struct e1000_hw *hw)
+{
+ u32 manc;
+ u32 fwsm, factps;
+ bool ret_val = FALSE;
+
+ DEBUGFUNC("e1000_enable_mng_pass_thru");
+
+ if (!hw->mac.asf_firmware_present)
+ goto out;
+
+ manc = E1000_READ_REG(hw, E1000_MANC);
+
+ if (!(manc & E1000_MANC_RCV_TCO_EN) ||
+ !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
+ goto out;
+
+ if (hw->mac.arc_subsystem_valid) {
+ fwsm = E1000_READ_REG(hw, E1000_FWSM);
+ factps = E1000_READ_REG(hw, E1000_FACTPS);
+
+ if (!(factps & E1000_FACTPS_MNGCG) &&
+ ((fwsm & E1000_FWSM_MODE_MASK) ==
+ (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
+ ret_val = TRUE;
+ goto out;
+ }
+ } else {
+ if ((manc & E1000_MANC_SMBUS_EN) &&
+ !(manc & E1000_MANC_ASF_EN)) {
+ ret_val = TRUE;
+ goto out;
+ }
+ }
+
+out:
+ return (ret_val);
+}
diff --git a/usr/src/uts/common/io/igb/igb_manage.h b/usr/src/uts/common/io/igb/igb_manage.h
new file mode 100644
index 0000000000..6801e23fbd
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_manage.h
@@ -0,0 +1,92 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#ifndef _IGB_MANAGE_H
+#define _IGB_MANAGE_H
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+bool e1000_check_mng_mode_generic(struct e1000_hw *hw);
+bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw);
+s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw);
+s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer,
+ u16 length, u16 offset, u8 *sum);
+s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw,
+ struct e1000_host_mng_command_header *hdr);
+s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw,
+ u8 *buffer, u16 length);
+
+typedef enum {
+ e1000_mng_mode_none = 0,
+ e1000_mng_mode_asf,
+ e1000_mng_mode_pt,
+ e1000_mng_mode_ipmi,
+ e1000_mng_mode_host_if_only
+} e1000_mng_mode;
+
+#define E1000_FACTPS_MNGCG 0x20000000
+
+#define E1000_FWSM_MODE_MASK 0xE
+#define E1000_FWSM_MODE_SHIFT 1
+
+#define E1000_MNG_IAMT_MODE 0x3
+#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10
+#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0
+#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10
+#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
+#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1
+#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2
+
+#define E1000_VFTA_ENTRY_SHIFT 5
+#define E1000_VFTA_ENTRY_MASK 0x7F
+#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
+
+#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */
+#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */
+/* Process HI command limit */
+#define E1000_HI_COMMAND_TIMEOUT 500
+
+#define E1000_HICR_EN 0x01 /* Enable bit - RO */
+/* Driver sets this bit when done to put command in RAM */
+#define E1000_HICR_C 0x02
+#define E1000_HICR_SV 0x04 /* Status Validity */
+#define E1000_HICR_FW_RESET_ENABLE 0x40
+#define E1000_HICR_FW_RESET 0x80
+
+/* Intel(R) Active Management Technology signature */
+#define E1000_IAMT_SIGNATURE 0x544D4149
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _IGB_MANAGE_H */
diff --git a/usr/src/uts/common/io/igb/igb_ndd.c b/usr/src/uts/common/io/igb/igb_ndd.c
new file mode 100644
index 0000000000..9e4e8d0c68
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_ndd.c
@@ -0,0 +1,368 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "igb_sw.h"
+
+/* Function prototypes */
+static int igb_nd_get(queue_t *, mblk_t *, caddr_t, cred_t *);
+static int igb_nd_set(queue_t *, mblk_t *, char *, caddr_t, cred_t *);
+static int igb_nd_param_load(igb_t *);
+static void igb_nd_get_param_val(nd_param_t *);
+static void igb_nd_set_param_val(nd_param_t *, uint32_t);
+
+/*
+ * Notes:
+ * The first character of the <name> field encodes the read/write
+ * status of the parameter:
+ * '-' => read-only
+ * '+' => read/write,
+ * '?' => read/write on copper, read-only on serdes
+ * '!' => invisible!
+ *
+ * For writable parameters, we check for a driver property with the
+ * same name; if found, and its value is in range, we initialise
+ * the parameter from the property, overriding the default in the
+ * table below.
+ *
+ * A NULL in the <name> field terminates the array.
+ *
+ * The <info> field is used here to provide the index of the
+ * parameter to be initialised; thus it doesn't matter whether
+ * this table is kept ordered or not.
+ *
+ * The <info> field in the per-instance copy, on the other hand,
+ * is used to count assignments so that we can tell when a magic
+ * parameter has been set via ndd (see igb_nd_set()).
+ */
+static const nd_param_t nd_template[] = {
+/* igb info min max init r/w+name */
+
+/* Our hardware capabilities */
+{ NULL, PARAM_AUTONEG_CAP, 0, 1, 1, "-autoneg_cap" },
+{ NULL, PARAM_PAUSE_CAP, 0, 1, 1, "-pause_cap" },
+{ NULL, PARAM_ASYM_PAUSE_CAP, 0, 1, 1, "-asym_pause_cap" },
+{ NULL, PARAM_1000FDX_CAP, 0, 1, 1, "-1000fdx_cap" },
+{ NULL, PARAM_1000HDX_CAP, 0, 1, 1, "-1000hdx_cap" },
+{ NULL, PARAM_100T4_CAP, 0, 1, 0, "-100T4_cap" },
+{ NULL, PARAM_100FDX_CAP, 0, 1, 1, "-100fdx_cap" },
+{ NULL, PARAM_100HDX_CAP, 0, 1, 1, "-100hdx_cap" },
+{ NULL, PARAM_10FDX_CAP, 0, 1, 1, "-10fdx_cap" },
+{ NULL, PARAM_10HDX_CAP, 0, 1, 1, "-10hdx_cap" },
+{ NULL, PARAM_REM_FAULT, 0, 1, 0, "-rem_fault" },
+
+/* Our advertised capabilities */
+{ NULL, PARAM_ADV_AUTONEG_CAP, 0, 1, 1, "?adv_autoneg_cap" },
+{ NULL, PARAM_ADV_PAUSE_CAP, 0, 1, 1, "-adv_pause_cap" },
+{ NULL, PARAM_ADV_ASYM_PAUSE_CAP, 0, 1, 1, "-adv_asym_pause_cap" },
+{ NULL, PARAM_ADV_1000FDX_CAP, 0, 1, 1, "?adv_1000fdx_cap" },
+{ NULL, PARAM_ADV_1000HDX_CAP, 0, 1, 1, "-adv_1000hdx_cap" },
+{ NULL, PARAM_ADV_100T4_CAP, 0, 1, 0, "-adv_100T4_cap" },
+{ NULL, PARAM_ADV_100FDX_CAP, 0, 1, 1, "?adv_100fdx_cap" },
+{ NULL, PARAM_ADV_100HDX_CAP, 0, 1, 1, "?adv_100hdx_cap" },
+{ NULL, PARAM_ADV_10FDX_CAP, 0, 1, 1, "?adv_10fdx_cap" },
+{ NULL, PARAM_ADV_10HDX_CAP, 0, 1, 1, "?adv_10hdx_cap" },
+{ NULL, PARAM_ADV_REM_FAULT, 0, 1, 0, "-adv_rem_fault" },
+
+/* Partner's advertised capabilities */
+{ NULL, PARAM_LP_AUTONEG_CAP, 0, 1, 0, "-lp_autoneg_cap" },
+{ NULL, PARAM_LP_PAUSE_CAP, 0, 1, 0, "-lp_pause_cap" },
+{ NULL, PARAM_LP_ASYM_PAUSE_CAP, 0, 1, 0, "-lp_asym_pause_cap" },
+{ NULL, PARAM_LP_1000FDX_CAP, 0, 1, 0, "-lp_1000fdx_cap" },
+{ NULL, PARAM_LP_1000HDX_CAP, 0, 1, 0, "-lp_1000hdx_cap" },
+{ NULL, PARAM_LP_100T4_CAP, 0, 1, 0, "-lp_100T4_cap" },
+{ NULL, PARAM_LP_100FDX_CAP, 0, 1, 0, "-lp_100fdx_cap" },
+{ NULL, PARAM_LP_100HDX_CAP, 0, 1, 0, "-lp_100hdx_cap" },
+{ NULL, PARAM_LP_10FDX_CAP, 0, 1, 0, "-lp_10fdx_cap" },
+{ NULL, PARAM_LP_10HDX_CAP, 0, 1, 0, "-lp_10hdx_cap" },
+{ NULL, PARAM_LP_REM_FAULT, 0, 1, 0, "-lp_rem_fault" },
+
+/* Current operating modes */
+{ NULL, PARAM_LINK_STATUS, 0, 1, 0, "-link_status" },
+{ NULL, PARAM_LINK_SPEED, 0, 1000, 0, "-link_speed" },
+{ NULL, PARAM_LINK_DUPLEX, 0, 2, 0, "-link_duplex" },
+
+/* Terminator */
+{ NULL, PARAM_COUNT, 0, 0, 0, NULL }
+};
+
+
+/*
+ * igb_nd_get - ndd get parameter values
+ */
+static int
+igb_nd_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *credp)
+{
+ nd_param_t *nd = (nd_param_t *)(uintptr_t)cp;
+ _NOTE(ARGUNUSED(q));
+ _NOTE(ARGUNUSED(credp));
+
+ igb_nd_get_param_val(nd);
+ (void) mi_mpprintf(mp, "%d", nd->val);
+
+ return (0);
+}
+
+/*
+ * igb_nd_set - ndd set parameter values
+ */
+static int
+igb_nd_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *credp)
+{
+ nd_param_t *nd = (nd_param_t *)(uintptr_t)cp;
+ long new_value;
+ char *end;
+ _NOTE(ARGUNUSED(q));
+ _NOTE(ARGUNUSED(mp));
+ _NOTE(ARGUNUSED(credp));
+
+ new_value = mi_strtol(value, &end, 10);
+ if (end == value)
+ return (EINVAL);
+ if (new_value < nd->min || new_value > nd->max)
+ return (EINVAL);
+
+ igb_nd_set_param_val(nd, new_value);
+
+ return (0);
+}
+
+/*
+ * igb_nd_param_load
+ */
+static int
+igb_nd_param_load(igb_t *igb)
+{
+ const nd_param_t *tmpnd;
+ nd_param_t *nd;
+ caddr_t *ndd;
+ pfi_t setfn;
+ char *nm;
+ int value;
+
+ ndd = &igb->nd_data;
+ ASSERT(*ndd == NULL);
+
+ for (tmpnd = nd_template; tmpnd->name != NULL; ++tmpnd) {
+ /*
+ * Copy the template from nd_template[] into the
+ * proper slot in the per-instance parameters,
+ * then register the parameter with nd_load()
+ */
+ nd = &igb->nd_params[tmpnd->info];
+ *nd = *tmpnd;
+ nd->private = igb;
+ igb_nd_get_param_val(nd);
+
+ nm = &nd->name[0];
+ setfn = igb_nd_set;
+
+ if (igb->hw.phy.media_type != e1000_media_type_copper) {
+ switch (*nm) {
+ default:
+ break;
+
+ case '?':
+ setfn = NULL;
+ break;
+ }
+ }
+
+ switch (*nm) {
+ default:
+ case '!':
+ continue;
+
+ case '+':
+ case '?':
+ break;
+
+ case '-':
+ setfn = NULL;
+ break;
+ }
+
+ if (!nd_load(ndd, ++nm, igb_nd_get, setfn, (caddr_t)nd))
+ goto nd_fail;
+
+ /*
+ * If the parameter is writable, and there's a property
+ * with the same name, and its value is in range, we use
+ * it to initialise the parameter. If it exists but is
+ * out of range, it's ignored.
+ */
+ if (setfn && IGB_PROP_EXISTS(igb->dip, nm)) {
+ value = IGB_PROP_GET_INT(igb->dip, nm);
+ if (value >= nd->min && value <= nd->max)
+ nd->val = value;
+ }
+ }
+
+ return (IGB_SUCCESS);
+
+nd_fail:
+ igb_log(igb,
+ "igb_nd_param_load: failed at index %d [info %d]",
+ (tmpnd - nd_template), tmpnd->info);
+ nd_free(ndd);
+ return (IGB_FAILURE);
+}
+
+
+/*
+ * igb_nd_get_param_val
+ */
+static void
+igb_nd_get_param_val(nd_param_t *nd)
+{
+ igb_t *igb = (igb_t *)nd->private;
+
+ mutex_enter(&igb->gen_lock);
+
+ switch (nd->info) {
+ case PARAM_LINK_STATUS:
+ nd->val = (igb->link_state == LINK_STATE_UP) ? 1 : 0;
+ break;
+ case PARAM_LINK_SPEED:
+ nd->val = igb->link_speed;
+ break;
+ case PARAM_LINK_DUPLEX:
+ nd->val = igb->link_duplex;
+ break;
+ default:
+ break;
+ }
+
+ mutex_exit(&igb->gen_lock);
+}
+
+/*
+ * igb_nd_set_param_val
+ */
+static void
+igb_nd_set_param_val(nd_param_t *nd, uint32_t value)
+{
+ igb_t *igb = (igb_t *)nd->private;
+
+ mutex_enter(&igb->gen_lock);
+
+ if (nd->val == value) {
+ mutex_exit(&igb->gen_lock);
+ return;
+ }
+
+ switch (nd->info) {
+ case PARAM_ADV_AUTONEG_CAP:
+ case PARAM_ADV_1000FDX_CAP:
+ case PARAM_ADV_100FDX_CAP:
+ case PARAM_ADV_100HDX_CAP:
+ case PARAM_ADV_10FDX_CAP:
+ case PARAM_ADV_10HDX_CAP:
+ nd->val = value;
+ (void) igb_setup_link(igb, B_TRUE);
+ break;
+
+ default:
+ break;
+ }
+
+ mutex_exit(&igb->gen_lock);
+}
+
+/*
+ * comment describing function
+ */
+int
+igb_nd_init(igb_t *igb)
+{
+ /*
+ * Register all the per-instance properties, initialising
+ * them from the table above or from driver properties set
+ * in the .conf file
+ */
+ if (igb_nd_param_load(igb) != IGB_SUCCESS)
+ return (IGB_FAILURE);
+
+ return (IGB_SUCCESS);
+}
+
+
+/*
+ * Free the Named Dispatch Table by calling nd_free
+ */
+void
+igb_nd_cleanup(igb_t *igb)
+{
+ nd_free(&igb->nd_data);
+}
+
+/*
+ * comment describing function
+ */
+enum ioc_reply
+igb_nd_ioctl(igb_t *igb, queue_t *q,
+ mblk_t *mp, struct iocblk *ioc)
+{
+ boolean_t ok;
+ int cmd;
+
+ cmd = ioc->ioc_cmd;
+ switch (cmd) {
+ default:
+ /* NOTREACHED */
+ ASSERT(FALSE);
+ return (IOC_INVAL);
+
+ case ND_GET:
+ /*
+ * If nd_getset() returns B_FALSE, the command was
+ * not valid (e.g. unknown name), so we just tell the
+ * top-level ioctl code to send a NAK (with code EINVAL).
+ *
+ * Otherwise, nd_getset() will have built the reply to
+ * be sent (but not actually sent it), so we tell the
+ * caller to send the prepared reply.
+ */
+ ok = nd_getset(q, igb->nd_data, mp);
+ return (ok ? IOC_REPLY : IOC_INVAL);
+
+ case ND_SET:
+ /*
+ * All adv_* parameters are locked (read-only) while
+ * the device is in any sort of loopback mode ...
+ */
+ if (igb->loopback_mode != IGB_LB_NONE) {
+ ioc->ioc_error = EBUSY;
+ return (IOC_INVAL);
+ }
+
+ ok = nd_getset(q, igb->nd_data, mp);
+ return (ok ? IOC_REPLY : IOC_INVAL);
+ }
+}
diff --git a/usr/src/uts/common/io/igb/igb_nvm.c b/usr/src/uts/common/io/igb/igb_nvm.c
new file mode 100644
index 0000000000..175aa9122c
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_nvm.c
@@ -0,0 +1,916 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "igb_api.h"
+#include "igb_nvm.h"
+
+/*
+ * e1000_raise_eec_clk - Raise EEPROM clock
+ * @hw: pointer to the HW structure
+ * @eecd: pointer to the EEPROM
+ *
+ * Enable/Raise the EEPROM clock bit.
+ */
+static void
+e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+ *eecd = *eecd | E1000_EECD_SK;
+ E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->nvm.delay_usec);
+}
+
+/*
+ * e1000_lower_eec_clk - Lower EEPROM clock
+ * @hw: pointer to the HW structure
+ * @eecd: pointer to the EEPROM
+ *
+ * Clear/Lower the EEPROM clock bit.
+ */
+static void
+e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+ *eecd = *eecd & ~E1000_EECD_SK;
+ E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(hw->nvm.delay_usec);
+}
+
+/*
+ * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
+ * @hw: pointer to the HW structure
+ * @data: data to send to the EEPROM
+ * @count: number of bits to shift out
+ *
+ * We need to shift 'count' bits out to the EEPROM. So, the value in the
+ * "data" parameter will be shifted out to the EEPROM one bit at a time.
+ * In order to do this, "data" must be broken down into bits.
+ */
+static void
+e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ u32 mask;
+
+ DEBUGFUNC("e1000_shift_out_eec_bits");
+
+ mask = 0x01 << (count - 1);
+ if (nvm->type == e1000_nvm_eeprom_microwire)
+ eecd &= ~E1000_EECD_DO;
+ else if (nvm->type == e1000_nvm_eeprom_spi)
+ eecd |= E1000_EECD_DO;
+
+ do {
+ eecd &= ~E1000_EECD_DI;
+
+ if (data & mask)
+ eecd |= E1000_EECD_DI;
+
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(nvm->delay_usec);
+
+ e1000_raise_eec_clk(hw, &eecd);
+ e1000_lower_eec_clk(hw, &eecd);
+
+ mask >>= 1;
+ } while (mask);
+
+ eecd &= ~E1000_EECD_DI;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/*
+ * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
+ * @hw: pointer to the HW structure
+ * @count: number of bits to shift in
+ *
+ * In order to read a register from the EEPROM, we need to shift 'count' bits
+ * in from the EEPROM. Bits are "shifted in" by raising the clock input to
+ * the EEPROM (setting the SK bit), and then reading the value of the data out
+ * "DO" bit. During this "shifting in" process the data in "DI" bit should
+ * always be clear.
+ */
+static u16
+e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
+{
+ u32 eecd;
+ u32 i;
+ u16 data;
+
+ DEBUGFUNC("e1000_shift_in_eec_bits");
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+ data = 0;
+
+ for (i = 0; i < count; i++) {
+ data <<= 1;
+ e1000_raise_eec_clk(hw, &eecd);
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ eecd &= ~E1000_EECD_DI;
+ if (eecd & E1000_EECD_DO)
+ data |= 1;
+
+ e1000_lower_eec_clk(hw, &eecd);
+ }
+
+ return (data);
+}
+
+/*
+ * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
+ * @hw: pointer to the HW structure
+ * @ee_reg: EEPROM flag for polling
+ *
+ * Polls the EEPROM status bit for either read or write completion based
+ * upon the value of 'ee_reg'.
+ */
+s32
+e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+{
+ u32 attempts = 100000;
+ u32 i, reg = 0;
+ s32 ret_val = -E1000_ERR_NVM;
+
+ DEBUGFUNC("e1000_poll_eerd_eewr_done");
+
+ for (i = 0; i < attempts; i++) {
+ if (ee_reg == E1000_NVM_POLL_READ)
+ reg = E1000_READ_REG(hw, E1000_EERD);
+ else
+ reg = E1000_READ_REG(hw, E1000_EEWR);
+
+ if (reg & E1000_NVM_RW_REG_DONE) {
+ ret_val = E1000_SUCCESS;
+ break;
+ }
+
+ usec_delay(5);
+ }
+
+ return (ret_val);
+}
+
+/*
+ * e1000_acquire_nvm_generic - Generic request for access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ * Return successful if access grant bit set, else clear the request for
+ * EEPROM access and return -E1000_ERR_NVM (-1).
+ */
+s32
+e1000_acquire_nvm_generic(struct e1000_hw *hw)
+{
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_acquire_nvm_generic");
+
+ E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ while (timeout) {
+ if (eecd & E1000_EECD_GNT)
+ break;
+ usec_delay(5);
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ timeout--;
+ }
+
+ if (!timeout) {
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ DEBUGOUT("Could not acquire NVM grant\n");
+ ret_val = -E1000_ERR_NVM;
+ }
+
+ return (ret_val);
+}
+
+/*
+ * e1000_standby_nvm - Return EEPROM to standby state
+ * @hw: pointer to the HW structure
+ *
+ * Return the EEPROM to a standby state.
+ */
+static void
+e1000_standby_nvm(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+ DEBUGFUNC("e1000_standby_nvm");
+
+ if (nvm->type == e1000_nvm_eeprom_microwire) {
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+
+ e1000_raise_eec_clk(hw, &eecd);
+
+ /* Select EEPROM */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+
+ e1000_lower_eec_clk(hw, &eecd);
+ } else if (nvm->type == e1000_nvm_eeprom_spi) {
+ /* Toggle CS to flush commands */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+ eecd &= ~E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ E1000_WRITE_FLUSH(hw);
+ usec_delay(nvm->delay_usec);
+ }
+}
+
+/*
+ * e1000_stop_nvm - Terminate EEPROM command
+ * @hw: pointer to the HW structure
+ *
+ * Terminates the current command by inverting the EEPROM's chip select pin.
+ */
+void
+e1000_stop_nvm(struct e1000_hw *hw)
+{
+ u32 eecd;
+
+ DEBUGFUNC("e1000_stop_nvm");
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (hw->nvm.type == e1000_nvm_eeprom_spi) {
+ /* Pull CS high */
+ eecd |= E1000_EECD_CS;
+ e1000_lower_eec_clk(hw, &eecd);
+ } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
+ /* CS on Microcwire is active-high */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ e1000_raise_eec_clk(hw, &eecd);
+ e1000_lower_eec_clk(hw, &eecd);
+ }
+}
+
+/*
+ * e1000_release_nvm_generic - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ */
+void
+e1000_release_nvm_generic(struct e1000_hw *hw)
+{
+ u32 eecd;
+
+ DEBUGFUNC("e1000_release_nvm_generic");
+
+ e1000_stop_nvm(hw);
+
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ eecd &= ~E1000_EECD_REQ;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/*
+ * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
+ * @hw: pointer to the HW structure
+ *
+ * Setups the EEPROM for reading and writing.
+ */
+static s32
+e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+ s32 ret_val = E1000_SUCCESS;
+ u16 timeout = 0;
+ u8 spi_stat_reg;
+
+ DEBUGFUNC("e1000_ready_nvm_eeprom");
+
+ if (nvm->type == e1000_nvm_eeprom_microwire) {
+ /* Clear SK and DI */
+ eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ /* Set CS */
+ eecd |= E1000_EECD_CS;
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ } else if (nvm->type == e1000_nvm_eeprom_spi) {
+ /* Clear SK and CS */
+ eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+ E1000_WRITE_REG(hw, E1000_EECD, eecd);
+ usec_delay(1);
+ timeout = NVM_MAX_RETRY_SPI;
+
+ /*
+ * Read "Status Register" repeatedly until the LSB is cleared.
+ * The EEPROM will signal that the command has been completed
+ * by clearing bit 0 of the internal status register. If it's
+ * not cleared within 'timeout', then error out.
+ */
+ while (timeout) {
+ e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
+ hw->nvm.opcode_bits);
+ spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
+ if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
+ break;
+
+ usec_delay(5);
+ e1000_standby_nvm(hw);
+ timeout--;
+ }
+
+ if (!timeout) {
+ DEBUGOUT("SPI NVM Status error\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_read_nvm_spi - Read EEPROM's using SPI
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM.
+ */
+s32
+e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i = 0;
+ s32 ret_val;
+ u16 word_in;
+ u8 read_opcode = NVM_READ_OPCODE_SPI;
+
+ DEBUGFUNC("e1000_read_nvm_spi");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_nvm(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_standby_nvm(hw);
+
+ if ((nvm->address_bits == 8) && (offset >= 128))
+ read_opcode |= NVM_A8_OPCODE_SPI;
+
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
+
+ /*
+ * Read the data. SPI NVMs increment the address with each byte
+ * read and will roll over if reading beyond the end. This allows
+ * us to read the whole NVM from any offset
+ */
+ for (i = 0; i < words; i++) {
+ word_in = e1000_shift_in_eec_bits(hw, 16);
+ data[i] = (word_in >> 8) | (word_in << 8);
+ }
+
+release:
+ e1000_release_nvm(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_read_nvm_microwire - Reads EEPROM's using microwire
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM.
+ */
+s32
+e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i = 0;
+ s32 ret_val;
+ u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
+
+ DEBUGFUNC("e1000_read_nvm_microwire");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_nvm(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ for (i = 0; i < words; i++) {
+ /* Send the READ command (opcode + addr) */
+ e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)(offset + i),
+ nvm->address_bits);
+
+ /*
+ * Read the data. For microwire, each word requires the
+ * overhead of setup and tear-down.
+ */
+ data[i] = e1000_shift_in_eec_bits(hw, 16);
+ e1000_standby_nvm(hw);
+ }
+
+release:
+ e1000_release_nvm(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_read_nvm_eerd - Reads EEPROM using EERD register
+ * @hw: pointer to the HW structure
+ * @offset: offset of word in the EEPROM to read
+ * @words: number of words to read
+ * @data: word read from the EEPROM
+ *
+ * Reads a 16 bit word from the EEPROM using the EERD register.
+ */
+s32
+e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ u32 i, eerd = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_nvm_eerd");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * too many words for the offset, and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ for (i = 0; i < words; i++) {
+ eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
+ E1000_NVM_RW_REG_START;
+
+ E1000_WRITE_REG(hw, E1000_EERD, eerd);
+ ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
+ if (ret_val)
+ break;
+
+ data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
+ E1000_NVM_RW_REG_DATA);
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_write_nvm_spi - Write to EEPROM using SPI
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * Writes data to EEPROM at offset using SPI interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * EEPROM will most likley contain an invalid checksum.
