diff options
Diffstat (limited to 'usr/src/lib/libm/common/C/log10.c')
-rw-r--r-- | usr/src/lib/libm/common/C/log10.c | 218 |
1 files changed, 218 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/C/log10.c b/usr/src/lib/libm/common/C/log10.c new file mode 100644 index 0000000000..edbb230ceb --- /dev/null +++ b/usr/src/lib/libm/common/C/log10.c @@ -0,0 +1,218 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ +/* + * Copyright 2011 Nexenta Systems, Inc. All rights reserved. + */ +/* + * Copyright 2005 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#pragma weak log10 = __log10 + +/* INDENT OFF */ +/* + * log10(x) = log(x)/log10 + * + * Base on Table look-up algorithm with product polynomial + * approximation for log(x). + * + * By K.C. Ng, Nov 29, 2004 + * + * (a). For x in [1-0.125, 1+0.125], from log.c we have + * log(x) = f + ((a1*f^2) * + * ((a2 + (a3*f)*(a4+f)) + (f^3)*(a5+f))) * + * (((a6 + f*(a7+f)) + (f^3)*(a8+f)) * + * ((a9 + (a10*f)*(a11+f)) + (f^3)*(a12+f))) + * where f = x - 1. + * (i) modify a1 <- a1 / log10 + * (ii) 1/log10 = 0.4342944819... + * = 0.4375 - 0.003205518... (7 bit shift) + * Let lgv = 0.4375 - 1/log10, then + * lgv = 0.003205518096748172348871081083395..., + * (iii) f*0.4375 is exact because f has 3 trailing zero. + * (iv) Thus, log10(x) = f*0.4375 - (lgv*f - PPoly) + * + * (b). For 0.09375 <= x < 24 + * Let j = (ix - 0x3fb80000) >> 15. Look up Y[j], 1/Y[j], and log(Y[j]) + * from _TBL_log.c. Then + * log10(x) = log10(Y[j]) + log10(1 + (x-Y[j])*(1/Y[j])) + * = log(Y[j])(1/log10) + log10(1 + s) + * where + * s = (x-Y[j])*(1/Y[j]) + * From log.c, we have log(1+s) = + * 2 2 2 + * (b s) (b + b s + s ) [b + b s + s (b + s)] (b + b s + s ) + * 1 2 3 4 5 6 7 8 + * + * By setting b1 <- b1/log10, we have + * log10(x) = 0.4375 * T - (lgv * T - POLY(s)) + * + * (c). Otherwise, get "n", the exponent of x, and then normalize x to + * z in [1,2). Then similar to (b) find a Y[i] that matches z to 5.5 + * significant bits. Then + * log(x) = n*ln2 + log(Y[i]) + log(z/Y[i]). + * log10(x) = n*(ln2/ln10) + log10(z). + * + * Special cases: + * log10(x) is NaN with signal if x < 0 (including -INF) ; + * log10(+INF) is +INF; log10(0) is -INF with signal; + * log10(NaN) is that NaN with no signal. + * + * Maximum error observed: less than 0.89 ulp + * + * Constants: + * The hexadecimal values are the intended ones for the following constants. + * The decimal values may be used, provided that the compiler will convert + * from decimal to binary accurately enough to produce the hexadecimal values + * shown. + */ +/* INDENT ON */ + +#include "libm.h" + +extern const double _TBL_log[]; + +static const double P[] = { +/* ONE */ 1.0, +/* TWO52 */ 4503599627370496.0, +/* LNAHI */ 3.01029995607677847147e-01, /* 3FD34413 50900000 */ +/* LNALO */ 5.63033480667509769841e-11, /* 3DCEF3FD E623E256 */ +/* A1 */ -2.9142521960136582507385480707044582802184e-02, +/* A2 */ 1.99628461483039965074226529395673424005508422852e+0000, +/* A3 */ 2.26812367662950720159642514772713184356689453125e+0000, +/* A4 */ -9.05030639084976384900471657601883634924888610840e-0001, +/* A5 */ -1.48275767132434044270894446526654064655303955078e+0000, +/* A6 */ 1.88158320939722756293122074566781520843505859375e+0000, +/* A7 */ 1.83309386046986411145098827546462416648864746094e+0000, +/* A8 */ 