+ */
+s32
+e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val;
+ u16 widx = 0;
+
+ DEBUGFUNC("e1000_write_nvm_spi");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_nvm(hw);
+ if (ret_val)
+ goto out;
+
+ msec_delay(10);
+
+ while (widx < words) {
+ u8 write_opcode = NVM_WRITE_OPCODE_SPI;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_standby_nvm(hw);
+
+ /* Send the WRITE ENABLE command (8 bit opcode) */
+ e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
+ nvm->opcode_bits);
+
+ e1000_standby_nvm(hw);
+
+ /*
+ * Some SPI eeproms use the 8th address bit embedded in the
+ * opcode
+ */
+ if ((nvm->address_bits == 8) && (offset >= 128))
+ write_opcode |= NVM_A8_OPCODE_SPI;
+
+ /* Send the Write command (8-bit opcode + addr) */
+ e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
+ e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
+ nvm->address_bits);
+
+ /* Loop to allow for up to whole page write of eeprom */
+ while (widx < words) {
+ u16 word_out = data[widx];
+ word_out = (word_out >> 8) | (word_out << 8);
+ e1000_shift_out_eec_bits(hw, word_out, 16);
+ widx++;
+
+ if ((((offset + widx) * 2) % nvm->page_size) == 0) {
+ e1000_standby_nvm(hw);
+ break;
+ }
+ }
+ }
+
+ msec_delay(10);
+release:
+ e1000_release_nvm(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_write_nvm_microwire - Writes EEPROM using microwire
+ * @hw: pointer to the HW structure
+ * @offset: offset within the EEPROM to be written to
+ * @words: number of words to write
+ * @data: 16 bit word(s) to be written to the EEPROM
+ *
+ * Writes data to EEPROM at offset using microwire interface.
+ *
+ * If e1000_update_nvm_checksum is not called after this function , the
+ * EEPROM will most likley contain an invalid checksum.
+ */
+s32
+e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data)
+{
+ struct e1000_nvm_info *nvm = &hw->nvm;
+ s32 ret_val;
+ u32 eecd;
+ u16 words_written = 0;
+ u16 widx = 0;
+
+ DEBUGFUNC("e1000_write_nvm_microwire");
+
+ /*
+ * A check for invalid values: offset too large, too many words,
+ * and not enough words.
+ */
+ if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+ (words == 0)) {
+ DEBUGOUT("nvm parameter(s) out of bounds\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_nvm(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_ready_nvm_eeprom(hw);
+ if (ret_val)
+ goto release;
+
+ e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
+ (u16)(nvm->opcode_bits + 2));
+
+ e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+ e1000_standby_nvm(hw);
+
+ while (words_written < words) {
+ e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
+ nvm->opcode_bits);
+
+ e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
+ nvm->address_bits);
+
+ e1000_shift_out_eec_bits(hw, data[words_written], 16);
+
+ e1000_standby_nvm(hw);
+
+ for (widx = 0; widx < 200; widx++) {
+ eecd = E1000_READ_REG(hw, E1000_EECD);
+ if (eecd & E1000_EECD_DO)
+ break;
+ usec_delay(50);
+ }
+
+ if (widx == 200) {
+ DEBUGOUT("NVM Write did not complete\n");
+ ret_val = -E1000_ERR_NVM;
+ goto release;
+ }
+
+ e1000_standby_nvm(hw);
+
+ words_written++;
+ }
+
+ e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
+ (u16)(nvm->opcode_bits + 2));
+
+ e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
+
+release:
+ e1000_release_nvm(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_read_pba_num_generic - Read device part number
+ * @hw: pointer to the HW structure
+ * @pba_num: pointer to device part number
+ *
+ * Reads the product board assembly (PBA) number from the EEPROM and stores
+ * the value in pba_num.
+ */
+s32
+e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num)
+{
+ s32 ret_val;
+ u16 nvm_data;
+
+ DEBUGFUNC("e1000_read_pba_num_generic");
+
+ ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ *pba_num = (u32)(nvm_data << 16);
+
+ ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ *pba_num |= nvm_data;
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_read_mac_addr_generic - Read device MAC address
+ * @hw: pointer to the HW structure
+ *
+ * Reads the device MAC address from the EEPROM and stores the value.
+ * Since devices with two ports use the same EEPROM, we increment the
+ * last bit in the MAC address for the second port.
+ */
+s32
+e1000_read_mac_addr_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 offset, nvm_data, i;
+
+ DEBUGFUNC("e1000_read_mac_addr");
+
+ for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+ offset = i >> 1;
+ ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
+ hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
+ }
+
+ /* Flip last bit of mac address if we're on second port */
+ if (hw->bus.func == E1000_FUNC_1)
+ hw->mac.perm_addr[5] ^= 1;
+
+ for (i = 0; i < ETH_ADDR_LEN; i++)
+ hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ * and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ */
+s32
+e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_validate_nvm_checksum_generic");
+
+ for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
+ ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+
+ if (checksum != (u16) NVM_SUM) {
+ DEBUGOUT("NVM Checksum Invalid\n");
+ ret_val = -E1000_ERR_NVM;
+ goto out;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_update_nvm_checksum_generic - Update EEPROM checksum
+ * @hw: pointer to the HW structure
+ *
+ * Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ * up to the checksum. Then calculates the EEPROM checksum and writes the
+ * value to the EEPROM.
+ */
+s32
+e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 checksum = 0;
+ u16 i, nvm_data;
+
+ DEBUGFUNC("e1000_update_nvm_checksum");
+
+ for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+ ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
+ if (ret_val) {
+ DEBUGOUT("NVM Read Error while updating checksum.\n");
+ goto out;
+ }
+ checksum += nvm_data;
+ }
+ checksum = (u16) NVM_SUM - checksum;
+ ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
+ if (ret_val) {
+ DEBUGOUT("NVM Write Error while updating checksum.\n");
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_reload_nvm_generic - Reloads EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ * extended control register.
+ */
+void
+e1000_reload_nvm_generic(struct e1000_hw *hw)
+{
+ u32 ctrl_ext;
+
+ DEBUGFUNC("e1000_reload_nvm_generic");
+
+ usec_delay(10);
+ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+ ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+ E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+ E1000_WRITE_FLUSH(hw);
+}
+
+/* Function pointers local to this file and not intended for public use */
+
+/*
+ * e1000_acquire_nvm - Acquire exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * For those silicon families which have implemented a NVM acquire function,
+ * run the defined function else return success.
+ */
+s32
+e1000_acquire_nvm(struct e1000_hw *hw)
+{
+ if (hw->func.acquire_nvm)
+ return (hw->func.acquire_nvm(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_release_nvm - Release exclusive access to EEPROM
+ * @hw: pointer to the HW structure
+ *
+ * For those silicon families which have implemented a NVM release function,
+ * run the defined fucntion else return success.
+ */
+void
+e1000_release_nvm(struct e1000_hw *hw)
+{
+ if (hw->func.release_nvm)
+ hw->func.release_nvm(hw);
+}
diff --git a/usr/src/uts/common/io/igb/igb_nvm.h b/usr/src/uts/common/io/igb/igb_nvm.h
new file mode 100644
index 0000000000..0b4cb6e7af
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_nvm.h
@@ -0,0 +1,71 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#ifndef _IGB_NVM_H
+#define _IGB_NVM_H
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+s32 e1000_acquire_nvm_generic(struct e1000_hw *hw);
+
+s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw);
+s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num);
+s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
+s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data);
+s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data);
+s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw);
+s32 e1000_write_nvm_eewr(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset,
+ u16 words, u16 *data);
+s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words,
+ u16 *data);
+s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw);
+void e1000_stop_nvm(struct e1000_hw *hw);
+void e1000_release_nvm_generic(struct e1000_hw *hw);
+void e1000_reload_nvm_generic(struct e1000_hw *hw);
+
+/* Function pointers */
+s32 e1000_acquire_nvm(struct e1000_hw *hw);
+void e1000_release_nvm(struct e1000_hw *hw);
+
+#define E1000_STM_OPCODE 0xDB00
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _IGB_NVM_H */
diff --git a/usr/src/uts/common/io/igb/igb_osdep.c b/usr/src/uts/common/io/igb/igb_osdep.c
new file mode 100644
index 0000000000..9d03c05494
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_osdep.c
@@ -0,0 +1,116 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "igb_osdep.h"
+#include "igb_api.h"
+
+
+s32
+e1000_alloc_zeroed_dev_spec_struct(struct e1000_hw *hw, u32 size)
+{
+ hw->dev_spec = kmem_zalloc(size, KM_SLEEP);
+
+ return (E1000_SUCCESS);
+}
+
+void
+e1000_free_dev_spec_struct(struct e1000_hw *hw)
+{
+ if (hw->dev_spec == NULL)
+ return;
+
+ kmem_free(hw->dev_spec, hw->dev_spec_size);
+ hw->dev_spec = NULL;
+}
+
+void
+e1000_pci_set_mwi(struct e1000_hw *hw)
+{
+ uint16_t val = hw->bus.pci_cmd_word | CMD_MEM_WRT_INVALIDATE;
+
+ e1000_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &val);
+}
+
+void
+e1000_pci_clear_mwi(struct e1000_hw *hw)
+{
+ uint16_t val = hw->bus.pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE;
+
+ e1000_write_pci_cfg(hw, PCI_COMMAND_REGISTER, &val);
+}
+
+void
+e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
+{
+ pci_config_put16(OS_DEP(hw)->cfg_handle, reg, *value);
+}
+
+void
+e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
+{
+ *value =
+ pci_config_get16(OS_DEP(hw)->cfg_handle, reg);
+}
+
+/*
+ * The real intent of this routine is to return the value from pci-e
+ * config space at offset reg into the capability space.
+ * ICH devices are "PCI Express"-ish. They have a configuration space,
+ * but do not contain PCI Express Capability registers, so this returns
+ * the equivalent of "not supported"
+ */
+int32_t
+e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
+{
+ *value = pci_config_get16(OS_DEP(hw)->cfg_handle,
+ PCI_EX_CONF_CAP + reg);
+
+ return (0);
+}
+
+/*
+ * Enables PCI-Express master access.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * returns: - none.
+ */
+void
+e1000_enable_pciex_master(struct e1000_hw *hw)
+{
+ uint32_t ctrl;
+
+ if (hw->bus.type != e1000_bus_type_pci_express)
+ return;
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+}
diff --git a/usr/src/uts/common/io/igb/igb_osdep.h b/usr/src/uts/common/io/igb/igb_osdep.h
new file mode 100644
index 0000000000..43e0765b6d
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_osdep.h
@@ -0,0 +1,167 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#ifndef _IGB_OSDEP_H
+#define _IGB_OSDEP_H
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <sys/types.h>
+#include <sys/conf.h>
+#include <sys/debug.h>
+#include <sys/stropts.h>
+#include <sys/stream.h>
+#include <sys/strlog.h>
+#include <sys/kmem.h>
+#include <sys/stat.h>
+#include <sys/kstat.h>
+#include <sys/modctl.h>
+#include <sys/errno.h>
+#include <sys/ddi.h>
+#include <sys/dditypes.h>
+#include <sys/sunddi.h>
+#include <sys/pci.h>
+#include <sys/atomic.h>
+#include <sys/note.h>
+#include "igb_debug.h"
+
+#define usec_delay(x) drv_usecwait(x)
+#define msec_delay(x) drv_usecwait(x * 1000)
+
+#ifdef IGB_DEBUG
+#define DEBUGOUT(S) IGB_DEBUGLOG_0(NULL, S)
+#define DEBUGOUT1(S, A) IGB_DEBUGLOG_1(NULL, S, A)
+#define DEBUGOUT2(S, A, B) IGB_DEBUGLOG_2(NULL, S, A, B)
+#define DEBUGOUT3(S, A, B, C) IGB_DEBUGLOG_3(NULL, S, A, B, C)
+#define DEBUGFUNC(F)
+#else
+#define DEBUGOUT(S)
+#define DEBUGOUT1(S, A)
+#define DEBUGOUT2(S, A, B)
+#define DEBUGOUT3(S, A, B, C)
+#define DEBUGFUNC(F)
+#endif
+
+#define OS_DEP(hw) ((struct igb_osdep *)((hw)->back))
+
+#define FALSE 0
+#define TRUE 1
+
+#define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */
+#define PCI_COMMAND_REGISTER 0x04
+#define PCI_EX_CONF_CAP 0xE0
+
+
+/*
+ * Constants used in setting flow control thresholds
+ */
+#define E1000_PBA_MASK 0xffff
+#define E1000_PBA_SHIFT 10
+#define E1000_FC_HIGH_DIFF 0x1638 /* High: 5688 bytes below Rx FIFO size */
+#define E1000_FC_LOW_DIFF 0x1640 /* Low: 5696 bytes below Rx FIFO size */
+#define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */
+
+/* PHY Extended Status Register */
+#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */
+#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */
+#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */
+#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */
+
+#define E1000_WRITE_FLUSH(a) (void) E1000_READ_REG(a, E1000_STATUS)
+
+#define E1000_WRITE_REG(hw, reg, value) \
+ ddi_put32((OS_DEP(hw))->reg_handle, \
+ (uint32_t *)((uintptr_t)(hw)->hw_addr + reg), (value))
+
+#define E1000_READ_REG(hw, reg) \
+ ddi_get32((OS_DEP(hw))->reg_handle, \
+ (uint32_t *)((uintptr_t)(hw)->hw_addr + reg))
+
+#define E1000_WRITE_REG_ARRAY(hw, reg, offset, value) \
+ ddi_put32((OS_DEP(hw))->reg_handle, \
+ (uint32_t *)((uintptr_t)(hw)->hw_addr + reg + ((offset) << 2)), \
+ (value))
+
+#define E1000_READ_REG_ARRAY(hw, reg, offset) \
+ ddi_get32((OS_DEP(hw))->reg_handle, \
+ (uint32_t *)((uintptr_t)(hw)->hw_addr + reg + ((offset) << 2)))
+
+#define E1000_WRITE_REG_ARRAY_DWORD(a, reg, offset, value) \
+ E1000_WRITE_REG_ARRAY(a, reg, offset, value)
+#define E1000_READ_REG_ARRAY_DWORD(a, reg, offset) \
+ E1000_READ_REG_ARRAY(a, reg, offset)
+
+#define msec_delay_irq msec_delay
+
+#define UNREFERENCED_PARAMETER(x) _NOTE(ARGUNUSED(x))
+
+typedef int8_t s8;
+typedef int16_t s16;
+typedef int32_t s32;
+typedef int64_t s64;
+typedef uint8_t u8;
+typedef uint16_t u16;
+typedef uint32_t u32;
+typedef uint64_t u64;
+
+typedef uint8_t UCHAR; /* 8-bit unsigned */
+typedef UCHAR UINT8; /* 8-bit unsigned */
+typedef uint16_t USHORT; /* 16-bit unsigned */
+typedef uint16_t UINT16; /* 16-bit unsigned */
+typedef uint32_t ULONG; /* 32-bit unsigned */
+typedef uint32_t UINT32;
+typedef uint32_t UINT; /* 32-bit unsigned */
+typedef UCHAR BOOLEAN;
+typedef BOOLEAN bool;
+typedef UCHAR *PUCHAR;
+typedef UINT *PUINT;
+typedef ULONG *PLONG;
+typedef ULONG NDIS_STATUS;
+typedef USHORT *PUSHORT;
+typedef PUSHORT PUINT16; /* 16-bit unsigned pointer */
+typedef ULONG E1000_32_BIT_PHYSICAL_ADDRESS,
+ *PFX_32_BIT_PHYSICAL_ADDRESS;
+typedef uint64_t E1000_64_BIT_PHYSICAL_ADDRESS,
+ *PFX_64_BIT_PHYSICAL_ADDRESS;
+
+struct igb_osdep {
+ ddi_acc_handle_t reg_handle;
+ ddi_acc_handle_t cfg_handle;
+ struct igb *igb;
+};
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _IGB_OSDEP_H */
diff --git a/usr/src/uts/common/io/igb/igb_phy.c b/usr/src/uts/common/io/igb/igb_phy.c
new file mode 100644
index 0000000000..e85b54a315
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_phy.c
@@ -0,0 +1,2556 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "igb_api.h"
+#include "igb_phy.h"
+
+static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
+static void e1000_release_phy(struct e1000_hw *hw);
+static s32 e1000_acquire_phy(struct e1000_hw *hw);
+static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
+
+/* Cable length tables */
+static const u16 e1000_m88_cable_length_table[] =
+ { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
+
+#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
+ (sizeof (e1000_m88_cable_length_table) / \
+ sizeof (e1000_m88_cable_length_table[0]))
+
+static const u16 e1000_igp_2_cable_length_table[] =
+ { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
+ 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
+ 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
+ 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
+ 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
+ 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
+ 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
+ 104, 109, 114, 118, 121, 124};
+
+#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
+ (sizeof (e1000_igp_2_cable_length_table) / \
+ sizeof (e1000_igp_2_cable_length_table[0]))
+
+/*
+ * e1000_check_reset_block_generic - Check if PHY reset is blocked
+ * @hw: pointer to the HW structure
+ *
+ * Read the PHY management control register and check whether a PHY reset
+ * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise
+ * return E1000_BLK_PHY_RESET (12).
+ */
+s32
+e1000_check_reset_block_generic(struct e1000_hw *hw)
+{
+ u32 manc;
+
+ DEBUGFUNC("e1000_check_reset_block");
+
+ manc = E1000_READ_REG(hw, E1000_MANC);
+
+ return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+ E1000_BLK_PHY_RESET : E1000_SUCCESS;
+}
+
+/*
+ * e1000_get_phy_id - Retrieve the PHY ID and revision
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY registers and stores the PHY ID and possibly the PHY
+ * revision in the hardware structure.
+ */
+s32
+e1000_get_phy_id(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_id;
+
+ DEBUGFUNC("e1000_get_phy_id");
+
+ ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id);
+ if (ret_val)
+ goto out;
+
+ phy->id = (u32)(phy_id << 16);
+ usec_delay(20);
+ ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id);
+ if (ret_val)
+ goto out;
+
+ phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
+ phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_phy_reset_dsp_generic - Reset PHY DSP
+ * @hw: pointer to the HW structure
+ *
+ * Reset the digital signal processor.
+ */
+s32
+e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_phy_reset_dsp_generic");
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_read_phy_reg_mdic - Read MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Reads the MDI control regsiter in the PHY at offset and stores the
+ * information read to data.
+ */
+s32
+e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, mdic = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_read_phy_reg_mdic");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ ret_val = -E1000_ERR_PARAM;
+ goto out;
+ }
+
+ /*
+ * Set up Op-code, Phy Address, and register offset in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = ((offset << E1000_MDIC_REG_SHIFT) |
+ (phy->addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_READ));
+
+ E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+ /*
+ * Poll the ready bit to see if the MDI read completed
+ * Increasing the time out as testing showed failures with
+ * the lower time out
+ */
+ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+ usec_delay(50);
+ mdic = E1000_READ_REG(hw, E1000_MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Read did not complete\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ *data = (u16) mdic;
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_write_phy_reg_mdic - Write MDI control register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write to register at offset
+ *
+ * Writes data to MDI control register in the PHY at offset.
+ */
+s32
+e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ u32 i, mdic = 0;
+ s32 ret_val = E1000_SUCCESS;
+
+ DEBUGFUNC("e1000_write_phy_reg_mdic");
+
+ if (offset > MAX_PHY_REG_ADDRESS) {
+ DEBUGOUT1("PHY Address %d is out of range\n", offset);
+ ret_val = -E1000_ERR_PARAM;
+ goto out;
+ }
+
+ /*
+ * Set up Op-code, Phy Address, and register offset in the MDI
+ * Control register. The MAC will take care of interfacing with the
+ * PHY to retrieve the desired data.
+ */
+ mdic = (((u32)data) |
+ (offset << E1000_MDIC_REG_SHIFT) |
+ (phy->addr << E1000_MDIC_PHY_SHIFT) |
+ (E1000_MDIC_OP_WRITE));
+
+ E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+ /*
+ * Poll the ready bit to see if the MDI read completed
+ * Increasing the time out as testing showed failures with
+ * the lower time out
+ */
+ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+ usec_delay(50);
+ mdic = E1000_READ_REG(hw, E1000_MDIC);
+ if (mdic & E1000_MDIC_READY)
+ break;
+ }
+ if (!(mdic & E1000_MDIC_READY)) {
+ DEBUGOUT("MDI Write did not complete\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+ if (mdic & E1000_MDIC_ERROR) {
+ DEBUGOUT("MDI Error\n");
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_read_phy_reg_m88 - Read m88 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ */
+s32
+e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_read_phy_reg_m88");
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset, data);
+
+ e1000_release_phy(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_write_phy_reg_m88 - Write m88 PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ */
+s32
+e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_write_phy_reg_m88");
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset, data);
+
+ e1000_release_phy(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_read_phy_reg_igp - Read igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ */
+s32
+e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_read_phy_reg_igp");
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT, (u16)offset);
+ if (ret_val) {
+ e1000_release_phy(hw);
+ goto out;
+ }
+ }
+
+ ret_val = e1000_read_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset, data);
+
+ e1000_release_phy(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_write_phy_reg_igp - Write igp PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ */
+s32
+e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_write_phy_reg_igp");
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT, (u16)offset);
+ if (ret_val) {
+ e1000_release_phy(hw);
+ goto out;
+ }
+ }
+
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset, data);
+
+ e1000_release_phy(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_read_kmrn_reg_generic - Read kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary. Then reads the PHY register at offset
+ * using the kumeran interface. The information retrieved is stored in data.
+ * Release any acquired semaphores before exiting.
+ */
+s32
+e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ u32 kmrnctrlsta;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_read_kmrn_reg_generic");
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+ E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+
+ usec_delay(2);
+
+ kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
+ *data = (u16)kmrnctrlsta;
+
+ e1000_release_phy(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_write_kmrn_reg_generic - Write kumeran register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary. Then write the data to PHY register
+ * at the offset using the kumeran interface. Release any acquired semaphores
+ * before exiting.
+ */
+s32
+e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ u32 kmrnctrlsta;
+ s32 ret_val;
+
+ DEBUGFUNC("e1000_write_kmrn_reg_generic");
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+ E1000_KMRNCTRLSTA_OFFSET) | data;
+ E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+
+ usec_delay(2);
+ e1000_release_phy(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
+ * and downshift values are set also.
+ */
+s32
+e1000_copper_link_setup_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+
+ DEBUGFUNC("e1000_copper_link_setup_m88");
+
+ if (phy->reset_disable) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ /* Enable CRS on TX. This must be set for half-duplex operation. */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ /* For newer PHYs this bit is downshift enable */
+ if (phy->type == e1000_phy_m88)
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+ /*
+ * Options:
+ * MDI/MDI-X = 0 (default)
+ * 0 - Auto for all speeds
+ * 1 - MDI mode
+ * 2 - MDI-X mode
+ * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+ */
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+ switch (phy->mdix) {
+ case 1:
+ phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+ break;
+ case 2:
+ phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+ break;
+ case 3:
+ phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+ break;
+ case 0:
+ default:
+ phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+ break;
+ }
+
+ /*
+ * Options:
+ * disable_polarity_correction = 0 (default)
+ * Automatic Correction for Reversed Cable Polarity
+ * 0 - Disabled
+ * 1 - Enabled
+ */
+ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+ if (phy->disable_polarity_correction == 1)
+ phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+ /* Enable downshift on BM (disabled by default) */
+ if (phy->type == e1000_phy_bm)
+ phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
+
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ if ((phy->type == e1000_phy_m88) &&
+ (phy->revision < E1000_REVISION_4) &&
+ (phy->id != BME1000_E_PHY_ID_R2)) {
+ /*
+ * Force TX_CLK in the Extended PHY Specific Control Register
+ * to 25MHz clock.
+ */
+ ret_val = e1000_read_phy_reg(hw,
+ M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+ if ((phy->revision == E1000_REVISION_2) &&
+ (phy->id == M88E1111_I_PHY_ID)) {
+ /* 82573L PHY - set the downshift counter to 5x. */
+ phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
+ phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+ } else {
+ /* Configure Master and Slave downshift values */
+ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+ phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+ M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+ }
+ ret_val = e1000_write_phy_reg(hw,
+ M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+ }
+
+ /* Commit the changes. */
+ ret_val = e1000_phy_commit(hw);
+ if (ret_val) {
+ DEBUGOUT("Error committing the PHY changes\n");
+ goto out;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
+ * igp PHY's.
+ */
+s32
+e1000_copper_link_setup_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_copper_link_setup_igp");
+
+ if (phy->reset_disable) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = e1000_phy_hw_reset(hw);
+ if (ret_val) {
+ DEBUGOUT("Error resetting the PHY.\n");
+ goto out;
+ }
+
+ /* Wait 15ms for MAC to configure PHY from NVM settings. */
+ msec_delay(15);
+
+ /*
+ * The NVM settings will configure LPLU in D3 for
+ * non-IGP1 PHYs.
+ */
+ if (phy->type == e1000_phy_igp) {
+ /* disable lplu d3 during driver init */
+ ret_val = e1000_set_d3_lplu_state(hw, FALSE);
+ if (ret_val) {
+ DEBUGOUT("Error Disabling LPLU D3\n");
+ goto out;
+ }
+ }
+
+ /* disable lplu d0 during driver init */
+ ret_val = e1000_set_d0_lplu_state(hw, FALSE);
+ if (ret_val) {
+ DEBUGOUT("Error Disabling LPLU D0\n");
+ goto out;
+ }
+ /* Configure mdi-mdix settings */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+ switch (phy->mdix) {
+ case 1:
+ data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 2:
+ data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+ break;
+ case 0:
+ default:
+ data |= IGP01E1000_PSCR_AUTO_MDIX;
+ break;
+ }
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
+ if (ret_val)
+ goto out;
+
+ /* set auto-master slave resolution settings */
+ if (hw->mac.autoneg) {
+ /*
+ * when autonegotiation advertisement is only 1000Mbps then we
+ * should disable SmartSpeed and enable Auto MasterSlave
+ * resolution as hardware default.
+ */
+ if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
+ /* Disable SmartSpeed */
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG, data);
+ if (ret_val)
+ goto out;
+
+ /* Set auto Master/Slave resolution process */
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~CR_1000T_MS_ENABLE;
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, data);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &data);
+ if (ret_val)
+ goto out;
+
+ /* load defaults for future use */
+ phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
+ ((data & CR_1000T_MS_VALUE) ?
+ e1000_ms_force_master :
+ e1000_ms_force_slave) :
+ e1000_ms_auto;
+
+ switch (phy->ms_type) {
+ case e1000_ms_force_master:
+ data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_force_slave:
+ data |= CR_1000T_MS_ENABLE;
+ data &= ~(CR_1000T_MS_VALUE);
+ break;
+ case e1000_ms_auto:
+ data &= ~CR_1000T_MS_ENABLE;
+ default:
+ break;
+ }
+ ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, data);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
+ * @hw: pointer to the HW structure
+ *
+ * Performs initial bounds checking on autoneg advertisement parameter, then
+ * configure to advertise the full capability. Setup the PHY to autoneg
+ * and restart the negotiation process between the link partner. If
+ * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
+ */
+s32
+e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_ctrl;
+
+ DEBUGFUNC("e1000_copper_link_autoneg");
+
+ /*
+ * Perform some bounds checking on the autoneg advertisement
+ * parameter.
+ */
+ phy->autoneg_advertised &= phy->autoneg_mask;
+
+ /*
+ * If autoneg_advertised is zero, we assume it was not defaulted
+ * by the calling code so we set to advertise full capability.
+ */
+ if (phy->autoneg_advertised == 0)
+ phy->autoneg_advertised = phy->autoneg_mask;
+
+ DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+ ret_val = e1000_phy_setup_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Setting up Auto-Negotiation\n");
+ goto out;
+ }
+ DEBUGOUT("Restarting Auto-Neg\n");
+
+ /*
+ * Restart auto-negotiation by setting the Auto Neg Enable bit and
+ * the Auto Neg Restart bit in the PHY control register.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+ ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Does the user want to wait for Auto-Neg to complete here, or
+ * check at a later time (for example, callback routine).
+ */
+ if (phy->autoneg_wait_to_complete) {
+ ret_val = e1000_wait_autoneg(hw);
+ if (ret_val) {
+ DEBUGOUT("Error while waiting for "
+ "autoneg to complete\n");
+ goto out;
+ }
+ }
+
+ hw->mac.get_link_status = TRUE;
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
+ * @hw: pointer to the HW structure
+ *
+ * Reads the MII auto-neg advertisement register and/or the 1000T control
+ * register and if the PHY is already setup for auto-negotiation, then
+ * return successful. Otherwise, setup advertisement and flow control to
+ * the appropriate values for the wanted auto-negotiation.
+ */
+s32
+e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 mii_autoneg_adv_reg;
+ u16 mii_1000t_ctrl_reg = 0;
+
+ DEBUGFUNC("e1000_phy_setup_autoneg");
+
+ phy->autoneg_advertised &= phy->autoneg_mask;
+
+ /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+ ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+ if (ret_val)
+ goto out;
+
+ if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+ /* Read the MII 1000Base-T Control Register (Address 9). */
+ ret_val = e1000_read_phy_reg(hw,
+ PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
+ if (ret_val)
+ goto out;
+ }
+
+ /*
+ * Need to parse both autoneg_advertised and fc and set up
+ * the appropriate PHY registers. First we will parse for
+ * autoneg_advertised software override. Since we can advertise
+ * a plethora of combinations, we need to check each bit
+ * individually.
+ */
+
+ /*
+ * First we clear all the 10/100 mb speed bits in the Auto-Neg
+ * Advertisement Register (Address 4) and the 1000 mb speed bits in
+ * the 1000Base-T Control Register (Address 9).
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
+ NWAY_AR_100TX_HD_CAPS |
+ NWAY_AR_10T_FD_CAPS |
+ NWAY_AR_10T_HD_CAPS);
+ mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
+
+ DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
+
+ /* Do we want to advertise 10 Mb Half Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
+ DEBUGOUT("Advertise 10mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+ }
+
+ /* Do we want to advertise 10 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
+ DEBUGOUT("Advertise 10mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Half Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
+ DEBUGOUT("Advertise 100mb Half duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+ }
+
+ /* Do we want to advertise 100 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
+ DEBUGOUT("Advertise 100mb Full duplex\n");
+ mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+ }
+
+ /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+ if (phy->autoneg_advertised & ADVERTISE_1000_HALF) {
+ DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
+ }
+
+ /* Do we want to advertise 1000 Mb Full Duplex? */
+ if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
+ DEBUGOUT("Advertise 1000mb Full duplex\n");
+ mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+ }
+
+ /*
+ * Check for a software override of the flow control settings, and
+ * setup the PHY advertisement registers accordingly. If
+ * auto-negotiation is enabled, then software will have to set the
+ * "PAUSE" bits to the correct value in the Auto-Negotiation
+ * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
+ * negotiation.
+ *
+ * The possible values of the "fc" parameter are:
+ * 0: Flow control is completely disabled
+ * 1: Rx flow control is enabled (we can receive pause frames
+ * but not send pause frames).
+ * 2: Tx flow control is enabled (we can send pause frames
+ * but we do not support receiving pause frames).
+ * 3: Both Rx and Tx flow control (symmetric) are enabled.
+ * other: No software override. The flow control configuration
+ * in the EEPROM is used.
+ */
+ switch (hw->fc.type) {
+ case e1000_fc_none:
+ /*
+ * Flow control (Rx & Tx) is completely disabled by a
+ * software over-ride.
+ */
+ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_rx_pause:
+ /*
+ * Rx Flow control is enabled, and Tx Flow control is
+ * disabled, by a software over-ride.
+ *
+ * Since there really isn't a way to advertise that we are
+ * capable of Rx Pause ONLY, we will advertise that we
+ * support both symmetric and asymmetric Rx PAUSE. Later
+ * (in e1000_config_fc_after_link_up) we will disable the
+ * hw's ability to send PAUSE frames.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ case e1000_fc_tx_pause:
+ /*
+ * Tx Flow control is enabled, and Rx Flow control is
+ * disabled, by a software over-ride.
+ */
+ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+ mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+ break;
+ case e1000_fc_full:
+ /*
+ * Flow control (both Rx and Tx) is enabled by a software
+ * over-ride.
+ */
+ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+ break;
+ default:
+ DEBUGOUT("Flow control param set incorrectly\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+ if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+ ret_val = e1000_write_phy_reg(hw,
+ PHY_1000T_CTRL, mii_1000t_ctrl_reg);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_setup_copper_link_generic - Configure copper link settings
+ * @hw: pointer to the HW structure
+ *
+ * Calls the appropriate function to configure the link for auto-neg or forced
+ * speed and duplex. Then we check for link, once link is established calls
+ * to configure collision distance and flow control are called. If link is
+ * not established, we return -E1000_ERR_PHY (-2).
+ */
+s32
+e1000_setup_copper_link_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ bool link;
+
+ DEBUGFUNC("e1000_setup_copper_link_generic");
+
+ if (hw->mac.autoneg) {
+ /*
+ * Setup autoneg and flow control advertisement and perform
+ * autonegotiation.
+ */
+ ret_val = e1000_copper_link_autoneg(hw);
+ if (ret_val)
+ goto out;
+ } else {
+ /*
+ * PHY will be set to 10H, 10F, 100H or 100F
+ * depending on user settings.
+ */
+ DEBUGOUT("Forcing Speed and Duplex\n");
+ ret_val = e1000_phy_force_speed_duplex(hw);
+ if (ret_val) {
+ DEBUGOUT("Error Forcing Speed and Duplex\n");
+ goto out;
+ }
+ }
+
+ /*
+ * Check link status. Wait up to 100 microseconds for link to become
+ * valid.
+ */
+ ret_val = e1000_phy_has_link_generic(hw,
+ COPPER_LINK_UP_LIMIT,
+ 10,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (link) {
+ DEBUGOUT("Valid link established!!!\n");
+ e1000_config_collision_dist_generic(hw);
+ ret_val = e1000_config_fc_after_link_up_generic(hw);
+ } else {
+ DEBUGOUT("Unable to establish link!!!\n");
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex. Clears the
+ * auto-crossover to force MDI manually. Waits for link and returns
+ * successful if link up is successful, else -E1000_ERR_PHY (-2).
+ */
+s32
+e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
+
+ ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Clear Auto-Crossover to force MDI manually. IGP requires MDI
+ * forced whenever speed and duplex are forced.
+ */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+ phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("IGP PSCR: %X\n", phy_data);
+
+ usec_delay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Link taking longer than expected.\n");
+ }
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Calls the PHY setup function to force speed and duplex. Clears the
+ * auto-crossover to force MDI manually. Resets the PHY to commit the
+ * changes. If time expires while waiting for link up, we reset the DSP.
+ * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
+ * successful completion, else return corresponding error code.
+ */
+s32
+e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
+
+ /*
+ * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
+ * forced whenever speed and duplex are forced.
+ */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
+
+ ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+ /* Reset the phy to commit changes. */
+ phy_data |= MII_CR_RESET;
+
+ ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_data);
+ if (ret_val)
+ goto out;
+
+ usec_delay(1);
+
+ if (phy->autoneg_wait_to_complete) {
+ DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
+
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ /*
+ * We didn't get link.
+ * Reset the DSP and cross our fingers.
+ */
+ ret_val = e1000_write_phy_reg(hw,
+ M88E1000_PHY_PAGE_SELECT,
+ 0x001d);
+ if (ret_val)
+ goto out;
+ ret_val = e1000_phy_reset_dsp_generic(hw);
+ if (ret_val)
+ goto out;
+ }
+
+ /* Try once more */
+ ret_val = e1000_phy_has_link_generic(hw,
+ PHY_FORCE_LIMIT,
+ 100000,
+ &link);
+ if (ret_val)
+ goto out;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Resetting the phy means we need to re-force TX_CLK in the
+ * Extended PHY Specific Control Register to 25MHz clock from
+ * the reset value of 2.5MHz.
+ */
+ phy_data |= M88E1000_EPSCR_TX_CLK_25;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * In addition, we must re-enable CRS on Tx for both half and full
+ * duplex.
+ */
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+ ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
+ * @hw: pointer to the HW structure
+ * @phy_ctrl: pointer to current value of PHY_CONTROL
+ *
+ * Forces speed and duplex on the PHY by doing the following: disable flow
+ * control, force speed/duplex on the MAC, disable auto speed detection,
+ * disable auto-negotiation, configure duplex, configure speed, configure
+ * the collision distance, write configuration to CTRL register. The
+ * caller must write to the PHY_CONTROL register for these settings to
+ * take affect.
+ */
+void
+e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
+{
+ struct e1000_mac_info *mac = &hw->mac;
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
+
+ /* Turn off flow control when forcing speed/duplex */
+ hw->fc.type = e1000_fc_none;
+
+ /* Force speed/duplex on the mac */
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+ ctrl &= ~E1000_CTRL_SPD_SEL;
+
+ /* Disable Auto Speed Detection */
+ ctrl &= ~E1000_CTRL_ASDE;
+
+ /* Disable autoneg on the phy */
+ *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
+
+ /* Forcing Full or Half Duplex? */
+ if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
+ ctrl &= ~E1000_CTRL_FD;
+ *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Half Duplex\n");
+ } else {
+ ctrl |= E1000_CTRL_FD;
+ *phy_ctrl |= MII_CR_FULL_DUPLEX;
+ DEBUGOUT("Full Duplex\n");
+ }
+
+ /* Forcing 10mb or 100mb? */
+ if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
+ ctrl |= E1000_CTRL_SPD_100;
+ *phy_ctrl |= MII_CR_SPEED_100;
+ *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
+ DEBUGOUT("Forcing 100mb\n");
+ } else {
+ ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+ /* LINTED */
+ *phy_ctrl |= MII_CR_SPEED_10;
+ *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+ DEBUGOUT("Forcing 10mb\n");
+ }
+
+ e1000_config_collision_dist_generic(hw);
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+}
+
+/*
+ * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
+ * @hw: pointer to the HW structure
+ * @active: boolean used to enable/disable lplu
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * The low power link up (lplu) state is set to the power management level D3
+ * and SmartSpeed is disabled when active is true, else clear lplu for D3
+ * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
+ * is used during Dx states where the power conservation is most important.
+ * During driver activity, SmartSpeed should be enabled so performance is
+ * maintained.
+ */
+s32
+e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_set_d3_lplu_state_generic");
+
+ ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+ if (ret_val)
+ goto out;
+
+ if (!active) {
+ data &= ~IGP02E1000_PM_D3_LPLU;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ goto out;
+ /*
+ * LPLU and SmartSpeed are mutually exclusive. LPLU is used
+ * during Dx states where the power conservation is most
+ * important. During driver activity we should enable
+ * SmartSpeed, so performance is maintained.
+ */
+ if (phy->smart_speed == e1000_smart_speed_on) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data |= IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ } else if (phy->smart_speed == e1000_smart_speed_off) {
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ if (ret_val)
+ goto out;
+ }
+ } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+ (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+ (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+ data |= IGP02E1000_PM_D3_LPLU;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP02E1000_PHY_POWER_MGMT,
+ data);
+ if (ret_val)
+ goto out;
+
+ /* When LPLU is enabled, we should disable SmartSpeed */
+ ret_val = e1000_read_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ &data);
+ if (ret_val)
+ goto out;
+
+ data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+ ret_val = e1000_write_phy_reg(hw,
+ IGP01E1000_PHY_PORT_CONFIG,
+ data);
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_check_downshift_generic - Checks whether a downshift in speed occured
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns 1
+ *
+ * A downshift is detected by querying the PHY link health.
+ */
+s32
+e1000_check_downshift_generic(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, offset, mask;
+
+ DEBUGFUNC("e1000_check_downshift_generic");
+
+ switch (phy->type) {
+ case e1000_phy_m88:
+ case e1000_phy_gg82563:
+ case e1000_phy_bm:
+ offset = M88E1000_PHY_SPEC_STATUS;
+ mask = M88E1000_PSSR_DOWNSHIFT;
+ break;
+ case e1000_phy_igp_2:
+ case e1000_phy_igp:
+ case e1000_phy_igp_3:
+ offset = IGP01E1000_PHY_LINK_HEALTH;
+ mask = IGP01E1000_PLHR_SS_DOWNGRADE;
+ break;
+ default:
+ /* speed downshift not supported */
+ phy->speed_downgraded = FALSE;
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, offset, &phy_data);
+
+ if (!ret_val)
+ phy->speed_downgraded = (phy_data & mask) ? TRUE : FALSE;
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_check_polarity_m88 - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY specific status register.
+ */
+s32
+e1000_check_polarity_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+
+ DEBUGFUNC("e1000_check_polarity_m88");
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+
+ return (ret_val);
+}
+
+/*
+ * e1000_check_polarity_igp - Checks the polarity.
+ * @hw: pointer to the HW structure
+ *
+ * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ * Polarity is determined based on the PHY port status register, and the
+ * current speed (since there is no polarity at 100Mbps).
+ */
+s32
+e1000_check_polarity_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data, offset, mask;
+
+ DEBUGFUNC("e1000_check_polarity_igp");
+
+ /*
+ * Polarity is determined based on the speed of
+ * our connection.
+ */
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+ if (ret_val)
+ goto out;
+
+ if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+ offset = IGP01E1000_PHY_PCS_INIT_REG;
+ mask = IGP01E1000_PHY_POLARITY_MASK;
+ } else {
+ /*
+ * This really only applies to 10Mbps since
+ * there is no polarity for 100Mbps (always 0).
+ */
+ offset = IGP01E1000_PHY_PORT_STATUS;
+ mask = IGP01E1000_PSSR_POLARITY_REVERSED;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, offset, &data);
+
+ if (!ret_val)
+ phy->cable_polarity = (data & mask)
+ ? e1000_rev_polarity_reversed
+ : e1000_rev_polarity_normal;
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_wait_autoneg_generic - Wait for auto-neg compeletion
+ * @hw: pointer to the HW structure
+ *
+ * Waits for auto-negotiation to complete or for the auto-negotiation time
+ * limit to expire, which ever happens first.
+ */
+s32
+e1000_wait_autoneg_generic(struct e1000_hw *hw)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 i, phy_status;
+
+ DEBUGFUNC("e1000_wait_autoneg_generic");
+
+ /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
+ for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ if (phy_status & MII_SR_AUTONEG_COMPLETE)
+ break;
+ msec_delay(100);
+ }
+
+ /*
+ * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
+ * has completed.
+ */
+ return (ret_val);
+}
+
+/*
+ * e1000_phy_has_link_generic - Polls PHY for link
+ * @hw: pointer to the HW structure
+ * @iterations: number of times to poll for link
+ * @usec_interval: delay between polling attempts
+ * @success: pointer to whether polling was successful or not
+ *
+ * Polls the PHY status register for link, 'iterations' number of times.
+ */
+s32
+e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ u32 usec_interval, bool *success)
+{
+ s32 ret_val = E1000_SUCCESS;
+ u16 i, phy_status;
+
+ DEBUGFUNC("e1000_phy_has_link_generic");
+
+ for (i = 0; i < iterations; i++) {
+ /*
+ * Some PHYs require the PHY_STATUS register to be read
+ * twice due to the link bit being sticky. No harm doing
+ * it across the board.
+ */
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
+ if (ret_val)
+ break;
+ if (phy_status & MII_SR_LINK_STATUS)
+ break;
+ if (usec_interval >= 1000)
+ msec_delay_irq(usec_interval/1000);
+ else
+ usec_delay(usec_interval);
+ }
+
+ *success = (i < iterations) ? TRUE : FALSE;
+
+ return (ret_val);
+}
+
+/*
+ * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Reads the PHY specific status register to retrieve the cable length
+ * information. The cable length is determined by averaging the minimum and
+ * maximum values to get the "average" cable length. The m88 PHY has four
+ * possible cable length values, which are:
+ * Register Value Cable Length
+ * 0 < 50 meters
+ * 1 50 - 80 meters
+ * 2 80 - 110 meters
+ * 3 110 - 140 meters
+ * 4 > 140 meters
+ */
+s32
+e1000_get_cable_length_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data, index;
+
+ DEBUGFUNC("e1000_get_cable_length_m88");
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+ phy->min_cable_length = e1000_m88_cable_length_table[index];
+ phy->max_cable_length = e1000_m88_cable_length_table[index+1];
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
+ * @hw: pointer to the HW structure
+ *
+ * The automatic gain control (agc) normalizes the amplitude of the
+ * received signal, adjusting for the attenuation produced by the
+ * cable. By reading the AGC registers, which reperesent the
+ * cobination of course and fine gain value, the value can be put
+ * into a lookup table to obtain the approximate cable length
+ * for each channel.
+ */
+s32
+e1000_get_cable_length_igp_2(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val = E1000_SUCCESS;
+ u16 phy_data, i, agc_value = 0;
+ u16 cur_agc_index, max_agc_index = 0;
+ u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
+ u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
+ {IGP02E1000_PHY_AGC_A,
+ IGP02E1000_PHY_AGC_B,
+ IGP02E1000_PHY_AGC_C,
+ IGP02E1000_PHY_AGC_D};
+
+ DEBUGFUNC("e1000_get_cable_length_igp_2");
+
+ /* Read the AGC registers for all channels */
+ for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
+ ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
+ if (ret_val)
+ goto out;
+
+ /*
+ * Getting bits 15:9, which represent the combination of
+ * course and fine gain values. The result is a number
+ * that can be put into the lookup table to obtain the
+ * approximate cable length.
+ */
+ cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+ IGP02E1000_AGC_LENGTH_MASK;
+
+ /* Array index bound check. */
+ if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
+ (cur_agc_index == 0)) {
+ ret_val = -E1000_ERR_PHY;
+ goto out;
+ }
+
+ /* Remove min & max AGC values from calculation. */
+ if (e1000_igp_2_cable_length_table[min_agc_index] >
+ e1000_igp_2_cable_length_table[cur_agc_index])
+ min_agc_index = cur_agc_index;
+ if (e1000_igp_2_cable_length_table[max_agc_index] <
+ e1000_igp_2_cable_length_table[cur_agc_index])
+ max_agc_index = cur_agc_index;
+
+ agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
+ }
+
+ agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
+ e1000_igp_2_cable_length_table[max_agc_index]);
+ agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
+
+ /* Calculate cable length with the error range of +/- 10 meters. */
+ phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
+ (agc_value - IGP02E1000_AGC_RANGE) : 0;
+ phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
+
+ phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_get_phy_info_m88 - Retrieve PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Valid for only copper links. Read the PHY status register (sticky read)
+ * to verify that link is up. Read the PHY special control register to
+ * determine the polarity and 10base-T extended distance. Read the PHY
+ * special status register to determine MDI/MDIx and current speed. If
+ * speed is 1000, then determine cable length, local and remote receiver.
+ */
+s32
+e1000_get_phy_info_m88(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 phy_data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_m88");
+
+ if (hw->phy.media_type != e1000_media_type_copper) {
+ DEBUGOUT("Phy info is only valid for copper media\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
+ ? TRUE
+ : FALSE;
+
+ ret_val = e1000_check_polarity_m88(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? TRUE : FALSE;
+
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+ ret_val = e1000_get_cable_length(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
+ if (ret_val)
+ goto out;
+
+ phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+ } else {
+ /* Set values to "undefined" */
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_get_phy_info_igp - Retrieve igp PHY information
+ * @hw: pointer to the HW structure
+ *
+ * Read PHY status to determine if link is up. If link is up, then
+ * set/determine 10base-T extended distance and polarity correction. Read
+ * PHY port status to determine MDI/MDIx and speed. Based on the speed,
+ * determine on the cable length, local and remote receiver.
+ */
+s32
+e1000_get_phy_info_igp(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u16 data;
+ bool link;
+
+ DEBUGFUNC("e1000_get_phy_info_igp");
+
+ ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+ if (ret_val)
+ goto out;
+
+ if (!link) {
+ DEBUGOUT("Phy info is only valid if link is up\n");
+ ret_val = -E1000_ERR_CONFIG;
+ goto out;
+ }
+
+ phy->polarity_correction = TRUE;
+
+ ret_val = e1000_check_polarity_igp(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+ if (ret_val)
+ goto out;
+
+ phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? TRUE : FALSE;
+
+ if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+ IGP01E1000_PSSR_SPEED_1000MBPS) {
+ ret_val = e1000_get_cable_length(hw);
+ if (ret_val)
+ goto out;
+
+ ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &data);
+ if (ret_val)
+ goto out;
+
+ phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+
+ phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+ ? e1000_1000t_rx_status_ok
+ : e1000_1000t_rx_status_not_ok;
+ } else {
+ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+ phy->local_rx = e1000_1000t_rx_status_undefined;
+ phy->remote_rx = e1000_1000t_rx_status_undefined;
+ }
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_phy_sw_reset_generic - PHY software reset
+ * @hw: pointer to the HW structure
+ *
+ * Does a software reset of the PHY by reading the PHY control register and
+ * setting/write the control register reset bit to the PHY.
+ */
+s32
+e1000_phy_sw_reset_generic(struct e1000_hw *hw)
+{
+ s32 ret_val;
+ u16 phy_ctrl;
+
+ DEBUGFUNC("e1000_phy_sw_reset_generic");
+
+ ret_val = e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ phy_ctrl |= MII_CR_RESET;
+ ret_val = e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
+ if (ret_val)
+ goto out;
+
+ usec_delay(1);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_phy_hw_reset_generic - PHY hardware reset
+ * @hw: pointer to the HW structure
+ *
+ * Verify the reset block is not blocking us from resetting. Acquire
+ * semaphore (if necessary) and read/set/write the device control reset
+ * bit in the PHY. Wait the appropriate delay time for the device to
+ * reset and relase the semaphore (if necessary).
+ */
+s32
+e1000_phy_hw_reset_generic(struct e1000_hw *hw)
+{
+ struct e1000_phy_info *phy = &hw->phy;
+ s32 ret_val;
+ u32 ctrl;
+
+ DEBUGFUNC("e1000_phy_hw_reset_generic");
+
+ ret_val = e1000_check_reset_block(hw);
+ if (ret_val) {
+ ret_val = E1000_SUCCESS;
+ goto out;
+ }
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ ctrl = E1000_READ_REG(hw, E1000_CTRL);
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(phy->reset_delay_us);
+
+ E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+ E1000_WRITE_FLUSH(hw);
+
+ usec_delay(150);
+
+ e1000_release_phy(hw);
+
+ ret_val = e1000_get_phy_cfg_done(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_get_cfg_done_generic - Generic configuration done
+ * @hw: pointer to the HW structure
+ *
+ * Generic function to wait 10 milli-seconds for configuration to complete
+ * and return success.
+ */
+s32
+e1000_get_cfg_done_generic(struct e1000_hw *hw)
+{
+ DEBUGFUNC("e1000_get_cfg_done_generic");
+ UNREFERENCED_PARAMETER(hw);
+
+ msec_delay_irq(10);
+
+ return (E1000_SUCCESS);
+}
+
+/* Internal function pointers */
+
+/*
+ * e1000_get_phy_cfg_done - Generic PHY configuration done
+ * @hw: pointer to the HW structure
+ *
+ * Return success if silicon family did not implement a family specific
+ * get_cfg_done function.
+ */
+static s32
+e1000_get_phy_cfg_done(struct e1000_hw *hw)
+{
+ if (hw->func.get_cfg_done)
+ return (hw->func.get_cfg_done(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_release_phy - Generic release PHY
+ * @hw: pointer to the HW structure
+ *
+ * Return if silicon family does not require a semaphore when accessing the
+ * PHY.
+ */
+static void
+e1000_release_phy(struct e1000_hw *hw)
+{
+ if (hw->func.release_phy)
+ hw->func.release_phy(hw);
+}
+
+/*
+ * e1000_acquire_phy - Generic acquire PHY
+ * @hw: pointer to the HW structure
+ *
+ * Return success if silicon family does not require a semaphore when
+ * accessing the PHY.
+ */
+static s32
+e1000_acquire_phy(struct e1000_hw *hw)
+{
+ if (hw->func.acquire_phy)
+ return (hw->func.acquire_phy(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
+ * @hw: pointer to the HW structure
+ *
+ * When the silicon family has not implemented a forced speed/duplex
+ * function for the PHY, simply return (E1000_SUCCESS).