1.24847063988317086291601754055591300129890441895e+0000, +/* A9 */ 1.98372421445537705508854742220137268304824829102e+0000, +/* A10 */ -3.94711735767898475035764249696512706577777862549e-0001, +/* A11 */ 3.07890395362954372160402272129431366920471191406e+0000, +/* A12 */ -9.60099585275022149311041630426188930869102478027e-0001, +/* B1 */ -5.4304894950350052960838096752491540286689e-02, +/* B2 */ 1.87161713283355151891381127914642725337613123482e+0000, +/* B3 */ -1.89082956295731507978530316904652863740921020508e+0000, +/* B4 */ -2.50562891673640253387134180229622870683670043945e+0000, +/* B5 */ 1.64822828085258366037635369139024987816810607910e+0000, +/* B6 */ -1.24409107065868340669112512841820716857910156250e+0000, +/* B7 */ 1.70534231658220414296067701798165217041969299316e+0000, +/* B8 */ 1.99196833784655646937267192697618156671524047852e+0000, +/* LGH */ 0.4375, +/* LGL */ 0.003205518096748172348871081083395, +/* LG10V */ 0.43429448190325182765112891891660509576226, +}; + +#define ONE P[0] +#define TWO52 P[1] +#define LNAHI P[2] +#define LNALO P[3] +#define A1 P[4] +#define A2 P[5] +#define A3 P[6] +#define A4 P[7] +#define A5 P[8] +#define A6 P[9] +#define A7 P[10] +#define A8 P[11] +#define A9 P[12] +#define A10 P[13] +#define A11 P[14] +#define A12 P[15] +#define B1 P[16] +#define B2 P[17] +#define B3 P[18] +#define B4 P[19] +#define B5 P[20] +#define B6 P[21] +#define B7 P[22] +#define B8 P[23] +#define LGH P[24] +#define LGL P[25] +#define LG10V P[26] + +double +log10(double x) { + double *tb, dn, dn1, s, z, r, w; + int i, hx, ix, n, lx; + + n = 0; + hx = ((int *)&x)[HIWORD]; + ix = hx & 0x7fffffff; + lx = ((int *)&x)[LOWORD]; + + /* subnormal,0,negative,inf,nan */ + if ((hx + 0x100000) < 0x200000) { + if (ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0)) /* nan */ + return (x * x); + if (((hx << 1) | lx) == 0) /* zero */ + return (_SVID_libm_err(x, x, 18)); + if (hx < 0) /* negative */ + return (_SVID_libm_err(x, x, 19)); + if (((hx - 0x7ff00000) | lx) == 0) /* +inf */ + return (x); + + /* x must be positive and subnormal */ + x *= TWO52; + n = -52; + ix = ((int *)&x)[HIWORD]; + lx = ((int *)&x)[LOWORD]; + } + + i = ix >> 19; + if (i >= 0x7f7 && i <= 0x806) { + /* 0.09375 (0x3fb80000) <= x < 24 (0x40380000) */ + if (ix >= 0x3fec0000 && ix < 0x3ff20000) { + /* 0.875 <= x < 1.125 */ + s = x - ONE; + z = s * s; + if (((ix - 0x3ff00000) | lx) == 0) /* x = 1 */ + return (z); + r = (A10 * s) * (A11 + s); + w = z * s; + return (LGH * s - (LGL * s - ((A1 * z) * + ((A2 + (A3 * s) * (A4 + s)) + w * (A5 + s))) * + (((A6 + s * (A7 + s)) + w * (A8 + s)) * + ((A9 + r) + w * (A12 + s))))); + } else { + i = (ix - 0x3fb80000) >> 15; + tb = (double *)_TBL_log + (i + i + i); + s = (x - tb[0]) * tb[1]; + return (LGH * tb[2] - (LGL * tb[2] - ((B1 * s) * + (B2 + s * (B3 + s))) * + (((B4 + s * B5) + (s * s) * (B6 + s)) * + (B7 + s * (B8 + s))))); + } + } else { + dn = (double)(n + ((ix >> 20) - 0x3ff)); + dn1 = dn * LNAHI; + i = (ix & 0x000fffff) | 0x3ff00000; /* scale x to [1,2] */ + ((int *)&x)[HIWORD] = i; + i = (i - 0x3fb80000) >> 15; + tb = (double *)_TBL_log + (i + i + i); + s = (x - tb[0]) * tb[1]; + dn = dn * LNALO + tb[2] * LG10V; + return (dn1 + (dn + ((B1 * s) * + (B2 + s * (B3 + s))) * + (((B4 + s * B5) + (s * s) * (B6 + s)) * + (B7 + s * (B8 + s))))); + } +} |