+ */
+s32
+e1000_phy_force_speed_duplex(struct e1000_hw *hw)
+{
+ if (hw->func.force_speed_duplex)
+ return (hw->func.force_speed_duplex(hw));
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_phy_init_script_igp3 - Inits the IGP3 PHY
+ * @hw: pointer to the HW structure
+ *
+ * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
+ */
+s32
+e1000_phy_init_script_igp3(struct e1000_hw *hw)
+{
+ DEBUGOUT("Running IGP 3 PHY init script\n");
+
+ /* PHY init IGP 3 */
+ /* Enable rise/fall, 10-mode work in class-A */
+ (void) e1000_write_phy_reg(hw, 0x2F5B, 0x9018);
+ /* Remove all caps from Replica path filter */
+ (void) e1000_write_phy_reg(hw, 0x2F52, 0x0000);
+ /* Bias trimming for ADC, AFE and Driver (Default) */
+ (void) e1000_write_phy_reg(hw, 0x2FB1, 0x8B24);
+ /* Increase Hybrid poly bias */
+ (void) e1000_write_phy_reg(hw, 0x2FB2, 0xF8F0);
+ /* Add 4% to Tx amplitude in Giga mode */
+ (void) e1000_write_phy_reg(hw, 0x2010, 0x10B0);
+ /* Disable trimming (TTT) */
+ (void) e1000_write_phy_reg(hw, 0x2011, 0x0000);
+ /* Poly DC correction to 94.6% + 2% for all channels */
+ (void) e1000_write_phy_reg(hw, 0x20DD, 0x249A);
+ /* ABS DC correction to 95.9% */
+ (void) e1000_write_phy_reg(hw, 0x20DE, 0x00D3);
+ /* BG temp curve trim */
+ (void) e1000_write_phy_reg(hw, 0x28B4, 0x04CE);
+ /* Increasing ADC OPAMP stage 1 currents to max */
+ (void) e1000_write_phy_reg(hw, 0x2F70, 0x29E4);
+ /* Force 1000 ( required for enabling PHY regs configuration) */
+ (void) e1000_write_phy_reg(hw, 0x0000, 0x0140);
+ /* Set upd_freq to 6 */
+ (void) e1000_write_phy_reg(hw, 0x1F30, 0x1606);
+ /* Disable NPDFE */
+ (void) e1000_write_phy_reg(hw, 0x1F31, 0xB814);
+ /* Disable adaptive fixed FFE (Default) */
+ (void) e1000_write_phy_reg(hw, 0x1F35, 0x002A);
+ /* Enable FFE hysteresis */
+ (void) e1000_write_phy_reg(hw, 0x1F3E, 0x0067);
+ /* Fixed FFE for short cable lengths */
+ (void) e1000_write_phy_reg(hw, 0x1F54, 0x0065);
+ /* Fixed FFE for medium cable lengths */
+ (void) e1000_write_phy_reg(hw, 0x1F55, 0x002A);
+ /* Fixed FFE for long cable lengths */
+ (void) e1000_write_phy_reg(hw, 0x1F56, 0x002A);
+ /* Enable Adaptive Clip Threshold */
+ (void) e1000_write_phy_reg(hw, 0x1F72, 0x3FB0);
+ /* AHT reset limit to 1 */
+ (void) e1000_write_phy_reg(hw, 0x1F76, 0xC0FF);
+ /* Set AHT master delay to 127 msec */
+ (void) e1000_write_phy_reg(hw, 0x1F77, 0x1DEC);
+ /* Set scan bits for AHT */
+ (void) e1000_write_phy_reg(hw, 0x1F78, 0xF9EF);
+ /* Set AHT Preset bits */
+ (void) e1000_write_phy_reg(hw, 0x1F79, 0x0210);
+ /* Change integ_factor of channel A to 3 */
+ (void) e1000_write_phy_reg(hw, 0x1895, 0x0003);
+ /* Change prop_factor of channels BCD to 8 */
+ (void) e1000_write_phy_reg(hw, 0x1796, 0x0008);
+ /* Change cg_icount + enable integbp for channels BCD */
+ (void) e1000_write_phy_reg(hw, 0x1798, 0xD008);
+ /*
+ * Change cg_icount + enable integbp + change prop_factor_master
+ * to 8 for channel A
+ */
+ (void) e1000_write_phy_reg(hw, 0x1898, 0xD918);
+ /* Disable AHT in Slave mode on channel A */
+ (void) e1000_write_phy_reg(hw, 0x187A, 0x0800);
+ /*
+ * Enable LPLU and disable AN to 1000 in non-D0a states,
+ * Enable SPD+B2B
+ */
+ (void) e1000_write_phy_reg(hw, 0x0019, 0x008D);
+ /* Enable restart AN on an1000_dis change */
+ (void) e1000_write_phy_reg(hw, 0x001B, 0x2080);
+ /* Enable wh_fifo read clock in 10/100 modes */
+ (void) e1000_write_phy_reg(hw, 0x0014, 0x0045);
+ /* Restart AN, Speed selection is 1000 */
+ (void) e1000_write_phy_reg(hw, 0x0000, 0x1340);
+
+ return (E1000_SUCCESS);
+}
+
+/*
+ * e1000_get_phy_type_from_id - Get PHY type from id
+ * @phy_id: phy_id read from the phy
+ *
+ * Returns the phy type from the id.
+ */
+e1000_phy_type
+e1000_get_phy_type_from_id(u32 phy_id)
+{
+ e1000_phy_type phy_type = e1000_phy_unknown;
+
+ switch (phy_id) {
+ case M88E1000_I_PHY_ID:
+ case M88E1000_E_PHY_ID:
+ case M88E1111_I_PHY_ID:
+ case M88E1011_I_PHY_ID:
+ phy_type = e1000_phy_m88;
+ break;
+ case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
+ phy_type = e1000_phy_igp_2;
+ break;
+ case GG82563_E_PHY_ID:
+ phy_type = e1000_phy_gg82563;
+ break;
+ case IGP03E1000_E_PHY_ID:
+ phy_type = e1000_phy_igp_3;
+ break;
+ case IFE_E_PHY_ID:
+ case IFE_PLUS_E_PHY_ID:
+ case IFE_C_E_PHY_ID:
+ phy_type = e1000_phy_ife;
+ break;
+ case BME1000_E_PHY_ID:
+ case BME1000_E_PHY_ID_R2:
+ phy_type = e1000_phy_bm;
+ break;
+ default:
+ phy_type = e1000_phy_unknown;
+ break;
+ }
+ return (phy_type);
+}
+
+/*
+ * e1000_determine_phy_address - Determines PHY address.
+ * @hw: pointer to the HW structure
+ *
+ * This uses a trial and error method to loop through possible PHY
+ * addresses. It tests each by reading the PHY ID registers and
+ * checking for a match.
+ */
+s32
+e1000_determine_phy_address(struct e1000_hw *hw)
+{
+ s32 ret_val = -E1000_ERR_PHY_TYPE;
+ u32 phy_addr = 0;
+ u32 i = 0;
+ e1000_phy_type phy_type = e1000_phy_unknown;
+
+ do {
+ for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
+ hw->phy.addr = phy_addr;
+ (void) e1000_get_phy_id(hw);
+ phy_type = e1000_get_phy_type_from_id(hw->phy.id);
+
+ /*
+ * If phy_type is valid, break - we found our
+ * PHY address
+ */
+ if (phy_type != e1000_phy_unknown) {
+ ret_val = E1000_SUCCESS;
+ break;
+ }
+ }
+ i++;
+ } while ((ret_val != E1000_SUCCESS) && (i < 100));
+
+ return (ret_val);
+}
+
+/*
+ * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
+ * @page: page to access
+ *
+ * Returns the phy address for the page requested.
+ */
+static u32
+e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
+{
+ u32 phy_addr = 2;
+
+ if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
+ phy_addr = 1;
+
+ return (phy_addr);
+}
+
+/*
+ * e1000_write_phy_reg_bm - Write BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ */
+s32
+e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+ u32 page_select = 0;
+ u32 page = offset >> IGP_PAGE_SHIFT;
+ u32 page_shift = 0;
+
+ DEBUGFUNC("e1000_write_phy_reg_bm");
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw,
+ offset, &data, FALSE);
+ goto out;
+ }
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ /*
+ * Page select is register 31 for phy address 1 and 22 for
+ * phy address 2 and 3. Page select is shifted only for
+ * phy address 1.
+ */
+ if (hw->phy.addr == 1) {
+ page_shift = IGP_PAGE_SHIFT;
+ page_select = IGP01E1000_PHY_PAGE_SELECT;
+ } else {
+ page_shift = 0;
+ page_select = BM_PHY_PAGE_SELECT;
+ }
+
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_write_phy_reg_mdic(hw, page_select,
+ (page << page_shift));
+ if (ret_val) {
+ e1000_release_phy(hw);
+ goto out;
+ }
+ }
+
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ e1000_release_phy(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_read_phy_reg_bm - Read BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ */
+s32
+e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+ u32 page_select = 0;
+ u32 page = offset >> IGP_PAGE_SHIFT;
+ u32 page_shift = 0;
+
+ DEBUGFUNC("e1000_write_phy_reg_bm");
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw,
+ offset, data, TRUE);
+ goto out;
+ }
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ /*
+ * Page select is register 31 for phy address 1 and 22 for
+ * phy address 2 and 3. Page select is shifted only for
+ * phy address 1.
+ */
+ if (hw->phy.addr == 1) {
+ page_shift = IGP_PAGE_SHIFT;
+ page_select = IGP01E1000_PHY_PAGE_SELECT;
+ } else {
+ page_shift = 0;
+ page_select = BM_PHY_PAGE_SELECT;
+ }
+
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_write_phy_reg_mdic(hw, page_select,
+ (page << page_shift));
+ if (ret_val) {
+ e1000_release_phy(hw);
+ goto out;
+ }
+ }
+
+ ret_val = e1000_read_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+ e1000_release_phy(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_read_phy_reg_bm2 - Read BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read
+ * @data: pointer to the read data
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting.
+ */
+s32
+e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+ s32 ret_val;
+ u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+ DEBUGFUNC("e1000_write_phy_reg_bm2");
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw,
+ offset, data, TRUE);
+ goto out;
+ }
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ hw->phy.addr = 1;
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ BM_PHY_PAGE_SELECT,
+ page);
+
+ if (ret_val) {
+ e1000_release_phy(hw);
+ goto out;
+ }
+ }
+
+ ret_val = e1000_read_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+ e1000_release_phy(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_write_phy_reg_bm2 - Write BM PHY register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to write to
+ * @data: data to write at register offset
+ *
+ * Acquires semaphore, if necessary, then writes the data to PHY register
+ * at the offset. Release any acquired semaphores before exiting.
+ */
+s32
+e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
+{
+ s32 ret_val;
+ u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+ DEBUGFUNC("e1000_write_phy_reg_bm2");
+
+ /* Page 800 works differently than the rest so it has its own func */
+ if (page == BM_WUC_PAGE) {
+ ret_val = e1000_access_phy_wakeup_reg_bm(hw,
+ offset, &data, FALSE);
+ goto out;
+ }
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val)
+ goto out;
+
+ hw->phy.addr = 1;
+
+ if (offset > MAX_PHY_MULTI_PAGE_REG) {
+ /* Page is shifted left, PHY expects (page x 32) */
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ BM_PHY_PAGE_SELECT,
+ page);
+
+ if (ret_val) {
+ e1000_release_phy(hw);
+ goto out;
+ }
+ }
+
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ MAX_PHY_REG_ADDRESS & offset,
+ data);
+
+ e1000_release_phy(hw);
+
+out:
+ return (ret_val);
+}
+
+/*
+ * e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
+ * @hw: pointer to the HW structure
+ * @offset: register offset to be read or written
+ * @data: pointer to the data to read or write
+ * @read: determines if operation is read or write
+ *
+ * Acquires semaphore, if necessary, then reads the PHY register at offset
+ * and storing the retrieved information in data. Release any acquired
+ * semaphores before exiting. Note that procedure to read the wakeup
+ * registers are different. It works as such:
+ * 1) Set page 769, register 17, bit 2 = 1
+ * 2) Set page to 800 for host (801 if we were manageability)
+ * 3) Write the address using the address opcode (0x11)
+ * 4) Read or write the data using the data opcode (0x12)
+ * 5) Restore 769_17.2 to its original value
+ */
+s32
+e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw,
+ u32 offset, u16 *data, bool read)
+{
+ s32 ret_val;
+ u16 reg = ((u16)offset) & PHY_REG_MASK;
+ u16 phy_reg = 0;
+ u8 phy_acquired = 1;
+
+ DEBUGFUNC("e1000_read_phy_wakeup_reg_bm");
+
+ ret_val = e1000_acquire_phy(hw);
+ if (ret_val) {
+ DEBUGOUT("Couldnt acquire PHY\n");
+ phy_acquired = 0;
+ goto out;
+ }
+
+ /* All operations in this function are phy address 1 */
+ hw->phy.addr = 1;
+
+ /* Set page 769 */
+ (void) e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+ (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+
+ ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
+ if (ret_val) {
+ DEBUGOUT("Couldnt read PHY page 769\n");
+ goto out;
+ }
+
+ /* First clear bit 4 to avoid a power state change */
+ phy_reg &= ~(BM_WUC_HOST_WU_BIT);
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+ if (ret_val) {
+ DEBUGOUT("Couldnt clear PHY page 769 bit 4\n");
+ goto out;
+ }
+
+ /* Write bit 2 = 1, and clear bit 4 to 769_17 */
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG,
+ phy_reg | BM_WUC_ENABLE_BIT);
+ if (ret_val) {
+ DEBUGOUT("Couldnt write PHY page 769 bit 2\n");
+ goto out;
+ }
+
+ /* Select page 800 */
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ IGP01E1000_PHY_PAGE_SELECT,
+ (BM_WUC_PAGE << IGP_PAGE_SHIFT));
+
+ /* Write the page 800 offset value using opcode 0x11 */
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
+ if (ret_val) {
+ DEBUGOUT("Couldnt write address opcode to page 800\n");
+ goto out;
+ }
+
+ if (read) {
+ /* Read the page 800 value using opcode 0x12 */
+ ret_val = e1000_read_phy_reg_mdic(hw,
+ BM_WUC_DATA_OPCODE,
+ data);
+ } else {
+ /* Read the page 800 value using opcode 0x12 */
+ ret_val = e1000_write_phy_reg_mdic(hw,
+ BM_WUC_DATA_OPCODE,
+ *data);
+ }
+
+ if (ret_val) {
+ DEBUGOUT("Couldnt read data value from page 800\n");
+ goto out;
+ }
+
+ /*
+ * Restore 769_17.2 to its original value
+ * Set page 769
+ */
+ (void) e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
+ (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
+
+ /* Clear 769_17.2 */
+ ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+ if (ret_val) {
+ DEBUGOUT("Couldnt clear PHY page 769 bit 2\n");
+ goto out;
+ }
+
+out:
+ if (phy_acquired == 1)
+ e1000_release_phy(hw);
+ return (ret_val);
+}
+
+/*
+ * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ */
+void
+e1000_power_up_phy_copper(struct e1000_hw *hw)
+{
+ u16 mii_reg = 0;
+
+ /* The PHY will retain its settings across a power down/up cycle */
+ (void) e1000_read_phy_reg(hw, PHY_CONTROL, &mii_reg);
+ mii_reg &= ~MII_CR_POWER_DOWN;
+ (void) e1000_write_phy_reg(hw, PHY_CONTROL, mii_reg);
+}
+
+/*
+ * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ */
+void
+e1000_power_down_phy_copper(struct e1000_hw *hw)
+{
+ u16 mii_reg = 0;
+
+ /* The PHY will retain its settings across a power down/up cycle */
+ (void) e1000_read_phy_reg(hw, PHY_CONTROL, &mii_reg);
+ mii_reg |= MII_CR_POWER_DOWN;
+ (void) e1000_write_phy_reg(hw, PHY_CONTROL, mii_reg);
+ msec_delay(1);
+}
diff --git a/usr/src/uts/common/io/igb/igb_phy.h b/usr/src/uts/common/io/igb/igb_phy.h
new file mode 100644
index 0000000000..f60d059bd1
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_phy.h
@@ -0,0 +1,197 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#ifndef _IGB_PHY_H
+#define _IGB_PHY_H
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+typedef enum {
+ e1000_ms_hw_default = 0,
+ e1000_ms_force_master,
+ e1000_ms_force_slave,
+ e1000_ms_auto
+} e1000_ms_type;
+
+typedef enum {
+ e1000_smart_speed_default = 0,
+ e1000_smart_speed_on,
+ e1000_smart_speed_off
+} e1000_smart_speed;
+
+s32 e1000_check_downshift_generic(struct e1000_hw *hw);
+s32 e1000_check_polarity_m88(struct e1000_hw *hw);
+s32 e1000_check_polarity_igp(struct e1000_hw *hw);
+s32 e1000_check_reset_block_generic(struct e1000_hw *hw);
+s32 e1000_copper_link_autoneg(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_igp(struct e1000_hw *hw);
+s32 e1000_copper_link_setup_m88(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw);
+s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw);
+s32 e1000_get_cable_length_m88(struct e1000_hw *hw);
+s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw);
+s32 e1000_get_cfg_done_generic(struct e1000_hw *hw);
+s32 e1000_get_phy_id(struct e1000_hw *hw);
+s32 e1000_get_phy_info_igp(struct e1000_hw *hw);
+s32 e1000_get_phy_info_m88(struct e1000_hw *hw);
+s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw);
+void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
+s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw);
+s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw);
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw);
+s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active);
+s32 e1000_setup_copper_link_generic(struct e1000_hw *hw);
+s32 e1000_wait_autoneg_generic(struct e1000_hw *hw);
+s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
+s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+ u32 usec_interval, bool *success);
+s32 e1000_phy_init_script_igp3(struct e1000_hw *hw);
+e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id);
+s32 e1000_determine_phy_address(struct e1000_hw *hw);
+s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
+s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data,
+ bool read);
+s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data);
+void e1000_power_up_phy_copper(struct e1000_hw *hw);
+void e1000_power_down_phy_copper(struct e1000_hw *hw);
+s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
+s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
+
+#define E1000_MAX_PHY_ADDR 4
+
+/* IGP01E1000 Specific Registers */
+#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */
+#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */
+#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */
+#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
+#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */
+#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality */
+#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
+#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
+#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */
+#define IGP_PAGE_SHIFT 5
+#define PHY_REG_MASK 0x1F
+
+#define BM_WUC_PAGE 800
+#define BM_WUC_ADDRESS_OPCODE 0x11
+#define BM_WUC_DATA_OPCODE 0x12
+#define BM_WUC_ENABLE_PAGE 769
+#define BM_WUC_ENABLE_REG 17
+#define BM_WUC_ENABLE_BIT (1 << 2)
+#define BM_WUC_HOST_WU_BIT (1 << 4)
+
+/* BM PHY Copper Specific Control 1 */
+#define BM_CS_CTRL1 16
+#define BM_CR_CTRL1_ENERGY_DETECT 0x0300 /* Enable Energy Detect */
+
+#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
+#define IGP01E1000_PHY_POLARITY_MASK 0x0078
+
+#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
+#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */
+
+#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
+
+/* Enable flexible speed on link-up */
+#define IGP01E1000_GMII_FLEX_SPD 0x0010
+#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */
+
+#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
+#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */
+#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */
+
+#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
+
+#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
+#define IGP01E1000_PSSR_MDIX 0x0008
+#define IGP01E1000_PSSR_SPEED_MASK 0xC000
+#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
+
+#define IGP02E1000_PHY_CHANNEL_NUM 4
+#define IGP02E1000_PHY_AGC_A 0x11B1
+#define IGP02E1000_PHY_AGC_B 0x12B1
+#define IGP02E1000_PHY_AGC_C 0x14B1
+#define IGP02E1000_PHY_AGC_D 0x18B1
+
+#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */
+#define IGP02E1000_AGC_LENGTH_MASK 0x7F
+#define IGP02E1000_AGC_RANGE 15
+
+#define IGP03E1000_PHY_MISC_CTRL 0x1B
+#define IGP03E1000_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Manually Set Duplex */
+
+#define E1000_CABLE_LENGTH_UNDEFINED 0xFF
+
+#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000
+#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16
+#define E1000_KMRNCTRLSTA_REN 0x00200000
+#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */
+#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */
+
+#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
+#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */
+#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */
+#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */
+
+/* IFE PHY Extended Status Control */
+#define IFE_PESC_POLARITY_REVERSED 0x0100
+
+/* IFE PHY Special Control */
+#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010
+#define IFE_PSC_FORCE_POLARITY 0x0020
+#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100
+
+/* IFE PHY Special Control and LED Control */
+#define IFE_PSCL_PROBE_MODE 0x0020
+#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
+#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
+
+/* IFE PHY MDIX Control */
+#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
+#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */
+#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _IGB_PHY_H */
diff --git a/usr/src/uts/common/io/igb/igb_regs.h b/usr/src/uts/common/io/igb/igb_regs.h
new file mode 100644
index 0000000000..d208b1bc03
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_regs.h
@@ -0,0 +1,367 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#ifndef _IGB_REGS_H
+#define _IGB_REGS_H
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#define E1000_CTRL 0x00000 /* Device Control - RW */
+#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */
+#define E1000_STATUS 0x00008 /* Device Status - RO */
+#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */
+#define E1000_EERD 0x00014 /* EEPROM Read - RW */
+#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */
+#define E1000_FLA 0x0001C /* Flash Access - RW */
+#define E1000_MDIC 0x00020 /* MDI Control - RW */
+#define E1000_SCTL 0x00024 /* SerDes Control - RW */
+#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
+#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
+#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */
+#define E1000_FCT 0x00030 /* Flow Control Type - RW */
+#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */
+#define E1000_VET 0x00038 /* VLAN Ether Type - RW */
+#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */
+#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */
+#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */
+#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */
+#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */
+#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */
+#define E1000_IVAR 0x000E4 /* Interrupt Vector Allocation Register - RW */
+#define E1000_RCTL 0x00100 /* Rx Control - RW */
+#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */
+#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */
+#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */
+#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */
+#define E1000_EITR(_n) (0x01680 + (0x4 * (_n)))
+#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */
+#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */
+#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */
+#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */
+#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */
+#define E1000_TCTL 0x00400 /* Tx Control - RW */
+#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */
+#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */
+#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */
+#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */
+#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
+#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
+#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
+#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
+#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
+#define E1000_PBS 0x01008 /* Packet Buffer Size */
+#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
+#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */
+#define E1000_FLASHT 0x01028 /* FLASH Timer Register */
+#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */
+#define E1000_FLSWCTL 0x01030 /* FLASH control register */
+#define E1000_FLSWDATA 0x01034 /* FLASH data register */
+#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */
+#define E1000_FLOP 0x0103C /* FLASH Opcode Register */
+#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */
+#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */
+#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */
+#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */
+#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */
+#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */
+#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */
+#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */
+#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */
+#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */
+#define E1000_RDFPCQ(_n) (0x02430 + (0x4 * (_n)))
+#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */
+#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */
+/* Split and Replication Rx Control - RW */
+#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */
+#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */
+#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */
+#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */
+#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */
+#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */
+#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */
+/*
+ * Convenience macros
+ *
+ * Note: "_n" is the queue number of the register to be written to.
+ *
+ * Example usage:
+ * E1000_RDBAL_REG(current_rx_queue)
+ */
+#define E1000_RDBAL(_n) ((_n) < 4 \
+ ? (0x02800 + ((_n) * 0x100)) \
+ : (0x0C000 + ((_n) * 0x40)))
+#define E1000_RDBAH(_n) ((_n) < 4 \
+ ? (0x02804 + ((_n) * 0x100)) \
+ : (0x0C004 + ((_n) * 0x40)))
+#define E1000_RDLEN(_n) ((_n) < 4 \
+ ? (0x02808 + ((_n) * 0x100)) \
+ : (0x0C008 + ((_n) * 0x40)))
+#define E1000_SRRCTL(_n) ((_n) < 4 \
+ ? (0x0280C + ((_n) * 0x100)) \
+ : (0x0C00C + ((_n) * 0x40)))
+#define E1000_RDH(_n) ((_n) < 4 \
+ ? (0x02810 + ((_n) * 0x100)) \
+ : (0x0C010 + ((_n) * 0x40)))
+#define E1000_RDT(_n) ((_n) < 4 \
+ ? (0x02818 + ((_n) * 0x100)) \
+ : (0x0C018 + ((_n) * 0x40)))
+#define E1000_RXDCTL(_n) ((_n) < 4 \
+ ? (0x02828 + ((_n) * 0x100)) \
+ : (0x0C028 + ((_n) * 0x40)))
+#define E1000_TDBAL(_n) ((_n) < 4 \
+ ? (0x03800 + ((_n) * 0x100)) \
+ : (0x0E000 + ((_n) * 0x40)))
+#define E1000_TDBAH(_n) ((_n) < 4 \
+ ? (0x03804 + ((_n) * 0x100)) \
+ : (0x0E004 + ((_n) * 0x40)))
+#define E1000_TDLEN(_n) ((_n) < 4 \
+ ? (0x03808 + ((_n) * 0x100)) \
+ : (0x0E008 + ((_n) * 0x40)))
+#define E1000_TDH(_n) ((_n) < 4 \
+ ? (0x03810 + ((_n) * 0x100)) \
+ : (0x0E010 + ((_n) * 0x40)))
+#define E1000_TDT(_n) ((_n) < 4 \
+ ? (0x03818 + ((_n) * 0x100)) \
+ : (0x0E018 + ((_n) * 0x40)))
+#define E1000_TXDCTL(_n) ((_n) < 4 \
+ ? (0x03828 + ((_n) * 0x100)) \
+ : (0x0E028 + ((_n) * 0x40)))
+#define E1000_TARC(_n) (0x03840 + (_n << 8))
+#define E1000_DCA_TXCTRL(_n) (0x03814 + (_n << 8))
+#define E1000_DCA_RXCTRL(_n) (0x02814 + (_n << 8))
+#define E1000_TDWBAL(_n) ((_n) < 4 \
+ ? (0x03838 + ((_n) * 0x100)) \
+ : (0x0E038 + ((_n) * 0x40)))
+#define E1000_TDWBAH(_n) ((_n) < 4 \
+ ? (0x0383C + ((_n) * 0x100)) \
+ : (0x0E03C + ((_n) * 0x40)))
+#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */
+#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
+#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */
+#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
+#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4))
+#define E1000_RAL(_i) (0x05400 + ((_i) * 8))
+#define E1000_RAH(_i) (0x05404 + ((_i) * 8))
+#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8))
+#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4))
+#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4))
+#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8))
+#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8))
+#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8))
+#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
+#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
+#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
+#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
+#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
+#define E1000_TDPUMB 0x0357C /* DMA Tx Descriptor uC Mail Box - RW */
+#define E1000_TDPUAD 0x03580 /* DMA Tx Descriptor uC Addr Command - RW */
+#define E1000_TDPUWD 0x03584 /* DMA Tx Descriptor uC Data Write - RW */
+#define E1000_TDPURD 0x03588 /* DMA Tx Descriptor uC Data Read - RW */
+#define E1000_TDPUCTL 0x0358C /* DMA Tx Descriptor uC Control - RW */
+#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */
+#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */
+#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */
+#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */
+#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */
+#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */
+#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */
+#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */
+#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */
+#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */
+#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */
+#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
+#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */
+#define E1000_COLC 0x04028 /* Collision Count - R/clr */
+#define E1000_DC 0x04030 /* Defer Count - R/clr */
+#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */
+#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */
+#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */
+#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */
+#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */
+#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */
+#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */
+#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */
+#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */
+#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */
+#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */
+#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */
+#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */
+#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */
+#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */
+#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */
+#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */
+#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */
+#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */
+#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */
+#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */
+#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */
+#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */
+#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */
+#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */
+#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */
+#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */
+#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */
+#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */
+#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */
+#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */
+#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */
+#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */
+#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */
+#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */
+#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */
+#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */
+#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */
+#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */
+#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */
+#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */
+#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */
+#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */
+#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */
+#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */
+#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */
+#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */
+#define E1000_IAC 0x04100 /* Interrupt Assertion Count */
+/* Interrupt Cause Rx Packet Timer Expire Count */
+#define E1000_ICRXPTC 0x04104
+/* Interrupt Cause Rx Absolute Timer Expire Count */
+#define E1000_ICRXATC 0x04108
+/* Interrupt Cause Tx Packet Timer Expire Count */
+#define E1000_ICTXPTC 0x0410C
+/* Interrupt Cause Tx Absolute Timer Expire Count */
+#define E1000_ICTXATC 0x04110
+#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */
+/* Interrupt Cause Tx Queue Minimum Threshold Count */
+#define E1000_ICTXQMTC 0x0411C
+/* Interrupt Cause Rx Descriptor Minimum Threshold Count */
+#define E1000_ICRXDMTC 0x04120
+#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */
+
+#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */
+#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */
+#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */
+#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */
+#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */
+#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */
+#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */
+#define E1000_RPTHC 0x04104 /* Rx Packets To Host */
+#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */
+#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */
+#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */
+#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */
+#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */
+#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */
+#define E1000_LENERRS 0x04138 /* Length Errors Count */
+#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */
+#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */
+#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */
+#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */
+#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */
+/* Link Partner Ability Next Page - RW */
+#define E1000_PCS_LPABNP 0x04224
+/* 1GSTAT Code Violation Packet Count - RW */
+#define E1000_1GSTAT_RCV 0x04228
+#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */
+#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */
+#define E1000_RFCTL 0x05008 /* Receive Filter Control */
+#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */
+#define E1000_RA 0x05400 /* Receive Address - RW Array */
+#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */
+#define E1000_VMD_CTL 0x0581C /* VMDq Control - RW */
+#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */
+#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */
+#define E1000_WUC 0x05800 /* Wakeup Control - RW */
+#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */
+#define E1000_WUS 0x05810 /* Wakeup Status - RO */
+#define E1000_MANC 0x05820 /* Management Control - RW */
+#define E1000_IPAV 0x05838 /* IP Address Valid - RW */
+#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */
+#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */
+#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */
+#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */
+#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */
+#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */
+#define E1000_HOST_IF 0x08800 /* Host Interface */
+#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */
+#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */
+
+#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */
+#define E1000_MDPHYA 0x0003C /* PHY address - RW */
+#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */
+/* Software-Firmware Synchronization - RW */
+#define E1000_SW_FW_SYNC 0x05B5C
+#define E1000_CCMCTL 0x05B48 /* CCM Control Register */
+#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */
+#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */
+#define E1000_GCR 0x05B00 /* PCI-Ex Control */
+#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */
+#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */
+#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */
+#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */
+/* Function Active and Power State to MNG */
+#define E1000_FACTPS 0x05B30
+#define E1000_SWSM 0x05B50 /* SW Semaphore */
+#define E1000_FWSM 0x05B54 /* FW Semaphore */
+#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */
+#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */
+#define E1000_FFLT_DBG 0x05F04 /* Debug Register */
+#define E1000_HICR 0x08F00 /* Host Inteface Control */
+
+/* RSS registers */
+#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */
+#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */
+#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */
+/* Immediate Interrupt Ext */
+#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4))
+#define E1000_IMIRVP 0x05AC0 /* Immediate Interrupt Rx VLAN Priority - RW */
+/* MSI-X Allocation Register (_i) - RW */
+#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4))
+/* MSI-X Table entry addr low reg 0 - RW */
+#define E1000_MSIXTADD(_i) (0x0C000 + ((_i) * 0x10))
+/* MSI-X Table entry addr upper reg 0 - RW */
+#define E1000_MSIXTUADD(_i) (0x0C004 + ((_i) * 0x10))
+/* MSI-X Table entry message reg 0 - RW */
+#define E1000_MSIXTMSG(_i) (0x0C008 + ((_i) * 0x10))
+/* MSI-X Table entry vector ctrl reg 0 - RW */
+#define E1000_MSIXVCTRL(_i) (0x0C00C + ((_i) * 0x10))
+#define E1000_MSIXPBA 0x0E000 /* MSI-X Pending bit array */
+/* Redirection Table - RW Array */
+#define E1000_RETA(_i) (0x05C00 + ((_i) * 4))
+/* RSS Random Key - RW Array */
+#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4))
+#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */
+#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _IGB_REGS_H */
diff --git a/usr/src/uts/common/io/igb/igb_rx.c b/usr/src/uts/common/io/igb/igb_rx.c
new file mode 100644
index 0000000000..f217a33e3d
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_rx.c
@@ -0,0 +1,364 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "igb_sw.h"
+
+/* function prototypes */
+static mblk_t *igb_rx_bind(igb_rx_ring_t *, uint32_t, uint32_t);
+static mblk_t *igb_rx_copy(igb_rx_ring_t *, uint32_t, uint32_t);
+static void igb_rx_assoc_hcksum(mblk_t *, uint32_t);
+
+#ifndef IGB_DEBUG
+#pragma inline(igb_rx_assoc_hcksum)
+#endif
+
+
+/*
+ * igb_rx_recycle - the call-back function to reclaim rx buffer
+ *
+ * This function is called when an mp is freed by the user thru
+ * freeb call (Only for mp constructed through desballoc call).
+ * It returns back the freed buffer to the free list.
+ */
+void
+igb_rx_recycle(caddr_t arg)
+{
+ igb_rx_ring_t *rx_ring;
+ rx_control_block_t *recycle_rcb;
+ uint32_t free_index;
+
+ recycle_rcb = (rx_control_block_t *)(uintptr_t)arg;
+ rx_ring = recycle_rcb->rx_ring;
+
+ if (recycle_rcb->state == RCB_FREE)
+ return;
+
+ recycle_rcb->state = RCB_FREE;
+
+ ASSERT(recycle_rcb->mp == NULL);
+
+ /*
+ * Using the recycled data buffer to generate a new mblk
+ */
+ recycle_rcb->mp = desballoc((unsigned char *)
+ (recycle_rcb->rx_buf.address - IPHDR_ALIGN_ROOM),
+ (recycle_rcb->rx_buf.size + IPHDR_ALIGN_ROOM),
+ 0, &recycle_rcb->free_rtn);
+ if (recycle_rcb->mp != NULL) {
+ recycle_rcb->mp->b_rptr += IPHDR_ALIGN_ROOM;
+ recycle_rcb->mp->b_wptr += IPHDR_ALIGN_ROOM;
+ }
+
+ /*
+ * Put the recycled rx control block into free list
+ */
+ mutex_enter(&rx_ring->recycle_lock);
+
+ free_index = rx_ring->rcb_tail;
+ ASSERT(rx_ring->free_list[free_index] == NULL);
+
+ rx_ring->free_list[free_index] = recycle_rcb;
+ rx_ring->rcb_tail = NEXT_INDEX(free_index, 1, rx_ring->free_list_size);
+
+ mutex_exit(&rx_ring->recycle_lock);
+
+ /*
+ * The atomic operation on the number of the available rx control
+ * blocks in the free list is used to make the recycling mutual
+ * exclusive with the receiving.
+ */
+ atomic_inc_32(&rx_ring->rcb_free);
+ ASSERT(rx_ring->rcb_free <= rx_ring->free_list_size);
+}
+
+/*
+ * igb_rx_copy - Use copy to process the received packet
+ *
+ * This function will use bcopy to process the packet
+ * and send the copied packet upstream
+ */
+static mblk_t *
+igb_rx_copy(igb_rx_ring_t *rx_ring, uint32_t index, uint32_t pkt_len)
+{
+ rx_control_block_t *current_rcb;
+ mblk_t *mp;
+
+ current_rcb = rx_ring->work_list[index];
+
+ DMA_SYNC(&current_rcb->rx_buf, DDI_DMA_SYNC_FORKERNEL);
+
+ /*
+ * Allocate buffer to receive this packet
+ */
+ mp = allocb(pkt_len + IPHDR_ALIGN_ROOM, 0);
+ if (mp == NULL) {
+ igb_log(rx_ring->igb, "igb_rx_copy: allocate buffer failed");
+ return (NULL);
+ }
+
+ /*
+ * Copy the data received into the new cluster
+ */
+ mp->b_rptr += IPHDR_ALIGN_ROOM;
+ bcopy(current_rcb->rx_buf.address, mp->b_rptr, pkt_len);
+ mp->b_wptr = mp->b_rptr + pkt_len;
+
+ return (mp);
+}
+
+/*
+ * igb_rx_bind - Use existing DMA buffer to build mblk for receiving
+ *
+ * This function will use pre-bound DMA buffer to receive the packet
+ * and build mblk that will be sent upstream.
+ */
+static mblk_t *
+igb_rx_bind(igb_rx_ring_t *rx_ring, uint32_t index, uint32_t pkt_len)
+{
+ rx_control_block_t *current_rcb;
+ rx_control_block_t *free_rcb;
+ uint32_t free_index;
+ mblk_t *mp;
+
+ /*
+ * If the free list is empty, we cannot proceed to send
+ * the current DMA buffer upstream. We'll have to return
+ * and use bcopy to process the packet.
+ */
+ if (igb_atomic_reserve(&rx_ring->rcb_free, 1) < 0)
+ return (NULL);
+
+ current_rcb = rx_ring->work_list[index];
+ /*
+ * If the mp of the rx control block is NULL, try to do
+ * desballoc again.
+ */
+ if (current_rcb->mp == NULL) {
+ current_rcb->mp = desballoc((unsigned char *)
+ (current_rcb->rx_buf.address - IPHDR_ALIGN_ROOM),
+ (current_rcb->rx_buf.size + IPHDR_ALIGN_ROOM),
+ 0, &current_rcb->free_rtn);
+ /*
+ * If it is failed to built a mblk using the current
+ * DMA buffer, we have to return and use bcopy to
+ * process the packet.
+ */
+ if (current_rcb->mp == NULL) {
+ atomic_inc_32(&rx_ring->rcb_free);
+ return (NULL);
+ }
+ }
+ /*
+ * Sync up the data received
+ */
+ DMA_SYNC(&current_rcb->rx_buf, DDI_DMA_SYNC_FORKERNEL);
+
+ mp = current_rcb->mp;
+ current_rcb->mp = NULL;
+ current_rcb->state = RCB_SENDUP;
+
+ mp->b_wptr = mp->b_rptr + pkt_len;
+ mp->b_next = mp->b_cont = NULL;
+
+ /*
+ * Strip off one free rx control block from the free list
+ */
+ free_index = rx_ring->rcb_head;
+ free_rcb = rx_ring->free_list[free_index];
+ ASSERT(free_rcb != NULL);
+ rx_ring->free_list[free_index] = NULL;
+ rx_ring->rcb_head = NEXT_INDEX(free_index, 1, rx_ring->free_list_size);
+
+ /*
+ * Put the rx control block to the work list
+ */
+ rx_ring->work_list[index] = free_rcb;
+
+ return (mp);
+}
+
+/*
+ * igb_rx_assoc_hcksum
+ *
+ * Check the rx hardware checksum status and associate the hcksum flags
+ */
+static void
+igb_rx_assoc_hcksum(mblk_t *mp, uint32_t status_error)
+{
+ uint32_t hcksum_flags = 0;
+
+ /* Ignore Checksum Indication */
+ if (status_error & E1000_RXD_STAT_IXSM)
+ return;
+
+ /*
+ * Check TCP/UDP checksum
+ */
+ if (((status_error & E1000_RXD_STAT_TCPCS) ||
+ (status_error & E1000_RXD_STAT_UDPCS)) &&
+ !(status_error & E1000_RXDEXT_STATERR_TCPE))
+ hcksum_flags |= HCK_FULLCKSUM | HCK_FULLCKSUM_OK;
+
+ /*
+ * Check IP Checksum
+ */
+ if ((status_error & E1000_RXD_STAT_IPCS) &&
+ !(status_error & E1000_RXDEXT_STATERR_IPE))
+ hcksum_flags |= HCK_IPV4_HDRCKSUM;
+
+ if (hcksum_flags != 0) {
+ (void) hcksum_assoc(mp,
+ NULL, NULL, 0, 0, 0, 0, hcksum_flags, 0);
+ }
+}
+
+/*
+ * igb_rx - Receive the data of one ring
+ *
+ * This function goes throught h/w descriptor in one specified rx ring,
+ * receives the data if the descriptor status shows the data is ready.
+ * It returns a chain of mblks containing the received data, to be
+ * passed up to mac_rx().
+ */
+mblk_t *
+igb_rx(igb_rx_ring_t *rx_ring)
+{
+ union e1000_adv_rx_desc *current_rbd;
+ rx_control_block_t *current_rcb;
+ mblk_t *mp;
+ mblk_t *mblk_head;
+ mblk_t **mblk_tail;
+ uint32_t rx_next;
+ uint32_t rx_tail;
+ uint32_t pkt_len;
+ uint32_t status_error;
+ uint32_t pkt_num;
+ igb_t *igb = rx_ring->igb;
+
+ mblk_head = NULL;
+ mblk_tail = &mblk_head;
+
+ /*
+ * Sync the receive descriptors before
+ * accepting the packets
+ */
+ DMA_SYNC(&rx_ring->rbd_area, DDI_DMA_SYNC_FORKERNEL);
+
+ /*
+ * Get the start point of rx bd ring which should be examined
+ * during this cycle.
+ */
+ rx_next = rx_ring->rbd_next;
+
+ current_rbd = &rx_ring->rbd_ring[rx_next];
+ pkt_num = 0;
+ status_error = current_rbd->wb.upper.status_error;
+ while (status_error & E1000_RXD_STAT_DD) {
+ /*
+ * If hardware has found the errors, but the error
+ * is hardware checksum error, here does not discard the
+ * packet, and let upper layer compute the checksum;
+ * Otherwise discard the packet.
+ */
+ if ((status_error & E1000_RXDEXT_ERR_FRAME_ERR_MASK) ||
+ !(status_error & E1000_RXD_STAT_EOP)) {
+ IGB_DEBUG_STAT(rx_ring->stat_frame_error);
+ goto rx_discard;
+ }
+
+ IGB_DEBUG_STAT_COND(rx_ring->stat_cksum_error,
+ (status_error & E1000_RXDEXT_STATERR_TCPE) ||
+ (status_error & E1000_RXDEXT_STATERR_IPE));
+
+ pkt_len = current_rbd->wb.upper.length;
+ mp = NULL;
+ /*
+ * For packets with length more than the copy threshold,
+ * we'll firstly try to use the existed DMA buffer to built
+ * a mblk and send the mblk upstream.
+ *
+ * If the first method fails, or the packet length is less
+ * than the copy threshold, we'll allocate a new mblk and
+ * copy the packet data to the mblk.
+ */
+ if (pkt_len > rx_ring->copy_thresh)
+ mp = igb_rx_bind(rx_ring, rx_next, pkt_len);
+
+ if (mp == NULL)
+ mp = igb_rx_copy(rx_ring, rx_next, pkt_len);
+
+ if (mp != NULL) {
+ /*
+ * Check h/w checksum offload status
+ */
+ if (igb->rx_hcksum_enable)
+ igb_rx_assoc_hcksum(mp, status_error);
+
+ *mblk_tail = mp;
+ mblk_tail = &mp->b_next;
+ }
+
+rx_discard:
+ /*
+ * Reset rx descriptor read bits
+ */
+ current_rcb = rx_ring->work_list[rx_next];
+ current_rbd->read.pkt_addr = current_rcb->rx_buf.dma_address;
+ current_rbd->read.hdr_addr = 0;
+
+ rx_next = NEXT_INDEX(rx_next, 1, rx_ring->ring_size);
+
+ /*
+ * The receive function is in interrupt context, so here
+ * limit_per_intr is used to avoid doing receiving too long
+ * per interrupt.
+ */
+ if (++pkt_num > rx_ring->limit_per_intr) {
+ IGB_DEBUG_STAT(rx_ring->stat_exceed_pkt);
+ break;
+ }
+
+ current_rbd = &rx_ring->rbd_ring[rx_next];
+ status_error = current_rbd->wb.upper.status_error;
+ }
+
+ DMA_SYNC(&rx_ring->rbd_area, DDI_DMA_SYNC_FORDEV);
+
+ rx_ring->rbd_next = rx_next;
+
+ /*
+ * Update the h/w tail accordingly
+ */
+ rx_tail = PREV_INDEX(rx_next, 1, rx_ring->ring_size);
+
+ E1000_WRITE_REG(&igb->hw, E1000_RDT(rx_ring->index), rx_tail);
+
+ return (mblk_head);
+}
diff --git a/usr/src/uts/common/io/igb/igb_stat.c b/usr/src/uts/common/io/igb/igb_stat.c
new file mode 100644
index 0000000000..b44e4e9b3e
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_stat.c
@@ -0,0 +1,268 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "igb_sw.h"
+
+/*
+ * Update driver private statistics.
+ */
+static int
+igb_update_stats(kstat_t *ks, int rw)
+{
+ igb_t *igb;
+ struct e1000_hw *hw;
+ igb_stat_t *igb_ks;
+ uint32_t val_low, val_high;
+#ifdef IGB_DEBUG
+ int i;
+#endif
+
+ if (rw == KSTAT_WRITE)
+ return (EACCES);
+
+ igb = (igb_t *)ks->ks_private;
+ igb_ks = (igb_stat_t *)ks->ks_data;
+ hw = &igb->hw;
+
+ mutex_enter(&igb->gen_lock);
+
+ /*
+ * Basic information.
+ */
+ igb_ks->link_speed.value.ui64 = igb->link_speed;
+
+#ifdef IGB_DEBUG
+ igb_ks->reset_count.value.ui64 = igb->reset_count;
+
+ igb_ks->rx_frame_error.value.ui64 = 0;
+ igb_ks->rx_cksum_error.value.ui64 = 0;
+ igb_ks->rx_exceed_pkt.value.ui64 = 0;
+ for (i = 0; i < igb->num_rx_rings; i++) {
+ igb_ks->rx_frame_error.value.ui64 +=
+ igb->rx_rings[i].stat_frame_error;
+ igb_ks->rx_cksum_error.value.ui64 +=
+ igb->rx_rings[i].stat_cksum_error;
+ igb_ks->rx_exceed_pkt.value.ui64 +=
+ igb->rx_rings[i].stat_exceed_pkt;
+ }
+
+ igb_ks->tx_overload.value.ui64 = 0;
+ igb_ks->tx_fail_no_tbd.value.ui64 = 0;
+ igb_ks->tx_fail_no_tcb.value.ui64 = 0;
+ igb_ks->tx_fail_dma_bind.value.ui64 = 0;
+ igb_ks->tx_reschedule.value.ui64 = 0;
+ for (i = 0; i < igb->num_tx_rings; i++) {
+ igb_ks->tx_overload.value.ui64 +=
+ igb->tx_rings[i].stat_overload;
+ igb_ks->tx_fail_no_tbd.value.ui64 +=
+ igb->tx_rings[i].stat_fail_no_tbd;
+ igb_ks->tx_fail_no_tcb.value.ui64 +=
+ igb->tx_rings[i].stat_fail_no_tcb;
+ igb_ks->tx_fail_dma_bind.value.ui64 +=
+ igb->tx_rings[i].stat_fail_dma_bind;
+ igb_ks->tx_reschedule.value.ui64 +=
+ igb->tx_rings[i].stat_reschedule;
+ }
+
+ /*
+ * Hardware calculated statistics.
+ */
+ igb_ks->gprc.value.ul += E1000_READ_REG(hw, E1000_GPRC);
+ igb_ks->gptc.value.ul += E1000_READ_REG(hw, E1000_GPTC);
+ igb_ks->prc64.value.ul += E1000_READ_REG(hw, E1000_PRC64);
+ igb_ks->prc127.value.ul += E1000_READ_REG(hw, E1000_PRC127);
+ igb_ks->prc255.value.ul += E1000_READ_REG(hw, E1000_PRC255);
+ igb_ks->prc511.value.ul += E1000_READ_REG(hw, E1000_PRC511);
+ igb_ks->prc1023.value.ul += E1000_READ_REG(hw, E1000_PRC1023);
+ igb_ks->prc1522.value.ul += E1000_READ_REG(hw, E1000_PRC1522);
+ igb_ks->ptc64.value.ul += E1000_READ_REG(hw, E1000_PTC64);
+ igb_ks->ptc127.value.ul += E1000_READ_REG(hw, E1000_PTC127);
+ igb_ks->ptc255.value.ul += E1000_READ_REG(hw, E1000_PTC255);
+ igb_ks->ptc511.value.ul += E1000_READ_REG(hw, E1000_PTC511);
+ igb_ks->ptc1023.value.ul += E1000_READ_REG(hw, E1000_PTC1023);
+ igb_ks->ptc1522.value.ul += E1000_READ_REG(hw, E1000_PTC1522);
+
+ /*
+ * The 64-bit register will reset whenever the upper
+ * 32 bits are read. So we need to read the lower
+ * 32 bits first, then read the upper 32 bits.
+ */
+ val_low = E1000_READ_REG(hw, E1000_GORCL);
+ val_high = E1000_READ_REG(hw, E1000_GORCH);
+ igb_ks->gor.value.ui64 += (uint64_t)val_high << 32 | (uint64_t)val_low;
+
+ val_low = E1000_READ_REG(hw, E1000_GOTCL);
+ val_high = E1000_READ_REG(hw, E1000_GOTCH);
+ igb_ks->got.value.ui64 += (uint64_t)val_high << 32 | (uint64_t)val_low;
+#endif
+
+ igb_ks->symerrs.value.ui64 += E1000_READ_REG(hw, E1000_SYMERRS);
+ igb_ks->mpc.value.ui64 += E1000_READ_REG(hw, E1000_MPC);
+ igb_ks->rlec.value.ui64 += E1000_READ_REG(hw, E1000_RLEC);
+ igb_ks->fcruc.value.ui64 += E1000_READ_REG(hw, E1000_FCRUC);
+ igb_ks->rfc.value.ul += E1000_READ_REG(hw, E1000_RFC);
+ igb_ks->tncrs.value.ul += E1000_READ_REG(hw, E1000_TNCRS);
+ igb_ks->tsctc.value.ul += E1000_READ_REG(hw, E1000_TSCTC);
+ igb_ks->tsctfc.value.ul += E1000_READ_REG(hw, E1000_TSCTFC);
+ igb_ks->xonrxc.value.ui64 += E1000_READ_REG(hw, E1000_XONRXC);
+ igb_ks->xontxc.value.ui64 += E1000_READ_REG(hw, E1000_XONTXC);
+ igb_ks->xoffrxc.value.ui64 += E1000_READ_REG(hw, E1000_XOFFRXC);
+ igb_ks->xofftxc.value.ui64 += E1000_READ_REG(hw, E1000_XOFFTXC);
+
+ mutex_exit(&igb->gen_lock);
+
+ return (0);
+}
+
+/*
+ * Create and initialize the driver private statistics.
+ */
+int
+igb_init_stats(igb_t *igb)
+{
+ kstat_t *ks;
+ igb_stat_t *igb_ks;
+
+ /*
+ * Create and init kstat
+ */
+ ks = kstat_create(MODULE_NAME, ddi_get_instance(igb->dip),
+ "statistics", "net", KSTAT_TYPE_NAMED,
+ sizeof (igb_stat_t) / sizeof (kstat_named_t), 0);
+
+ if (ks == NULL) {
+ igb_error(igb,
+ "Could not create kernel statistics");
+ return (IGB_FAILURE);
+ }
+
+ igb->igb_ks = ks;
+
+ igb_ks = (igb_stat_t *)ks->ks_data;
+
+ /*
+ * Initialize all the statistics.
+ */
+ kstat_named_init(&igb_ks->link_speed, "link_speed",
+ KSTAT_DATA_UINT64);
+
+#ifdef IGB_DEBUG
+ kstat_named_init(&igb_ks->reset_count, "reset_count",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->rx_frame_error, "rx_frame_error",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->rx_cksum_error, "rx_cksum_error",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->rx_exceed_pkt, "rx_exceed_pkt",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->tx_overload, "tx_overload",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->tx_fail_no_tbd, "tx_fail_no_tbd",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->tx_fail_no_tcb, "tx_fail_no_tcb",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->tx_fail_dma_bind, "tx_fail_dma_bind",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->tx_reschedule, "tx_reschedule",
+ KSTAT_DATA_UINT64);
+
+ kstat_named_init(&igb_ks->gprc, "good_pkts_recvd",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->gptc, "good_pkts_xmitd",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->gor, "good_octets_recvd",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->got, "good_octets_xmitd",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->prc64, "pkts_recvd_( 64b)",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->prc127, "pkts_recvd_( 65- 127b)",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->prc255, "pkts_recvd_( 127- 255b)",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->prc511, "pkts_recvd_( 256- 511b)",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->prc1023, "pkts_recvd_( 511-1023b)",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->prc1522, "pkts_recvd_(1024-1522b)",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->ptc64, "pkts_xmitd_( 64b)",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->ptc127, "pkts_xmitd_( 65- 127b)",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->ptc255, "pkts_xmitd_( 128- 255b)",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->ptc511, "pkts_xmitd_( 255- 511b)",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->ptc1023, "pkts_xmitd_( 512-1023b)",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->ptc1522, "pkts_xmitd_(1024-1522b)",
+ KSTAT_DATA_UINT64);
+#endif
+
+ kstat_named_init(&igb_ks->symerrs, "recv_symbol_errors",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->mpc, "recv_missed_packets",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->rlec, "recv_length_errors",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->fcruc, "recv_unsupport_FC_pkts",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->rfc, "recv_frag",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->tncrs, "xmit_with_no_CRS",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->tsctc, "xmit_TCP_seg_contexts",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->tsctfc, "xmit_TCP_seg_contexts_fail",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->xonrxc, "XONs_recvd",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->xontxc, "XONs_xmitd",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->xoffrxc, "XOFFs_recvd",
+ KSTAT_DATA_UINT64);
+ kstat_named_init(&igb_ks->xofftxc, "XOFFs_xmitd",
+ KSTAT_DATA_UINT64);
+
+ /*
+ * Function to provide kernel stat update on demand
+ */
+ ks->ks_update = igb_update_stats;
+
+ ks->ks_private = (void *)igb;
+
+ /*
+ * Add kstat to systems kstat chain
+ */
+ kstat_install(ks);
+
+ return (IGB_SUCCESS);
+}
diff --git a/usr/src/uts/common/io/igb/igb_sw.h b/usr/src/uts/common/io/igb/igb_sw.h
new file mode 100644
index 0000000000..bd376c28db
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_sw.h
@@ -0,0 +1,829 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#ifndef _IGB_SW_H
+#define _IGB_SW_H
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <sys/types.h>
+#include <sys/conf.h>
+#include <sys/debug.h>
+#include <sys/stropts.h>
+#include <sys/stream.h>
+#include <sys/strsun.h>
+#include <sys/strlog.h>
+#include <sys/kmem.h>
+#include <sys/stat.h>
+#include <sys/kstat.h>
+#include <sys/modctl.h>
+#include <sys/errno.h>
+#include <sys/dlpi.h>
+#include <sys/mac.h>
+#include <sys/mac_ether.h>
+#include <sys/vlan.h>
+#include <sys/ddi.h>
+#include <sys/sunddi.h>
+#include <sys/pci.h>
+#include <sys/pcie.h>
+#include <sys/sdt.h>
+#include <sys/ethernet.h>
+#include <sys/pattr.h>
+#include <sys/strsubr.h>
+#include <sys/netlb.h>
+#include <sys/random.h>
+#include <inet/common.h>
+#include <inet/ip.h>
+#include <inet/mi.h>
+#include <inet/nd.h>
+#include "igb_api.h"
+#include "igb_82575.h"
+
+
+#define MODULE_NAME "igb" /* module name */
+
+#define IGB_SUCCESS DDI_SUCCESS
+#define IGB_FAILURE DDI_FAILURE
+
+#define IGB_UNKNOWN 0x00
+#define IGB_INITIALIZED 0x01
+#define IGB_STARTED 0x02
+#define IGB_SUSPENDED 0x04
+
+#define IGB_INTR_NONE 0
+#define IGB_INTR_MSIX 1
+#define IGB_INTR_MSI 2
+#define IGB_INTR_LEGACY 3
+
+#define MAX_NUM_UNICAST_ADDRESSES E1000_RAR_ENTRIES
+#define MAX_NUM_MULTICAST_ADDRESSES 256
+#define MAX_NUM_EITR 10
+#define MAX_COOKIE 16
+#define MIN_NUM_TX_DESC 2
+
+/*
+ * Maximum values for user configurable parameters
+ */
+#define MAX_TX_QUEUE_NUM 4
+#define MAX_RX_QUEUE_NUM 4
+#define MAX_TX_RING_SIZE 4096
+#define MAX_RX_RING_SIZE 4096
+
+#define MAX_MTU 9000
+#define MAX_RX_LIMIT_PER_INTR 4096
+#define MAX_RX_INTR_DELAY 65535
+#define MAX_RX_INTR_ABS_DELAY 65535
+#define MAX_TX_INTR_DELAY 65535
+#define MAX_TX_INTR_ABS_DELAY 65535
+#define MAX_INTR_THROTTLING 65535
+
+#define MAX_RX_COPY_THRESHOLD 9216
+#define MAX_TX_COPY_THRESHOLD 9216
+#define MAX_TX_RECYCLE_THRESHOLD DEFAULT_TX_RING_SIZE
+#define MAX_TX_OVERLOAD_THRESHOLD DEFAULT_TX_RING_SIZE
+#define MAX_TX_RESCHED_THRESHOLD DEFAULT_TX_RING_SIZE
+
+/*
+ * Minimum values for user configurable parameters
+ */
+#define MIN_TX_QUEUE_NUM 1
+#define MIN_RX_QUEUE_NUM 1
+#define MIN_TX_RING_SIZE 64
+#define MIN_RX_RING_SIZE 64
+
+#define MIN_MTU ETHERMIN
+#define MIN_RX_LIMIT_PER_INTR 16
+#define MIN_RX_INTR_DELAY 0
+#define MIN_RX_INTR_ABS_DELAY 0
+#define MIN_TX_INTR_DELAY 0
+#define MIN_TX_INTR_ABS_DELAY 0
+#define MIN_INTR_THROTTLING 0
+#define MIN_RX_COPY_THRESHOLD 0
+#define MIN_TX_COPY_THRESHOLD 0
+#define MIN_TX_RECYCLE_THRESHOLD MIN_NUM_TX_DESC
+#define MIN_TX_OVERLOAD_THRESHOLD MIN_NUM_TX_DESC
+#define MIN_TX_RESCHED_THRESHOLD MIN_NUM_TX_DESC
+
+/*
+ * Default values for user configurable parameters
+ */
+#define DEFAULT_TX_QUEUE_NUM 1
+#define DEFAULT_RX_QUEUE_NUM 1
+#define DEFAULT_TX_RING_SIZE 512
+#define DEFAULT_RX_RING_SIZE 512
+
+#define DEFAULT_MTU ETHERMTU
+#define DEFAULT_RX_LIMIT_PER_INTR 256
+#define DEFAULT_RX_INTR_DELAY 0
+#define DEFAULT_RX_INTR_ABS_DELAY 0
+#define DEFAULT_TX_INTR_DELAY 300
+#define DEFAULT_TX_INTR_ABS_DELAY 0
+#define DEFAULT_INTR_THROTTLING 200 /* In unit of 256 nsec */
+#define DEFAULT_RX_COPY_THRESHOLD 128
+#define DEFAULT_TX_COPY_THRESHOLD 512
+#define DEFAULT_TX_RECYCLE_THRESHOLD MAX_COOKIE
+#define DEFAULT_TX_OVERLOAD_THRESHOLD MIN_NUM_TX_DESC
+#define DEFAULT_TX_RESCHED_THRESHOLD 128
+
+#define TX_DRAIN_TIME 200
+#define RX_DRAIN_TIME 200
+
+#define STALL_WATCHDOG_TIMEOUT 8 /* 8 seconds */
+#define MAX_LINK_DOWN_TIMEOUT 8 /* 8 seconds */
+
+/*
+ * Defined for IP header alignment.
+ */
+#define IPHDR_ALIGN_ROOM 2
+
+/*
+ * Bit flags for attach_progress
+ */
+#define ATTACH_PROGRESS_PCI_CONFIG 0x0001 /* PCI config setup */
+#define ATTACH_PROGRESS_REGS_MAP 0x0002 /* Registers mapped */
+#define ATTACH_PROGRESS_PROPS 0x0004 /* Properties initialized */
+#define ATTACH_PROGRESS_ALLOC_INTR 0x0008 /* Interrupts allocated */
+#define ATTACH_PROGRESS_ALLOC_RINGS 0x0010 /* Rings allocated */
+#define ATTACH_PROGRESS_ADD_INTR 0x0020 /* Intr handlers added */
+#define ATTACH_PROGRESS_LOCKS 0x0040 /* Locks initialized */
+#define ATTACH_PROGRESS_INIT 0x0080 /* Device initialized */
+#define ATTACH_PROGRESS_INIT_RINGS 0x0100 /* Rings initialized */
+#define ATTACH_PROGRESS_STATS 0x0200 /* Kstats created */
+#define ATTACH_PROGRESS_NDD 0x0400 /* NDD initialized */
+#define ATTACH_PROGRESS_MAC 0x0800 /* MAC registered */
+#define ATTACH_PROGRESS_ENABLE_INTR 0x1000 /* DDI interrupts enabled */
+
+
+#define PROP_ADV_AUTONEG_CAP "adv_autoneg_cap"
+#define PROP_ADV_1000FDX_CAP "adv_1000fdx_cap"
+#define PROP_ADV_1000HDX_CAP "adv_1000hdx_cap"
+#define PROP_ADV_100FDX_CAP "adv_100fdx_cap"
+#define PROP_ADV_100HDX_CAP "adv_100hdx_cap"
+#define PROP_ADV_10FDX_CAP "adv_10fdx_cap"
+#define PROP_ADV_10HDX_CAP "adv_10hdx_cap"
+#define PROP_DEFAULT_MTU "default_mtu"
+#define PROP_FLOW_CONTROL "flow_control"
+#define PROP_TX_QUEUE_NUM "tx_queue_number"
+#define PROP_TX_RING_SIZE "tx_ring_size"
+#define PROP_RX_QUEUE_NUM "rx_queue_number"
+#define PROP_RX_RING_SIZE "rx_ring_size"
+
+#define PROP_INTR_FORCE "intr_force"
+#define PROP_TX_HCKSUM_ENABLE "tx_hcksum_enable"
+#define PROP_RX_HCKSUM_ENABLE "rx_hcksum_enable"
+#define PROP_LSO_ENABLE "lso_enable"
+#define PROP_TX_HEAD_WB_ENABLE "tx_head_wb_enable"
+#define PROP_TX_COPY_THRESHOLD "tx_copy_threshold"
+#define PROP_TX_RECYCLE_THRESHOLD "tx_recycle_threshold"
+#define PROP_TX_OVERLOAD_THRESHOLD "tx_overload_threshold"
+#define PROP_TX_RESCHED_THRESHOLD "tx_resched_threshold"
+#define PROP_RX_COPY_THRESHOLD "rx_copy_threshold"
+#define PROP_RX_LIMIT_PER_INTR "rx_limit_per_intr"
+#define PROP_INTR_THROTTLING "intr_throttling"
+
+#define IGB_LB_NONE 0
+#define IGB_LB_EXTERNAL 1
+#define IGB_LB_INTERNAL_MAC 2
+#define IGB_LB_INTERNAL_PHY 3
+#define IGB_LB_INTERNAL_SERDES 4
+
+/*
+ * Shorthand for the NDD parameters
+ */
+#define param_autoneg_cap nd_params[PARAM_AUTONEG_CAP].val
+#define param_pause_cap nd_params[PARAM_PAUSE_CAP].val
+#define param_asym_pause_cap nd_params[PARAM_ASYM_PAUSE_CAP].val
+#define param_1000fdx_cap nd_params[PARAM_1000FDX_CAP].val
+#define param_1000hdx_cap nd_params[PARAM_1000HDX_CAP].val
+#define param_100t4_cap nd_params[PARAM_100T4_CAP].val
+#define param_100fdx_cap nd_params[PARAM_100FDX_CAP].val
+#define param_100hdx_cap nd_params[PARAM_100HDX_CAP].val
+#define param_10fdx_cap nd_params[PARAM_10FDX_CAP].val
+#define param_10hdx_cap nd_params[PARAM_10HDX_CAP].val
+#define param_rem_fault nd_params[PARAM_REM_FAULT].val
+
+#define param_adv_autoneg_cap nd_params[PARAM_ADV_AUTONEG_CAP].val
+#define param_adv_pause_cap nd_params[PARAM_ADV_PAUSE_CAP].val
+#define param_adv_asym_pause_cap nd_params[PARAM_ADV_ASYM_PAUSE_CAP].val
+#define param_adv_1000fdx_cap nd_params[PARAM_ADV_1000FDX_CAP].val
+#define param_adv_1000hdx_cap nd_params[PARAM_ADV_1000HDX_CAP].val
+#define param_adv_100t4_cap nd_params[PARAM_ADV_100T4_CAP].val
+#define param_adv_100fdx_cap nd_params[PARAM_ADV_100FDX_CAP].val
+#define param_adv_100hdx_cap nd_params[PARAM_ADV_100HDX_CAP].val
+#define param_adv_10fdx_cap nd_params[PARAM_ADV_10FDX_CAP].val
+#define param_adv_10hdx_cap nd_params[PARAM_ADV_10HDX_CAP].val
+#define param_adv_rem_fault nd_params[PARAM_ADV_REM_FAULT].val
+
+#define param_lp_autoneg_cap nd_params[PARAM_LP_AUTONEG_CAP].val
+#define param_lp_pause_cap nd_params[PARAM_LP_PAUSE_CAP].val
+#define param_lp_asym_pause_cap nd_params[PARAM_LP_ASYM_PAUSE_CAP].val
+#define param_lp_1000fdx_cap nd_params[PARAM_LP_1000FDX_CAP].val
+#define param_lp_1000hdx_cap nd_params[PARAM_LP_1000HDX_CAP].val
+#define param_lp_100t4_cap nd_params[PARAM_LP_100T4_CAP].val
+#define param_lp_100fdx_cap nd_params[PARAM_LP_100FDX_CAP].val
+#define param_lp_100hdx_cap nd_params[PARAM_LP_100HDX_CAP].val
+#define param_lp_10fdx_cap nd_params[PARAM_LP_10FDX_CAP].val
+#define param_lp_10hdx_cap nd_params[PARAM_LP_10HDX_CAP].val
+#define param_lp_rem_fault nd_params[PARAM_LP_REM_FAULT].val
+
+enum ioc_reply {
+ IOC_INVAL = -1, /* bad, NAK with EINVAL */
+ IOC_DONE, /* OK, reply sent */
+ IOC_ACK, /* OK, just send ACK */
+ IOC_REPLY /* OK, just send reply */
+};
+
+#define MBLK_LEN(mp) ((uintptr_t)(mp)->b_wptr - \
+ (uintptr_t)(mp)->b_rptr)
+
+#define DMA_SYNC(area, flag) ((void) ddi_dma_sync((area)->dma_handle, \
+ 0, 0, (flag)))
+
+/*
+ * Defined for ring index operations
+ * ASSERT(index < limit)
+ * ASSERT(step < limit)
+ * ASSERT(index1 < limit)
+ * ASSERT(index2 < limit)
+ */
+#define NEXT_INDEX(index, step, limit) (((index) + (step)) < (limit) ? \
+ (index) + (step) : (index) + (step) - (limit))
+#define PREV_INDEX(index, step, limit) ((index) >= (step) ? \
+ (index) - (step) : (index) + (limit) - (step))
+#define OFFSET(index1, index2, limit) ((index1) <= (index2) ? \
+ (index2) - (index1) : (index2) + (limit) - (index1))
+
+#define LINK_LIST_INIT(_LH) \
+ (_LH)->head = (_LH)->tail = NULL
+
+#define LIST_GET_HEAD(_LH) ((single_link_t *)((_LH)->head))
+
+#define LIST_POP_HEAD(_LH) \
+ (single_link_t *)(_LH)->head; \
+ { \
+ if ((_LH)->head != NULL) { \
+ (_LH)->head = (_LH)->head->link; \
+ if ((_LH)->head == NULL) \
+ (_LH)->tail = NULL; \
+ } \
+ }
+
+#define LIST_GET_TAIL(_LH) ((single_link_t *)((_LH)->tail))
+
+#define LIST_PUSH_TAIL(_LH, _E) \
+ if ((_LH)->tail != NULL) { \
+ (_LH)->tail->link = (single_link_t *)(_E); \
+ (_LH)->tail = (single_link_t *)(_E); \
+ } else { \
+ (_LH)->head = (_LH)->tail = (single_link_t *)(_E); \
+ } \
+ (_E)->link = NULL;
+
+#define LIST_GET_NEXT(_LH, _E) \
+ (((_LH)->tail == (single_link_t *)(_E)) ? \
+ NULL : ((single_link_t *)(_E))->link)
+
+
+typedef struct single_link {
+ struct single_link *link;
+} single_link_t;
+
+typedef struct link_list {
+ single_link_t *head;
+ single_link_t *tail;
+} link_list_t;
+
+/*
+ * Property lookups
+ */
+#define IGB_PROP_EXISTS(d, n) ddi_prop_exists(DDI_DEV_T_ANY, (d), \
+ DDI_PROP_DONTPASS, (n))
+#define IGB_PROP_GET_INT(d, n) ddi_prop_get_int(DDI_DEV_T_ANY, (d), \
+ DDI_PROP_DONTPASS, (n), -1)
+
+
+/*
+ * Named Data (ND) Parameter Management Structure
+ */
+typedef struct {
+ struct igb *private;
+ uint32_t info;
+ uint32_t min;
+ uint32_t max;
+ uint32_t val;
+ char *name;
+} nd_param_t;
+
+/*
+ * NDD parameter indexes, divided into:
+ *
+ * read-only parameters describing the hardware's capabilities
+ * read-write parameters controlling the advertised capabilities
+ * read-only parameters describing the partner's capabilities
+ * read-write parameters controlling the force speed and duplex
+ * read-only parameters describing the link state
+ * read-only parameters describing the driver properties
+ * read-write parameters controlling the driver properties
+ */
+enum {
+ PARAM_AUTONEG_CAP,
+ PARAM_PAUSE_CAP,
+ PARAM_ASYM_PAUSE_CAP,
+ PARAM_1000FDX_CAP,
+ PARAM_1000HDX_CAP,
+ PARAM_100T4_CAP,
+ PARAM_100FDX_CAP,
+ PARAM_100HDX_CAP,
+ PARAM_10FDX_CAP,
+ PARAM_10HDX_CAP,
+ PARAM_REM_FAULT,
+
+ PARAM_ADV_AUTONEG_CAP,
+ PARAM_ADV_PAUSE_CAP,
+ PARAM_ADV_ASYM_PAUSE_CAP,
+ PARAM_ADV_1000FDX_CAP,
+ PARAM_ADV_1000HDX_CAP,
+ PARAM_ADV_100T4_CAP,
+ PARAM_ADV_100FDX_CAP,
+ PARAM_ADV_100HDX_CAP,
+ PARAM_ADV_10FDX_CAP,
+ PARAM_ADV_10HDX_CAP,
+ PARAM_ADV_REM_FAULT,
+
+ PARAM_LP_AUTONEG_CAP,
+ PARAM_LP_PAUSE_CAP,
+ PARAM_LP_ASYM_PAUSE_CAP,
+ PARAM_LP_1000FDX_CAP,
+ PARAM_LP_1000HDX_CAP,
+ PARAM_LP_100T4_CAP,
+ PARAM_LP_100FDX_CAP,
+ PARAM_LP_100HDX_CAP,
+ PARAM_LP_10FDX_CAP,
+ PARAM_LP_10HDX_CAP,
+ PARAM_LP_REM_FAULT,
+
+ PARAM_LINK_STATUS,
+ PARAM_LINK_SPEED,
+ PARAM_LINK_DUPLEX,
+
+ PARAM_COUNT
+};
+
+typedef union igb_ether_addr {
+ struct {
+ uint32_t high;
+ uint32_t low;
+ } reg;
+ struct {
+ uint8_t set;
+ uint8_t redundant;
+ uint8_t addr[ETHERADDRL];
+ } mac;
+} igb_ether_addr_t;
+
+typedef enum {
+ USE_NONE,
+ USE_COPY,
+ USE_DMA
+} tx_type_t;
+
+typedef enum {
+ RCB_FREE,
+ RCB_SENDUP
+} rcb_state_t;
+
+typedef struct hcksum_context {
+ uint32_t hcksum_flags;
+ uint32_t ip_hdr_len;
+ uint32_t mac_hdr_len;
+ uint32_t l4_proto;
+} hcksum_context_t;
+
+/* Hold address/length of each DMA segment */
+typedef struct sw_desc {
+ uint64_t address;
+ size_t length;
+} sw_desc_t;
+
+/* Handles and addresses of DMA buffer */
+typedef struct dma_buffer {
+ caddr_t address; /* Virtual address */
+ uint64_t dma_address; /* DMA (Hardware) address */
+ ddi_acc_handle_t acc_handle; /* Data access handle */
+ ddi_dma_handle_t dma_handle; /* DMA handle */
+ size_t size; /* Buffer size */
+ size_t len; /* Data length in the buffer */
+} dma_buffer_t;
+
+/*
+ * Tx Control Block
+ */
+typedef struct tx_control_block {
+ single_link_t link;
+ uint32_t frag_num;
+ uint32_t desc_num;
+ mblk_t *mp;
+ tx_type_t tx_type;
+ ddi_dma_handle_t tx_dma_handle;
+ dma_buffer_t tx_buf;
+ sw_desc_t desc[MAX_COOKIE];
+} tx_control_block_t;
+
+/*
+ * RX Control Block
+ */
+typedef struct rx_control_block {
+ mblk_t *mp;
+ rcb_state_t state;
+ dma_buffer_t rx_buf;
+ frtn_t free_rtn;
+ struct igb_rx_ring *rx_ring;
+} rx_control_block_t;
+
+/*
+ * Software Data Structure for Tx Ring
+ */
+typedef struct igb_tx_ring {
+ uint32_t index; /* Ring index */
+
+ /*
+ * Mutexes
+ */
+ kmutex_t tx_lock;
+ kmutex_t recycle_lock;
+ kmutex_t tcb_head_lock;
+ kmutex_t tcb_tail_lock;
+
+ /*
+ * Tx descriptor ring definitions
+ */
+ dma_buffer_t tbd_area;
+ union e1000_adv_tx_desc *tbd_ring;
+ uint32_t tbd_head; /* Index of next tbd to recycle */
+ uint32_t tbd_tail; /* Index of next tbd to transmit */
+ uint32_t tbd_free; /* Number of free tbd */
+
+ /*
+ * Tx control block list definitions
+ */
+ tx_control_block_t *tcb_area;
+ tx_control_block_t **work_list;
+ tx_control_block_t **free_list;
+ uint32_t tcb_head; /* Head index of free list */
+ uint32_t tcb_tail; /* Tail index of free list */
+ uint32_t tcb_free; /* Number of free tcb in free list */
+
+ uint32_t *tbd_head_wb; /* Head write-back */
+ uint32_t (*tx_recycle)(struct igb_tx_ring *);
+
+ /*
+ * TCP/UDP checksum offload
+ */
+ hcksum_context_t hcksum_context;
+
+ /*
+ * Tx ring settings and status
+ */
+ uint32_t ring_size; /* Tx descriptor ring size */
+ uint32_t free_list_size; /* Tx free list size */
+ uint32_t copy_thresh;
+ uint32_t recycle_thresh;
+ uint32_t overload_thresh;
+ uint32_t resched_thresh;
+
+ boolean_t reschedule;
+ uint32_t recycle_fail;
+ uint32_t stall_watchdog;
+
+#ifdef IGB_DEBUG
+ /*
+ * Debug statistics
+ */
+ uint32_t stat_overload;
+ uint32_t stat_fail_no_tbd;
+ uint32_t stat_fail_no_tcb;
+ uint32_t stat_fail_dma_bind;
+ uint32_t stat_reschedule;
+#endif
+
+ /*
+ * Pointer to the igb struct
+ */
+ struct igb *igb;
+
+} igb_tx_ring_t;
+
+/*
+ * Software Receive Ring
+ */
+typedef struct igb_rx_ring {
+ uint32_t index; /* Ring index */
+ uint32_t intr_vector; /* Interrupt vector index */
+
+ /*
+ * Mutexes
+ */
+ kmutex_t rx_lock; /* Rx access lock */
+ kmutex_t recycle_lock; /* Recycle lock, for rcb_tail */
+
+ /*
+ * Rx descriptor ring definitions
+ */
+ dma_buffer_t rbd_area; /* DMA buffer of rx desc ring */
+ union e1000_adv_rx_desc *rbd_ring; /* Rx desc ring */
+ uint32_t rbd_next; /* Index of next rx desc */
+
+ /*
+ * Rx control block list definitions
+ */
+ rx_control_block_t *rcb_area;
+ rx_control_block_t **work_list; /* Work list of rcbs */
+ rx_control_block_t **free_list; /* Free list of rcbs */
+ uint32_t rcb_head; /* Index of next free rcb */
+ uint32_t rcb_tail; /* Index to put recycled rcb */
+ uint32_t rcb_free; /* Number of free rcbs */
+
+ /*
+ * Rx ring settings and status
+ */
+ uint32_t ring_size; /* Rx descriptor ring size */
+ uint32_t free_list_size; /* Rx free list size */
+ uint32_t limit_per_intr; /* Max packets per interrupt */
+ uint32_t copy_thresh;
+
+#ifdef IGB_DEBUG
+ /*
+ * Debug statistics
+ */
+ uint32_t stat_frame_error;
+ uint32_t stat_cksum_error;
+ uint32_t stat_exceed_pkt;
+#endif
+
+ struct igb *igb; /* Pointer to igb struct */
+
+} igb_rx_ring_t;
+
+typedef struct igb {
+ int instance;
+ mac_handle_t mac_hdl;
+ dev_info_t *dip;
+ struct e1000_hw hw;
+ struct igb_osdep osdep;
+
+ uint32_t igb_state;
+ link_state_t link_state;
+ uint32_t link_speed;
+ uint32_t link_duplex;
+ uint32_t link_down_timeout;
+
+ uint32_t reset_count;
+ uint32_t attach_progress;
+ uint32_t loopback_mode;
+ uint32_t max_frame_size;
+
+ /*
+ * Receive Rings
+ */
+ igb_rx_ring_t *rx_rings; /* Array of rx rings */
+ uint32_t num_rx_rings; /* Number of rx rings in use */
+ uint32_t rx_ring_size; /* Rx descriptor ring size */
+ uint32_t rx_buf_size; /* Rx buffer size */
+
+ /*
+ * Transmit Rings
+ */
+ igb_tx_ring_t *tx_rings; /* Array of tx rings */
+ uint32_t num_tx_rings; /* Number of tx rings in use */
+ uint32_t tx_ring_size; /* Tx descriptor ring size */
+ uint32_t tx_buf_size; /* Tx buffer size */
+
+ boolean_t tx_head_wb_enable; /* Tx head wrtie-back */
+ boolean_t tx_hcksum_enable; /* Tx h/w cksum offload */
+ boolean_t lso_enable; /* Large Segment Offload */
+ uint32_t tx_copy_thresh; /* Tx copy threshold */
+ uint32_t tx_recycle_thresh; /* Tx recycle threshold */
+ uint32_t tx_overload_thresh; /* Tx overload threshold */
+ uint32_t tx_resched_thresh; /* Tx reschedule threshold */
+ boolean_t rx_hcksum_enable; /* Rx h/w cksum offload */
+ uint32_t rx_copy_thresh; /* Rx copy threshold */
+ uint32_t rx_limit_per_intr; /* Rx pkts per interrupt */
+ uint32_t intr_throttling[MAX_NUM_EITR];
+ uint32_t intr_force;
+
+ int intr_type;
+ int intr_cnt;
+ int intr_cap;
+ size_t intr_size;
+ uint_t intr_pri;
+ ddi_intr_handle_t *htable;
+ uint32_t eims_mask;
+
+ kmutex_t gen_lock; /* General lock for device access */
+ kmutex_t watchdog_lock;
+
+ boolean_t watchdog_enable;
+ boolean_t watchdog_start;
+ timeout_id_t watchdog_tid;
+
+ boolean_t unicst_init;
+ uint32_t unicst_avail;
+ uint32_t unicst_total;
+ igb_ether_addr_t unicst_addr[MAX_NUM_UNICAST_ADDRESSES];
+ uint32_t mcast_count;
+ struct ether_addr mcast_table[MAX_NUM_MULTICAST_ADDRESSES];
+
+ /*
+ * Kstat definitions
+ */
+ kstat_t *igb_ks;
+
+ /*
+ * NDD definitions
+ */
+ caddr_t nd_data;
+ nd_param_t nd_params[PARAM_COUNT];
+
+} igb_t;
+
+typedef struct igb_stat {
+
+ kstat_named_t link_speed; /* Link Speed */
+#ifdef IGB_DEBUG
+ kstat_named_t reset_count; /* Reset Count */
+
+ kstat_named_t rx_frame_error; /* Rx Error in Packet */
+ kstat_named_t rx_cksum_error; /* Rx Checksum Error */
+ kstat_named_t rx_exceed_pkt; /* Rx Exceed Max Pkt Count */
+
+ kstat_named_t tx_overload; /* Tx Desc Ring Overload */
+ kstat_named_t tx_fail_no_tcb; /* Tx Fail Freelist Empty */
+ kstat_named_t tx_fail_no_tbd; /* Tx Fail Desc Ring Empty */
+ kstat_named_t tx_fail_dma_bind; /* Tx Fail DMA bind */
+ kstat_named_t tx_reschedule; /* Tx Reschedule */
+
+ kstat_named_t gprc; /* Good Packets Received Count */
+ kstat_named_t gptc; /* Good Packets Xmitted Count */
+ kstat_named_t gor; /* Good Octets Received Count */
+ kstat_named_t got; /* Good Octets Xmitd Count */
+ kstat_named_t prc64; /* Packets Received - 64b */
+ kstat_named_t prc127; /* Packets Received - 65-127b */
+ kstat_named_t prc255; /* Packets Received - 127-255b */
+ kstat_named_t prc511; /* Packets Received - 256-511b */
+ kstat_named_t prc1023; /* Packets Received - 511-1023b */
+ kstat_named_t prc1522; /* Packets Received - 1024-1522b */
+ kstat_named_t ptc64; /* Packets Xmitted (64b) */
+ kstat_named_t ptc127; /* Packets Xmitted (64-127b) */
+ kstat_named_t ptc255; /* Packets Xmitted (128-255b) */
+ kstat_named_t ptc511; /* Packets Xmitted (255-511b) */
+ kstat_named_t ptc1023; /* Packets Xmitted (512-1023b) */
+ kstat_named_t ptc1522; /* Packets Xmitted (1024-1522b */
+#endif
+ kstat_named_t crcerrs; /* CRC Error Count */
+ kstat_named_t symerrs; /* Symbol Error Count */
+ kstat_named_t mpc; /* Missed Packet Count */
+ kstat_named_t scc; /* Single Collision Count */
+ kstat_named_t ecol; /* Excessive Collision Count */
+ kstat_named_t mcc; /* Multiple Collision Count */
+ kstat_named_t latecol; /* Late Collision Count */
+ kstat_named_t colc; /* Collision Count */
+ kstat_named_t dc; /* Defer Count */
+ kstat_named_t sec; /* Sequence Error Count */
+ kstat_named_t rlec; /* Receive Length Error Count */
+ kstat_named_t xonrxc; /* XON Received Count */
+ kstat_named_t xontxc; /* XON Xmitted Count */
+ kstat_named_t xoffrxc; /* XOFF Received Count */
+ kstat_named_t xofftxc; /* Xoff Xmitted Count */
+ kstat_named_t fcruc; /* Unknown Flow Conrol Packet Rcvd Count */
+ kstat_named_t bprc; /* Broadcasts Pkts Received Count */
+ kstat_named_t mprc; /* Multicast Pkts Received Count */
+ kstat_named_t rnbc; /* Receive No Buffers Count */
+ kstat_named_t ruc; /* Receive Undersize Count */
+ kstat_named_t rfc; /* Receive Frag Count */
+ kstat_named_t roc; /* Receive Oversize Count */
+ kstat_named_t rjc; /* Receive Jabber Count */
+ kstat_named_t tor; /* Total Octets Recvd Count */
+ kstat_named_t tot; /* Total Octets Xmted Count */
+ kstat_named_t tpr; /* Total Packets Received */
+ kstat_named_t tpt; /* Total Packets Xmitted */
+ kstat_named_t mptc; /* Multicast Packets Xmited Count */
+ kstat_named_t bptc; /* Broadcast Packets Xmited Count */
+ kstat_named_t algnerrc; /* Alignment Error count */
+ kstat_named_t rxerrc; /* Rx Error Count */
+ kstat_named_t tncrs; /* Transmit with no CRS */
+ kstat_named_t cexterr; /* Carrier Extension Error count */
+ kstat_named_t tsctc; /* TCP seg contexts xmit count */
+ kstat_named_t tsctfc; /* TCP seg contexts xmit fail count */
+} igb_stat_t;
+
+/*
+ * Function prototypes in e1000_osdep.c
+ */
+void e1000_enable_pciex_master(struct e1000_hw *);
+
+/*
+ * Function prototypes in igb_buf.c
+ */
+int igb_alloc_dma(igb_t *);
+void igb_free_dma(igb_t *);
+
+/*
+ * Function prototypes in igb_main.c
+ */
+int igb_start(igb_t *);
+void igb_stop(igb_t *);
+int igb_setup_link(igb_t *, boolean_t);
+int igb_unicst_set(igb_t *, const uint8_t *, mac_addr_slot_t);
+int igb_multicst_add(igb_t *, const uint8_t *);
+int igb_multicst_remove(igb_t *, const uint8_t *);
+enum ioc_reply igb_loopback_ioctl(igb_t *, struct iocblk *, mblk_t *);
+void igb_enable_watchdog_timer(igb_t *);
+void igb_disable_watchdog_timer(igb_t *);
+int igb_atomic_reserve(uint32_t *, uint32_t);
+
+/*
+ * Function prototypes in igb_gld.c
+ */
+int igb_m_start(void *);
+void igb_m_stop(void *);
+int igb_m_promisc(void *, boolean_t);
+int igb_m_multicst(void *, boolean_t, const uint8_t *);
+int igb_m_unicst(void *, const uint8_t *);
+int igb_m_stat(void *, uint_t, uint64_t *);
+void igb_m_resources(void *);
+void igb_m_ioctl(void *, queue_t *, mblk_t *);
+int igb_m_unicst_add(void *, mac_multi_addr_t *);
+int igb_m_unicst_remove(void *, mac_addr_slot_t);
+int igb_m_unicst_modify(void *, mac_multi_addr_t *);
+int igb_m_unicst_get(void *, mac_multi_addr_t *);
+boolean_t igb_m_getcapab(void *, mac_capab_t, void *);
+
+/*
+ * Function prototypes in igb_rx.c
+ */
+mblk_t *igb_rx(igb_rx_ring_t *);
+void igb_rx_recycle(caddr_t arg);
+
+/*
+ * Function prototypes in igb_tx.c
+ */
+mblk_t *igb_m_tx(void *, mblk_t *);
+void igb_free_tcb(tx_control_block_t *);
+void igb_put_free_list(igb_tx_ring_t *, link_list_t *);
+uint32_t igb_tx_recycle_legacy(igb_tx_ring_t *);
+uint32_t igb_tx_recycle_head_wb(igb_tx_ring_t *);
+
+/*
+ * Function prototypes in igb_log.c
+ */
+void igb_notice(void *, const char *, ...);
+void igb_log(void *, const char *, ...);
+void igb_error(void *, const char *, ...);
+
+/*
+ * Function prototypes in igb_ndd.c
+ */
+int igb_nd_init(igb_t *);
+void igb_nd_cleanup(igb_t *);
+enum ioc_reply igb_nd_ioctl(igb_t *, queue_t *, mblk_t *, struct iocblk *);
+
+/*
+ * Function prototypes in igb_stat.c
+ */
+int igb_init_stats(igb_t *);
+
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _IGB_SW_H */
diff --git a/usr/src/uts/common/io/igb/igb_tx.c b/usr/src/uts/common/io/igb/igb_tx.c
new file mode 100644
index 0000000000..2261022c49
--- /dev/null
+++ b/usr/src/uts/common/io/igb/igb_tx.c
@@ -0,0 +1,1297 @@
+/*
+ * CDDL HEADER START
+ *
+ * Copyright(c) 2007-2008 Intel Corporation. All rights reserved.
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at:
+ * http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When using or redistributing this file, you may do so under the
+ * License only. No other modification of this header is permitted.
+ *
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms of the CDDL.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "igb_sw.h"
+
+static boolean_t igb_tx(igb_tx_ring_t *, mblk_t *);
+static int igb_tx_copy(igb_tx_ring_t *, tx_control_block_t *, mblk_t *,
+ uint32_t, boolean_t, boolean_t);
+static int igb_tx_bind(igb_tx_ring_t *, tx_control_block_t *, mblk_t *,
+ uint32_t);
+static int igb_tx_fill_ring(igb_tx_ring_t *, link_list_t *, hcksum_context_t *);
+static void igb_save_desc(tx_control_block_t *, uint64_t, size_t);
+static tx_control_block_t *igb_get_free_list(igb_tx_ring_t *);
+
+static void igb_get_hcksum_context(mblk_t *, hcksum_context_t *);
+static boolean_t igb_check_hcksum_context(igb_tx_ring_t *, hcksum_context_t *);
+static void igb_fill_hcksum_context(struct e1000_adv_tx_context_desc *,
+ hcksum_context_t *);
+
+#ifndef IGB_DEBUG
+#pragma inline(igb_save_desc)
+#pragma inline(igb_get_hcksum_context)
+#pragma inline(igb_check_hcksum_context)
+#pragma inline(igb_fill_hcksum_context)
+#endif
+
+/*
+ * igb_m_tx
+ *
+ * The GLDv3 interface to call driver's tx routine to transmit
+ * the mblks.
+ */
+mblk_t *
+igb_m_tx(void *arg, mblk_t *mp)
+{
+ igb_t *igb = (igb_t *)arg;
+ mblk_t *next;
+ igb_tx_ring_t *tx_ring;
+
+ /*
+ * If the adapter is suspended, or it is not started, or the link
+ * is not up, the mblks are simply dropped.
+ */
+ if (((igb->igb_state & IGB_SUSPENDED) != 0) ||
+ ((igb->igb_state & IGB_STARTED) == 0) ||
+ (igb->link_state != LINK_STATE_UP)) {
+ /* Free the mblk chain */
+ while (mp != NULL) {
+ next = mp->b_next;
+ mp->b_next = NULL;
+
+ freemsg(mp);
+ mp = next;
+ }
+
+ return (NULL);
+ }
+
+ /*
+ * Decide which tx ring is used to transmit the packets.
+ * This needs to be updated later to fit the new interface
+ * of the multiple rings support.
+ */
+ tx_ring = &igb->tx_rings[0];
+
+ while (mp != NULL) {
+ next = mp->b_next;
+ mp->b_next = NULL;
+
+ if (!igb_tx(tx_ring, mp)) {
+ mp->b_next = next;
+ break;
+ }
+
+ mp = next;
+ }
+
+ return (mp);
+}
+
+/*
+ * igb_tx - Main transmit processing
+ *
+ * Called from igb_m_tx with an mblk ready to transmit. this
+ * routine sets up the transmit descriptors and sends data to
+ * the wire.
+ *
+ * One mblk can consist of several fragments, each fragment
+ * will be processed with different methods based on the size.
+ * For the fragments with size less than the bcopy threshold,
+ * they will be processed by using bcopy; otherwise, they will
+ * be processed by using DMA binding.
+ *
+ * To process the mblk, a tx control block is got from the
+ * free list. One tx control block contains one tx buffer, which
+ * is used to copy mblk fragments' data; and one tx DMA handle,
+ * which is used to bind a mblk fragment with DMA resource.
+ *
+ * Several small mblk fragments can be copied into one tx control
+ * block's buffer, and then the buffer will be transmitted with
+ * one tx descriptor.
+ *
+ * A large fragment only binds with one tx control block's DMA
+ * handle, and it can span several tx descriptors for transmitting.
+ *
+ * So to transmit a packet (mblk), several tx control blocks can
+ * be used. After the processing, those tx control blocks will
+ * be put to the work list.
+ */
+static boolean_t
+igb_tx(igb_tx_ring_t *tx_ring, mblk_t *mp)
+{
+ igb_t *igb = tx_ring->igb;
+ tx_type_t current_flag, next_flag;
+ uint32_t current_len, next_len;
+ uint32_t desc_total;
+ size_t mbsize;
+ int desc_num;
+ boolean_t copy_done, eop;
+ mblk_t *current_mp, *next_mp, *nmp;
+ tx_control_block_t *tcb;
+ hcksum_context_t hcksum_context, *hcksum;
+ link_list_t pending_list;
+
+ /* Get the mblk size */
+ mbsize = 0;
+ for (nmp = mp; nmp != NULL; nmp = nmp->b_cont) {
+ mbsize += MBLK_LEN(nmp);
+ }
+
+ /*
+ * If the mblk size exceeds the max frame size,
+ * discard this mblk, and return B_TRUE
+ */
+ if (mbsize > (igb->max_frame_size - ETHERFCSL)) {
+ freemsg(mp);
+ IGB_DEBUGLOG_0(igb, "igb_tx: packet oversize");
+ return (B_TRUE);
+ }
+
+ /*
+ * Check and recycle tx descriptors.
+ * The recycle threshold here should be selected carefully
+ */
+ if (tx_ring->tbd_free < tx_ring->recycle_thresh)
+ tx_ring->tx_recycle(tx_ring);
+
+ /*
+ * After the recycling, if the tbd_free is less than the
+ * overload_threshold, assert overload, return B_FALSE;
+ * and we need to re-schedule the tx again.
+ */
+ if (tx_ring->tbd_free < tx_ring->overload_thresh) {
+ tx_ring->reschedule = B_TRUE;
+ IGB_DEBUG_STAT(tx_ring->stat_overload);
+ return (B_FALSE);
+ }
+
+ /*
+ * The pending_list is a linked list that is used to save
+ * the tx control blocks that have packet data processed
+ * but have not put the data to the tx descriptor ring.
+ * It is used to reduce the lock contention of the tx_lock.
+ */
+ LINK_LIST_INIT(&pending_list);
+ desc_num = 0;
+ desc_total = 0;
+
+ current_mp = mp;
+ current_len = MBLK_LEN(current_mp);
+ /*
+ * Decide which method to use for the first fragment
+ */
+ current_flag = (current_len <= tx_ring->copy_thresh) ?
+ USE_COPY : USE_DMA;
+ /*
+ * If the mblk includes several contiguous small fragments,
+ * they may be copied into one buffer. This flag is used to
+ * indicate whether there are pending fragments that need to
+ * be copied to the current tx buffer.
+ *
+ * If this flag is B_TRUE, it indicates that a new tx control
+ * block is needed to process the next fragment using either
+ * copy or DMA binding.
+ *
+ * Otherwise, it indicates that the next fragment will be
+ * copied to the current tx buffer that is maintained by the
+ * current tx control block. No new tx control block is needed.
+ */
+ copy_done = B_TRUE;
+ while (current_mp) {
+ next_mp = current_mp->b_cont;
+ eop = (next_mp == NULL); /* Last fragment of the packet? */
+ next_len = eop ? 0: MBLK_LEN(next_mp);
+
+ /*
+ * When the current fragment is an empty fragment, if
+ * the next fragment will still be copied to the current
+ * tx buffer, we cannot skip this fragment here. Because
+ * the copy processing is pending for completion. We have
+ * to process this empty fragment in the tx_copy routine.
+ *
+ * If the copy processing is completed or a DMA binding
+ * processing is just completed, we can just skip this
+ * empty fragment.
+ */
+ if ((current_len == 0) && (copy_done)) {
+ current_mp = next_mp;
+ current_len = next_len;
+ current_flag = (current_len <= tx_ring->copy_thresh) ?
+ USE_COPY : USE_DMA;
+ continue;
+ }
+
+ if (copy_done) {
+ /*
+ * Get a new tx control block from the free list
+ */
+ tcb = igb_get_free_list(tx_ring);
+
+ if (tcb == NULL) {
+ IGB_DEBUG_STAT(tx_ring->stat_fail_no_tcb);
+ goto tx_failure;
+ }
+
+ /*
+ * Push the tx control block to the pending list
+ * to avoid using lock too early
+ */
+ LIST_PUSH_TAIL(&pending_list, &tcb->link);
+ }
+
+ if (current_flag == USE_COPY) {
+ /*
+ * Check whether to use bcopy or DMA binding to process
+ * the next fragment, and if using bcopy, whether we
+ * need to continue copying the next fragment into the
+ * current tx buffer.
+ */
+ ASSERT((tcb->tx_buf.len + current_len) <=
+ tcb->tx_buf.size);
+
+ if (eop) {
+ /*
+ * This is the last fragment of the packet, so
+ * the copy processing will be completed with
+ * this fragment.
+ */
+ next_flag = USE_NONE;
+ copy_done = B_TRUE;
+ } else if ((tcb->tx_buf.len + current_len + next_len) >
+ tcb->tx_buf.size) {
+ /*
+ * If the next fragment is too large to be
+ * copied to the current tx buffer, we need
+ * to complete the current copy processing.
+ */
+ next_flag = (next_len > tx_ring->copy_thresh) ?
+ USE_DMA: USE_COPY;
+ copy_done = B_TRUE;
+ } else if (next_len > tx_ring->copy_thresh) {
+ /*
+ * The next fragment needs to be processed with
+ * DMA binding. So the copy prcessing will be
+ * completed with the current fragment.
+ */
+ next_flag = USE_DMA;
+ copy_done = B_TRUE;
+ } else {
+ /*
+ * Continue to copy the next fragment to the
+ * current tx buffer.
+ */
+ next_flag = USE_COPY;
+ copy_done = B_FALSE;
+ }
+
+ desc_num = igb_tx_copy(tx_ring, tcb, current_mp,
+ current_len, copy_done, eop);
+ } else {
+ /*
+ * Check whether to use bcopy or DMA binding to process
+ * the next fragment.
+ */
+ next_flag = (next_len > tx_ring->copy_thresh) ?
+ USE_DMA: USE_COPY;
+ ASSERT(copy_done == B_TRUE);
+
+ desc_num = igb_tx_bind(tx_ring, tcb, current_mp,
+ current_len);
+ }
+
+ if (desc_num > 0)
+ desc_total += desc_num;
+ else if (desc_num < 0)
+ goto tx_failure;
+
+ current_mp = next_mp;
+ current_len = next_len;
+ current_flag = next_flag;
+ }
+
+ /*
+ * Attach the mblk to the last tx control block
+ */
+ ASSERT(tcb);
+ ASSERT(tcb->mp == NULL);
+ tcb->mp = mp;
+
+ if (igb->tx_hcksum_enable) {
+ /*
+ * Retrieve checksum context information from the mblk that will
+ * be used to decide whether/how to fill the context descriptor.
+ */
+ hcksum = &hcksum_context;
+ igb_get_hcksum_context(mp, hcksum);
+ } else {
+ hcksum = NULL;
+ }
+
+ /*
+ * Before fill the tx descriptor ring with the data, we need to
+ * ensure there are adequate free descriptors for transmit
+ * (including one context descriptor).
+ */
+ if (tx_ring->tbd_free < (desc_total + 1)) {
+ tx_ring->tx_recycle(tx_ring);
+ }
+
+ mutex_enter(&tx_ring->tx_lock);
+
+ /*
+ * If the number of free tx descriptors is not enough for transmit
+ * then return failure.
+ *
+ * Note: we must put this check under the mutex protection to
+ * ensure the correctness when multiple threads access it in
+ * parallel.
+ */
+ if (tx_ring->tbd_free < (desc_total + 1)) {
+ IGB_DEBUG_STAT(tx_ring->stat_fail_no_tbd);
+ mutex_exit(&tx_ring->tx_lock);
+ goto tx_failure;
+ }
+
+ desc_num = igb_tx_fill_ring(tx_ring, &pending_list, hcksum);
+
+ ASSERT((desc_num == desc_total) || (desc_num == (desc_total + 1)));
+
+ mutex_exit(&tx_ring->tx_lock);
+
+ return (B_TRUE);
+
+tx_failure:
+ /*
+ * Discard the mblk and free the used resources
+ */
+ tcb = (tx_control_block_t *)LIST_GET_HEAD(&pending_list);
+ while (tcb) {
+ tcb->mp = NULL;
+
+ igb_free_tcb(tcb);
+
+ tcb = (tx_control_block_t *)
+ LIST_GET_NEXT(&pending_list, &tcb->link);
+ }
+
+ /*
+ * Return the tx control blocks in the pending list to the free list.
+ */
+ igb_put_free_list(tx_ring, &pending_list);
+
+ /* Transmit failed, do not drop the mblk, rechedule the transmit */
+ tx_ring->reschedule = B_TRUE;
+
+ return (B_FALSE);
+}
+
+/*
+ * igb_tx_copy
+ *
+ * Copy the mblk fragment to the pre-allocated tx buffer
+ */
+static int
+igb_tx_copy(igb_tx_ring_t *tx_ring, tx_control_block_t *tcb, mblk_t *mp,
+ uint32_t len, boolean_t copy_done, boolean_t eop)
+{
+ dma_buffer_t *tx_buf;
+ uint32_t desc_num;
+ _NOTE(ARGUNUSED(tx_ring));
+
+ tx_buf = &tcb->tx_buf;
+
+ /*
+ * Copy the packet data of the mblk fragment into the
+ * pre-allocated tx buffer, which is maintained by the
+ * tx control block.
+ *
+ * Several mblk fragments can be copied into one tx buffer.
+ * The destination address of the current copied fragment in
+ * the tx buffer is next to the end of the previous copied
+ * fragment.
+ */
+ if (len > 0) {
+ bcopy(mp->b_rptr, tx_buf->address + tx_buf->len, len);
+
+ tx_buf->len += len;
+ tcb->frag_num++;
+ }
+
+ desc_num = 0;
+
+ /*
+ * If it is the last fragment copied to the current tx buffer,
+ * in other words, if there's no remaining fragment or the remaining
+ * fragment requires a new tx control block to process, we need to
+ * complete the current copy processing by syncing up the current
+ * DMA buffer and saving the descriptor data.
+ */
+ if (copy_done) {
+ /*
+ * For the packet smaller than 64 bytes, we need to
+ * pad it to 60 bytes. The NIC hardware will add 4
+ * bytes of CRC.
+ */
+ if (eop && (tx_buf->len < ETHERMIN)) {
+ bzero(tx_buf->address + tx_buf->len,
+ ETHERMIN - tx_buf->len);
+ tx_buf->len = ETHERMIN;
+ }
+
+ /*
+ * Sync the DMA buffer of the packet data
+ */
+ DMA_SYNC(tx_buf, DDI_DMA_SYNC_FORDEV);
+
+ tcb->tx_type = USE_COPY;
+
+ /*
+ * Save the address and length to the private data structure
+ * of the tx control block, which will be used to fill the
+ * tx descriptor ring after all the fragments are processed.
+ */
+ igb_save_desc(tcb, tx_buf->dma_address, tx_buf->len);
+ desc_num++;
+ }
+
+ return (desc_num);
+}
+
+/*
+ * igb_tx_bind
+ *
+ * Bind the mblk fragment with DMA
+ */
+static int
+igb_tx_bind(igb_tx_ring_t *tx_ring, tx_control_block_t *tcb, mblk_t *mp,
+ uint32_t len)
+{
+ int status, i;
+ ddi_dma_cookie_t dma_cookie;
+ uint_t ncookies;
+ int desc_num;
+
+ /*
+ * Use DMA binding to process the mblk fragment
+ */
+ status = ddi_dma_addr_bind_handle(tcb->tx_dma_handle, NULL,
+ (caddr_t)mp->b_rptr, len,
+ DDI_DMA_WRITE | DDI_DMA_STREAMING, DDI_DMA_DONTWAIT,
+ 0, &dma_cookie, &ncookies);
+
+ if (status != DDI_DMA_MAPPED) {
+ IGB_DEBUG_STAT(tx_ring->stat_fail_dma_bind);
+ return (-1);
+ }
+
+ tcb->frag_num++;
+ tcb->tx_type = USE_DMA;
+ /*
+ * Each fragment can span several cookies. One cookie will have
+ * one tx descriptor to transmit.
+ */
+ desc_num = 0;
+ for (i = ncookies; i > 0; i--) {
+ /*
+ * Save the address and length to the private data structure
+ * of the tx control block, which will be used to fill the
+ * tx descriptor ring after all the fragments are processed.
+ */
+ igb_save_desc(tcb,
+ dma_cookie.dmac_laddress,
+ dma_cookie.dmac_size);
+
+ desc_num++;
+
+ if (i > 1)
+ ddi_dma_nextcookie(tcb->tx_dma_handle, &dma_cookie);
+ }
+
+ return (desc_num);
+}
+
+/*
+ * igb_get_hcksum_context
+ *
+ * Get the hcksum context information from the mblk
+ */
+static void
+igb_get_hcksum_context(mblk_t *mp, hcksum_context_t *hcksum)
+{
+ uint32_t start;
+ uint32_t flags;
+ uint32_t len;
+ uint32_t size;
+ uint32_t offset;
+ unsigned char *pos;
+ ushort_t etype;
+ uint32_t mac_hdr_len;
+ uint32_t l4_proto;
+
+ ASSERT(mp != NULL);
+
+ hcksum_retrieve(mp, NULL, NULL, &start, NULL, NULL, NULL, &flags);
+
+ hcksum->hcksum_flags = flags;
+
+ if (flags == 0)
+ return;
+
+ etype = 0;
+ mac_hdr_len = 0;
+ l4_proto = 0;
+
+ /*
+ * Firstly get the position of the ether_type/ether_tpid.
+ * Here we don't assume the ether (VLAN) header is fully included
+ * in one mblk fragment, so we go thourgh the fragments to parse
+ * the ether type.
+ */
+ size = len = MBLK_LEN(mp);
+ offset = offsetof(struct ether_header, ether_type);
+ while (size <= offset) {
+ mp = mp->b_cont;
+ ASSERT(mp != NULL);
+ len = MBLK_LEN(mp);
+ size += len;
+ }
+ pos = mp->b_rptr + offset + len - size;
+
+ etype = ntohs(*(ushort_t *)(uintptr_t)pos);
+ if (etype == ETHERTYPE_VLAN) {
+ /*
+ * Get the position of the ether_type in VLAN header
+ */
+ offset = offsetof(struct ether_vlan_header, ether_type);
+ while (size <= offset) {
+ mp = mp->b_cont;
+ ASSERT(mp != NULL);
+ len = MBLK_LEN(mp);
+ size += len;
+ }
+ pos = mp->b_rptr + offset + len - size;
+
+ etype = ntohs(*(ushort_t *)(uintptr_t)pos);
+ mac_hdr_len = sizeof (struct ether_vlan_header);
+ } else {
+ mac_hdr_len = sizeof (struct ether_header);
+ }
+
+ /*
+ * Here we don't assume the IP(V6) header is fully included in
+ * one mblk fragment, so we go thourgh the fragments to parse
+ * the protocol type.
+ */
+ switch (etype) {
+ case ETHERTYPE_IP:
+ offset = offsetof(ipha_t, ipha_protocol) + mac_hdr_len;
+ while (size <= offset) {
+ mp = mp->b_cont;
+ ASSERT(mp != NULL);
+ len = MBLK_LEN(mp);
+ size += len;
+ }
+ pos = mp->b_rptr + offset + len - size;
+
+ l4_proto = *(uint8_t *)pos;
+ break;
+ case ETHERTYPE_IPV6:
+ offset = offsetof(ip6_t, ip6_nxt) + mac_hdr_len;
+ while (size <= offset) {
+ mp = mp->b_cont;
+ ASSERT(mp != NULL);
+ len = MBLK_LEN(mp);
+ size += len;
+ }
+ pos = mp->b_rptr + offset + len - size;
+
+ l4_proto = *(uint8_t *)pos;
+ break;
+ default:
+ /* Unrecoverable error */
+ IGB_DEBUGLOG_0(NULL, "Ether type error with tx hcksum");
+ return;
+ }
+
+ hcksum->mac_hdr_len = mac_hdr_len;
+ hcksum->ip_hdr_len = start;
+ hcksum->l4_proto = l4_proto;
+}
+
+/*
+ * igb_check_hcksum_context
+ *
+ * Check if a new context descriptor is needed
+ */
+static boolean_t
+igb_check_hcksum_context(igb_tx_ring_t *tx_ring, hcksum_context_t *hcksum)
+{
+ hcksum_context_t *last;
+
+ if (hcksum == NULL)
+ return (B_FALSE);
+
+ /*
+ * Compare the checksum data retrieved from the mblk and the
+ * stored checksum data of the last context descriptor. The data
+ * need to be checked are:
+ * hcksum_flags
+ * l4_proto
+ * mac_hdr_len
+ * ip_hdr_len
+ * Either one of the above data is changed, a new context descriptor
+ * will be needed.
+ */
+ last = &tx_ring->hcksum_context;
+
+ if (hcksum->hcksum_flags != 0) {
+ if ((hcksum->hcksum_flags != last->hcksum_flags) ||
+ (hcksum->l4_proto != last->l4_proto) ||
+ (hcksum->mac_hdr_len != last->mac_hdr_len) ||
+ (hcksum->ip_hdr_len != last->ip_hdr_len)) {
+
+ return (B_TRUE);
+ }
+ }
+
+ return (B_FALSE);
+}
+
+/*
+ * igb_fill_hcksum_context
+ *
+ * Fill the context descriptor with hardware checksum informations
+ */
+static void
+igb_fill_hcksum_context(struct e1000_adv_tx_context_desc *ctx_tbd,
+ hcksum_context_t *hcksum)
+{
+ /*
+ * Fill the context descriptor with the checksum
+ * context information we've got
+ */
+ ctx_tbd->vlan_macip_lens = hcksum->ip_hdr_len;
+ ctx_tbd->vlan_macip_lens |= hcksum->mac_hdr_len <<
+ E1000_ADVTXD_MACLEN_SHIFT;
+
+ ctx_tbd->type_tucmd_mlhl =
+ E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
+
+ if (hcksum->hcksum_flags & HCK_IPV4_HDRCKSUM)
+ ctx_tbd->type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
+
+ if (hcksum->hcksum_flags & HCK_PARTIALCKSUM) {
+ switch (hcksum->l4_proto) {
+ case IPPROTO_TCP:
+ ctx_tbd->type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
+ break;
+ case IPPROTO_UDP:
+ /*
+ * We don't have to explicitly set:
+ * ctx_tbd->type_tucmd_mlhl |=
+ * E1000_ADVTXD_TUCMD_L4T_UDP;
+ * Because E1000_ADVTXD_TUCMD_L4T_UDP == 0b
+ */
+ break;
+ default:
+ /* Unrecoverable error */
+ IGB_DEBUGLOG_0(NULL, "L4 type error with tx hcksum");
+ break;
+ }
+ }
+
+ ctx_tbd->seqnum_seed = 0;
+ ctx_tbd->mss_l4len_idx = 0;
+}
+
+/*
+ * igb_tx_fill_ring
+ *
+ * Fill the tx descriptor ring with the data
+ */
+static int
+igb_tx_fill_ring(igb_tx_ring_t *tx_ring, link_list_t *pending_list,
+ hcksum_context_t *hcksum)
+{
+ struct e1000_hw *hw = &tx_ring->igb->hw;
+ boolean_t load_context;
+ uint32_t index, tcb_index, desc_num;
+ union e1000_adv_tx_desc *tbd, *first_tbd;
+ tx_control_block_t *tcb, *first_tcb;
+ uint32_t hcksum_flags;
+ int i;
+
+ ASSERT(mutex_owned(&tx_ring->tx_lock));
+
+ tbd = NULL;
+ first_tbd = NULL;
+ first_tcb = NULL;
+ desc_num = 0;
+ hcksum_flags = 0;
+ load_context = B_FALSE;
+
+ /*
+ * Get the index of the first tx descriptor that will be filled,
+ * and the index of the first work list item that will be attached
+ * with the first used tx control block in the pending list.
+ * Note: the two indexes are the same.
+ */
+ index = tx_ring->tbd_tail;
+ tcb_index = tx_ring->tbd_tail;
+
+ if (hcksum != NULL) {
+ hcksum_flags = hcksum->hcksum_flags;
+
+ /*
+ * Check if a new context descriptor is needed for this packet
+ */
+ load_context = igb_check_hcksum_context(tx_ring, hcksum);
+ if (load_context) {
+ first_tcb = (tx_control_block_t *)
+ LIST_GET_HEAD(pending_list);
+ tbd = &tx_ring->tbd_ring[index];
+
+ /*
+ * Fill the context descriptor with the
+ * hardware checksum offload informations.
+ */
+ igb_fill_hcksum_context(
+ (struct e1000_adv_tx_context_desc *)tbd, hcksum);
+
+ index = NEXT_INDEX(index, 1, tx_ring->ring_size);
+ desc_num++;
+
+ /*
+ * Store the checksum context data if
+ * a new context descriptor is added
+ */
+ tx_ring->hcksum_context = *hcksum;
+ }
+ }
+
+ first_tbd = &tx_ring->tbd_ring[index];
+
+ /*
+ * Fill tx data descriptors with the data saved in the pending list.
+ * The tx control blocks in the pending list are added to the work list
+ * at the same time.
+ *
+ * The work list is strictly 1:1 corresponding to the descriptor ring.
+ * One item of the work list corresponds to one tx descriptor. Because
+ * one tx control block can span multiple tx descriptors, the tx
+ * control block will be added to the first work list item that
+ * corresponds to the first tx descriptor generated from that tx
+ * control block.
+ */
+ tcb = (tx_control_block_t *)LIST_POP_HEAD(pending_list);
+ while (tcb != NULL) {
+
+ for (i = 0; i < tcb->desc_num; i++) {
+ tbd = &tx_ring->tbd_ring[index];
+
+ tbd->read.buffer_addr = tcb->desc[i].address;
+ tbd->read.cmd_type_len = tcb->desc[i].length;
+
+ tbd->read.cmd_type_len |= E1000_ADVTXD_DCMD_RS |
+ E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_DATA;
+
+ tbd->read.olinfo_status = 0;
+
+ index = NEXT_INDEX(index, 1, tx_ring->ring_size);
+ desc_num++;
+ }
+
+ if (first_tcb != NULL) {
+ /*
+ * Count the checksum context descriptor for
+ * the first tx control block.
+ */
+ first_tcb->desc_num++;
+ first_tcb = NULL;
+ }
+
+ /*
+ * Add the tx control block to the work list
+ */
+ ASSERT(tx_ring->work_list[tcb_index] == NULL);
+ tx_ring->work_list[tcb_index] = tcb;
+
+ tcb_index = index;
+ tcb = (tx_control_block_t *)LIST_POP_HEAD(pending_list);
+ }
+
+ /*
+ * The Insert Ethernet CRC (IFCS) bit and the checksum fields are only
+ * valid in the first descriptor of the packet.
+ */
+ ASSERT(first_tbd != NULL);
+ first_tbd->read.cmd_type_len |= E1000_ADVTXD_DCMD_IFCS;
+
+ /* Set hardware checksum bits */
+ if (hcksum_flags != 0) {
+ if (hcksum_flags & HCK_IPV4_HDRCKSUM)
+ first_tbd->read.olinfo_status |=
+ E1000_TXD_POPTS_IXSM << 8;
+ if (hcksum_flags & HCK_PARTIALCKSUM)
+ first_tbd->read.olinfo_status |=
+ E1000_TXD_POPTS_TXSM << 8;
+ }
+
+ /*
+ * The last descriptor of packet needs End Of Packet (EOP),
+ * and Report Status (RS) bits set
+ */
+ ASSERT(tbd != NULL);
+ tbd->read.cmd_type_len |=
+ E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_RS;
+
+ /*
+ * Sync the DMA buffer of the tx descriptor ring
+ */
+ DMA_SYNC(&tx_ring->tbd_area, DDI_DMA_SYNC_FORDEV);
+
+ /*
+ * Update the number of the free tx descriptors.
+ * The mutual exclusion between the transmission and the recycling
+ * (for the tx descriptor ring and the work list) is implemented
+ * with the atomic operation on the number of the free tx descriptors.
+ *
+ * Note: we should always decrement the counter tbd_free before
+ * advancing the hardware TDT pointer to avoid the race condition -
+ * before the counter tbd_free is decremented, the transmit of the
+ * tx descriptors has done and the counter tbd_free is increased by
+ * the tx recycling.
+ */
+ i = igb_atomic_reserve(&tx_ring->tbd_free, desc_num);
+ ASSERT(i >= 0);
+
+ tx_ring->tbd_tail = index;
+
+ /*
+ * Advance the hardware TDT pointer of the tx descriptor ring
+ */
+ E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), index);
+
+ return (desc_num);
+}
+
+/*
+ * igb_save_desc
+ *
+ * Save the address/length pair to the private array
+ * of the tx control block. The address/length pairs
+ * will be filled into the tx descriptor ring later.
+ */
+static void
+igb_save_desc(tx_control_block_t *tcb, uint64_t address, size_t length)
+{
+ sw_desc_t *desc;
+
+ desc = &tcb->desc[tcb->desc_num];
+ desc->address = address;
+ desc->length = length;
+
+ tcb->desc_num++;
+}
+
+/*
+ * igb_tx_recycle_legacy
+ *
+ * Recycle the tx descriptors and tx control blocks.
+ *
+ * The work list is traversed to check if the corresponding
+ * tx descriptors have been transmitted. If so, the resources
+ * bound to the tx control blocks will be freed, and those
+ * tx control blocks will be returned to the free list.
+ */
+uint32_t
+igb_tx_recycle_legacy(igb_tx_ring_t *tx_ring)
+{
+ uint32_t index, last_index;
+ int desc_num;
+ boolean_t desc_done;
+ tx_control_block_t *tcb;
+ link_list_t pending_list;
+
+ /*
+ * The mutex_tryenter() is used to avoid unnecessary
+ * lock contention.
+ */
+ if (mutex_tryenter(&tx_ring->recycle_lock) == 0)
+ return (0);
+
+ ASSERT(tx_ring->tbd_free <= tx_ring->ring_size);
+
+ if (tx_ring->tbd_free == tx_ring->ring_size) {
+ tx_ring->recycle_fail = 0;
+ tx_ring->stall_watchdog = 0;
+ mutex_exit(&tx_ring->recycle_lock);
+ return (0);
+ }
+
+ /*
+ * Sync the DMA buffer of the tx descriptor ring
+ */
+ DMA_SYNC(&tx_ring->tbd_area, DDI_DMA_SYNC_FORKERNEL);
+
+ LINK_LIST_INIT(&pending_list);
+ desc_num = 0;
+ index = tx_ring->tbd_head; /* Index of next tbd/tcb to recycle */
+
+ tcb = tx_ring->work_list[index];
+ ASSERT(tcb != NULL);
+
+ desc_done = B_TRUE;
+ while (desc_done && (tcb != NULL)) {
+
+ /*
+ * Get the last tx descriptor of the tx control block.
+ * If the last tx descriptor is done, it is done with
+ * all the tx descriptors of the tx control block.
+ * Then the tx control block and all the corresponding
+ * tx descriptors can be recycled.
+ */
+ last_index = NEXT_INDEX(index, tcb->desc_num - 1,
+ tx_ring->ring_size);
+
+ /*
+ * Check if the Descriptor Done bit is set
+ */
+ desc_done = tx_ring->tbd_ring[last_index].wb.status &
+ E1000_TXD_STAT_DD;
+ if (desc_done) {
+ /*
+ * Strip off the tx control block from the work list,
+ * and add it to the pending list.
+ */
+ tx_ring->work_list[index] = NULL;
+ LIST_PUSH_TAIL(&pending_list, &tcb->link);
+
+ /*
+ * Count the total number of the tx descriptors recycled
+ */
+ desc_num += tcb->desc_num;
+
+ /*
+ * Advance the index of the tx descriptor ring
+ */
+ index = NEXT_INDEX(last_index, 1, tx_ring->ring_size);
+
+ tcb = tx_ring->work_list[index];
+ }
+ }
+
+ /*
+ * If no tx descriptors are recycled, no need to do more processing
+ */
+ if (desc_num == 0) {
+ tx_ring->recycle_fail++;
+ mutex_exit(&tx_ring->recycle_lock);
+ return (0);
+ }
+
+ tx_ring->recycle_fail = 0;
+ tx_ring->stall_watchdog = 0;
+
+ /*
+ * Update the head index of the tx descriptor ring
+ */
+ tx_ring->tbd_head = index;
+
+ /*
+ * Update the number of the free tx descriptors with atomic operations
+ */
+ atomic_add_32(&tx_ring->tbd_free, desc_num);
+
+ mutex_exit(&tx_ring->recycle_lock);
+
+ /*
+ * Free the resources used by the tx control blocks
+ * in the pending list
+ */
+ tcb = (tx_control_block_t *)LIST_GET_HEAD(&pending_list);
+ while (tcb != NULL) {
+ /*
+ * Release the resources occupied by the tx control block
+ */
+ igb_free_tcb(tcb);
+
+ tcb = (tx_control_block_t *)
+ LIST_GET_NEXT(&pending_list, &tcb->link);
+ }
+
+ /*
+ * Add the tx control blocks in the pending list to the free list.
+ */
+ igb_put_free_list(tx_ring, &pending_list);
+
+ return (desc_num);
+}
+
+/*
+ * igb_tx_recycle_head_wb
+ *
+ * Check the head write-back, and recycle all the transmitted
+ * tx descriptors and tx control blocks.
+ */
+uint32_t
+igb_tx_recycle_head_wb(igb_tx_ring_t *tx_ring)
+{
+ uint32_t index;
+ uint32_t head_wb;
+ int desc_num;
+ tx_control_block_t *tcb;
+ link_list_t pending_list;
+
+ /*
+ * The mutex_tryenter() is used to avoid unnecessary
+ * lock contention.
+ */
+ if (mutex_tryenter(&tx_ring->recycle_lock) == 0)
+ return (0);
+
+ ASSERT(tx_ring->tbd_free <= tx_ring->ring_size);
+
+ if (tx_ring->tbd_free == tx_ring->ring_size) {
+ tx_ring->recycle_fail = 0;
+ tx_ring->stall_watchdog = 0;
+ mutex_exit(&tx_ring->recycle_lock);
+ return (0);
+ }
+
+ /*
+ * Sync the DMA buffer of the tx descriptor ring
+ *
+ * Note: For head write-back mode, the tx descriptors will not
+ * be written back, but the head write-back value is stored at
+ * the last extra tbd at the end of the DMA area, we still need
+ * to sync the head write-back value for kernel.
+ *
+ * DMA_SYNC(&tx_ring->tbd_area, DDI_DMA_SYNC_FORKERNEL);
+ */
+ (void) ddi_dma_sync(tx_ring->tbd_area.dma_handle,
+ sizeof (union e1000_adv_tx_desc) * tx_ring->ring_size,
+ sizeof (uint32_t),
+ DDI_DMA_SYNC_FORKERNEL);
+
+ LINK_LIST_INIT(&pending_list);
+ desc_num = 0;
+ index = tx_ring->tbd_head; /* Next index to clean */
+
+ /*
+ * Get the value of head write-back
+ */
+ head_wb = *tx_ring->tbd_head_wb;
+ while (index != head_wb) {
+ tcb = tx_ring->work_list[index];
+ ASSERT(tcb != NULL);
+
+ if (OFFSET(index, head_wb, tx_ring->ring_size) <
+ tcb->desc_num) {
+ /*
+ * The current tx control block is not
+ * completely transmitted, stop recycling
+ */
+ break;
+ }
+
+ /*
+ * Strip off the tx control block from the work list,
+ * and add it to the pending list.
+ */
+ tx_ring->work_list[index] = NULL;
+ LIST_PUSH_TAIL(&pending_list, &tcb->link);
+
+ /*
+ * Advance the index of the tx descriptor ring
+ */
+ index = NEXT_INDEX(index, tcb->desc_num, tx_ring->ring_size);
+
+ /*
+ * Count the total number of the tx descriptors recycled
+ */
+ desc_num += tcb->desc_num;
+ }
+
+ /*
+ * If no tx descriptors are recycled, no need to do more processing
+ */
+ if (desc_num == 0) {
+ tx_ring->recycle_fail++;
+ mutex_exit(&tx_ring->recycle_lock);
+ return (0);
+ }
+
+ tx_ring->recycle_fail = 0;
+ tx_ring->stall_watchdog = 0;
+
+ /*
+ * Update the head index of the tx descriptor ring
+ */
+ tx_ring->tbd_head = index;
+
+ /*
+ * Update the number of the free tx descriptors with atomic operations
+ */
+ atomic_add_32(&tx_ring->tbd_free, desc_num);
+
+ mutex_exit(&tx_ring->recycle_lock);
+
+ /*
+ * Free the resources used by the tx control blocks
+ * in the pending list
+ */
+ tcb = (tx_control_block_t *)LIST_GET_HEAD(&pending_list);
+ while (tcb) {
+ /*
+ * Release the resources occupied by the tx control block
+ */
+ igb_free_tcb(tcb);
+
+ tcb = (tx_control_block_t *)
+ LIST_GET_NEXT(&pending_list, &tcb->link);
+ }
+
+ /*
+ * Add the tx control blocks in the pending list to the free list.
+ */
+ igb_put_free_list(tx_ring, &pending_list);
+
+ return (desc_num);
+}
+
+/*
+ * igb_free_tcb - free up the tx control block
+ *
+ * Free the resources of the tx control block, including
+ * unbind the previously bound DMA handle, and reset other
+ * control fields.
+ */
+void
+igb_free_tcb(tx_control_block_t *tcb)
+{
+ switch (tcb->tx_type) {
+ case USE_COPY:
+ /*
+ * Reset the buffer length that is used for copy
+ */
+ tcb->tx_buf.len = 0;
+ break;
+ case USE_DMA:
+ /*
+ * Release the DMA resource that is used for
+ * DMA binding.
+ */
+ (void) ddi_dma_unbind_handle(tcb->tx_dma_handle);
+ break;
+ default:
+ break;
+ }
+
+ /*
+ * Free the mblk
+ */
+ if (tcb->mp != NULL) {
+ freemsg(tcb->mp);
+ tcb->mp = NULL;
+ }
+
+ tcb->tx_type = USE_NONE;
+ tcb->frag_num = 0;
+ tcb->desc_num = 0;
+}
+
+/*
+ * igb_get_free_list - Get a free tx control block from the free list
+ *
+ * The atomic operation on the number of the available tx control block
+ * in the free list is used to keep this routine mutual exclusive with
+ * the routine igb_put_check_list.
+ */
+static tx_control_block_t *
+igb_get_free_list(igb_tx_ring_t *tx_ring)
+{
+ tx_control_block_t *tcb;
+
+ /*
+ * Check and update the number of the free tx control block
+ * in the free list.
+ */
+ if (igb_atomic_reserve(&tx_ring->tcb_free, 1) < 0)
+ return (NULL);
+
+ mutex_enter(&tx_ring->tcb_head_lock);
+
+ tcb = tx_ring->free_list[tx_ring->tcb_head];
+ ASSERT(tcb != NULL);
+ tx_ring->free_list[tx_ring->tcb_head] = NULL;
+ tx_ring->tcb_head = NEXT_INDEX(tx_ring->tcb_head, 1,
+ tx_ring->free_list_size);
+
+ mutex_exit(&tx_ring->tcb_head_lock);
+
+ return (tcb);
+}
+
+/*
+ * igb_put_free_list
+ *
+ * Put a list of used tx control blocks back to the free list
+ *
+ * A mutex is used here to ensure the serialization. The mutual exclusion
+ * between igb_get_free_list and igb_put_free_list is implemented with
+ * the atomic operation on the counter tcb_free.
+ */
+void
+igb_put_free_list(igb_tx_ring_t *tx_ring, link_list_t *pending_list)
+{
+ uint32_t index;
+ int tcb_num;
+ tx_control_block_t *tcb;
+
+ mutex_enter(&tx_ring->tcb_tail_lock);
+
+ index = tx_ring->tcb_tail;
+
+ tcb_num = 0;
+ tcb = (tx_control_block_t *)LIST_POP_HEAD(pending_list);
+ while (tcb != NULL) {
+ ASSERT(tx_ring->free_list[index] == NULL);
+ tx_ring->free_list[index] = tcb;
+
+ tcb_num++;
+
+ index = NEXT_INDEX(index, 1, tx_ring->free_list_size);
+
+ tcb = (tx_control_block_t *)LIST_POP_HEAD(pending_list);
+ }
+
+ tx_ring->tcb_tail = index;
+
+ /*
+ * Update the number of the free tx control block
+ * in the free list. This operation must be placed
+ * under the protection of the lock.
+ */
+ atomic_add_32(&tx_ring->tcb_free, tcb_num);
+
+ mutex_exit(&tx_ring->tcb_tail_lock);
+}
diff --git a/usr/src/uts/intel/Makefile.intel.shared b/usr/src/uts/intel/Makefile.intel.shared
index 39d95c1fca..891f268c4c 100644
--- a/usr/src/uts/intel/Makefile.intel.shared
+++ b/usr/src/uts/intel/Makefile.intel.shared
@@ -354,6 +354,7 @@ DRV_KMODS += nge
DRV_KMODS += rge
DRV_KMODS += sfe
DRV_KMODS += amd8111s
+DRV_KMODS += igb
$(CLOSED_BUILD)CLOSED_DRV_KMODS += ixgb
#
diff --git a/usr/src/uts/intel/igb/Makefile b/usr/src/uts/intel/igb/Makefile
new file mode 100644
index 0000000000..72ff7af3c7
--- /dev/null
+++ b/usr/src/uts/intel/igb/Makefile
@@ -0,0 +1,90 @@
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+#
+# Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms.
+#
+# ident "%Z%%M% %I% %E% SMI"
+#
+# uts/intel/igb/Makefile
+#
+# This makefile drives the production of the igb
+# network driver kernel module.
+#
+# intel architecture dependent
+#
+
+#
+# Paths to the base of the uts directory trees
+#
+UTSBASE = ../..
+
+#
+# Define the module and object file sets.
+#
+MODULE = igb
+OBJECTS = $(IGB_OBJS:%=$(OBJS_DIR)/%)
+LINTS = $(IGB_OBJS:%.o=$(LINTS_DIR)/%.ln)
+ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE)
+CONF_SRCDIR = $(UTSBASE)/common/io/igb
+
+#
+# Include common rules.
+#
+include $(UTSBASE)/intel/Makefile.intel
+
+#
+# Define targets
+#
+ALL_TARGET = $(BINARY) $(CONFMOD)
+LINT_TARGET = $(MODULE).lint
+INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOT_CONFFILE)
+
+#
+# Driver depends on MAC & IP
+#
+LDFLAGS += -dy -N misc/mac -N drv/ip
+
+#
+# Default build targets.
+#
+.KEEP_STATE:
+
+def: $(DEF_DEPS)
+
+all: $(ALL_DEPS)
+
+clean: $(CLEAN_DEPS)
+
+clobber: $(CLOBBER_DEPS)
+
+lint: $(LINT_DEPS)
+
+modlintlib: $(MODLINTLIB_DEPS)
+
+clean.lint: $(CLEAN_LINT_DEPS)
+
+install: $(INSTALL_DEPS)
+
+#
+# Include common targets.
+#
+include $(UTSBASE)/intel/Makefile.targ
diff --git a/usr/src/uts/sparc/Makefile.sparc.shared b/usr/src/uts/sparc/Makefile.sparc.shared
index 93edd00412..d747b59a74 100644
--- a/usr/src/uts/sparc/Makefile.sparc.shared
+++ b/usr/src/uts/sparc/Makefile.sparc.shared
@@ -262,6 +262,7 @@ DRV_KMODS += pcwl
DRV_KMODS += rge
DRV_KMODS += sfe
DRV_KMODS += aac
+DRV_KMODS += igb
$(CLOSED_BUILD)CLOSED_DRV_KMODS += ixgb
#
diff --git a/usr/src/uts/sparc/igb/Makefile b/usr/src/uts/sparc/igb/Makefile
new file mode 100644
index 0000000000..4183caf54b
--- /dev/null
+++ b/usr/src/uts/sparc/igb/Makefile
@@ -0,0 +1,106 @@
+#
+# CDDL HEADER START
+#
+# The contents of this file are subject to the terms of the
+# Common Development and Distribution License (the "License").
+# You may not use this file except in compliance with the License.
+#
+# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+# or http://www.opensolaris.org/os/licensing.
+# See the License for the specific language governing permissions
+# and limitations under the License.
+#
+# When distributing Covered Code, include this CDDL HEADER in each
+# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+# If applicable, add the following below this CDDL HEADER, with the
+# fields enclosed by brackets "[]" replaced with your own identifying
+# information: Portions Copyright [yyyy] [name of copyright owner]
+#
+# CDDL HEADER END
+#
+#
+# Copyright 2008 Sun Microsystems, Inc. All rights reserved.
+# Use is subject to license terms.
+#
+# ident "%Z%%M% %I% %E% SMI"
+#
+# uts/sparc/igb/Makefile
+#
+# This makefile drives the production of the igb
+# network driver kernel module.
+#
+# intel architecture dependent
+#
+
+#
+# Path to the base of the uts directory tree (usually /usr/src/uts).
+#
+UTSBASE = ../..
+
+#
+# Define the module and object file sets.
+#
+MODULE = igb
+OBJECTS = $(IGB_OBJS:%=$(OBJS_DIR)/%)
+LINTS = $(IGB_OBJS:%.o=$(LINTS_DIR)/%.ln)
+ROOTMODULE = $(ROOT_DRV_DIR)/$(MODULE)
+CONF_SRCDIR = $(UTSBASE)/common/io/igb
+
+#
+# Include common rules.
+#
+include $(UTSBASE)/sparc/Makefile.sparc
+
+#
+# Define targets
+#
+ALL_TARGET = $(BINARY) $(SRC_CONFFILE)
+LINT_TARGET = $(MODULE).lint
+INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOT_CONFFILE)
+
+#
+# Override defaults
+#
+INC_PATH += -I$(CONF_SRCDIR)
+
+#
+# lint pass one enforcement
+#
+CFLAGS += $(CCVERBOSE)
+
+#
+# Turn on doubleword alignment for 64 bit registers
+#
+CFLAGS += -dalign
+
+#
+# Driver depends on MAC & IP
+#
+LDFLAGS += -dy -N misc/mac -N drv/ip
+
+#
+# Default build targets.
+#
+.KEEP_STATE:
+
+def: $(DEF_DEPS)
+
+all: $(ALL_DEPS)
+
+clean: $(CLEAN_DEPS)
+
+clobber: $(CLOBBER_DEPS)
+
+lint: $(LINT_DEPS)
+
+modlintlib: $(MODLINTLIB_DEPS)
+
+clean.lint: $(CLEAN_LINT_DEPS)
+
+install: $(INSTALL_DEPS)
+
+#
+# Include common targets.
+#
+include $(UTSBASE)/sparc/Makefile.targ
+