summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/C/log10.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/lib/libm/common/C/log10.c')
-rw-r--r--usr/src/lib/libm/common/C/log10.c218
1 files changed, 218 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/C/log10.c b/usr/src/lib/libm/common/C/log10.c
new file mode 100644
index 0000000000..edbb230ceb
--- /dev/null
+++ b/usr/src/lib/libm/common/C/log10.c
@@ -0,0 +1,218 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
+ */
+/*
+ * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma weak log10 = __log10
+
+/* INDENT OFF */
+/*
+ * log10(x) = log(x)/log10
+ *
+ * Base on Table look-up algorithm with product polynomial
+ * approximation for log(x).
+ *
+ * By K.C. Ng, Nov 29, 2004
+ *
+ * (a). For x in [1-0.125, 1+0.125], from log.c we have
+ * log(x) = f + ((a1*f^2) *
+ * ((a2 + (a3*f)*(a4+f)) + (f^3)*(a5+f))) *
+ * (((a6 + f*(a7+f)) + (f^3)*(a8+f)) *
+ * ((a9 + (a10*f)*(a11+f)) + (f^3)*(a12+f)))
+ * where f = x - 1.
+ * (i) modify a1 <- a1 / log10
+ * (ii) 1/log10 = 0.4342944819...
+ * = 0.4375 - 0.003205518... (7 bit shift)
+ * Let lgv = 0.4375 - 1/log10, then
+ * lgv = 0.003205518096748172348871081083395...,
+ * (iii) f*0.4375 is exact because f has 3 trailing zero.
+ * (iv) Thus, log10(x) = f*0.4375 - (lgv*f - PPoly)
+ *
+ * (b). For 0.09375 <= x < 24
+ * Let j = (ix - 0x3fb80000) >> 15. Look up Y[j], 1/Y[j], and log(Y[j])
+ * from _TBL_log.c. Then
+ * log10(x) = log10(Y[j]) + log10(1 + (x-Y[j])*(1/Y[j]))
+ * = log(Y[j])(1/log10) + log10(1 + s)
+ * where
+ * s = (x-Y[j])*(1/Y[j])
+ * From log.c, we have log(1+s) =
+ * 2 2 2
+ * (b s) (b + b s + s ) [b + b s + s (b + s)] (b + b s + s )
+ * 1 2 3 4 5 6 7 8
+ *
+ * By setting b1 <- b1/log10, we have
+ * log10(x) = 0.4375 * T - (lgv * T - POLY(s))
+ *
+ * (c). Otherwise, get "n", the exponent of x, and then normalize x to
+ * z in [1,2). Then similar to (b) find a Y[i] that matches z to 5.5
+ * significant bits. Then
+ * log(x) = n*ln2 + log(Y[i]) + log(z/Y[i]).
+ * log10(x) = n*(ln2/ln10) + log10(z).
+ *
+ * Special cases:
+ * log10(x) is NaN with signal if x < 0 (including -INF) ;
+ * log10(+INF) is +INF; log10(0) is -INF with signal;
+ * log10(NaN) is that NaN with no signal.
+ *
+ * Maximum error observed: less than 0.89 ulp
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+/* INDENT ON */
+
+#include "libm.h"
+
+extern const double _TBL_log[];
+
+static const double P[] = {
+/* ONE */ 1.0,
+/* TWO52 */ 4503599627370496.0,
+/* LNAHI */ 3.01029995607677847147e-01, /* 3FD34413 50900000 */
+/* LNALO */ 5.63033480667509769841e-11, /* 3DCEF3FD E623E256 */
+/* A1 */ -2.9142521960136582507385480707044582802184e-02,
+/* A2 */ 1.99628461483039965074226529395673424005508422852e+0000,
+/* A3 */ 2.26812367662950720159642514772713184356689453125e+0000,
+/* A4 */ -9.05030639084976384900471657601883634924888610840e-0001,
+/* A5 */ -1.48275767132434044270894446526654064655303955078e+0000,
+/* A6 */ 1.88158320939722756293122074566781520843505859375e+0000,
+/* A7 */ 1.83309386046986411145098827546462416648864746094e+0000,
+/* A8 */ 1.24847063988317086291601754055591300129890441895e+0000,
+/* A9 */ 1.98372421445537705508854742220137268304824829102e+0000,
+/* A10 */ -3.94711735767898475035764249696512706577777862549e-0001,
+/* A11 */ 3.07890395362954372160402272129431366920471191406e+0000,
+/* A12 */ -9.60099585275022149311041630426188930869102478027e-0001,
+/* B1 */ -5.4304894950350052960838096752491540286689e-02,
+/* B2 */ 1.87161713283355151891381127914642725337613123482e+0000,
+/* B3 */ -1.89082956295731507978530316904652863740921020508e+0000,
+/* B4 */ -2.50562891673640253387134180229622870683670043945e+0000,
+/* B5 */ 1.64822828085258366037635369139024987816810607910e+0000,
+/* B6 */ -1.24409107065868340669112512841820716857910156250e+0000,
+/* B7 */ 1.70534231658220414296067701798165217041969299316e+0000,
+/* B8 */ 1.99196833784655646937267192697618156671524047852e+0000,
+/* LGH */ 0.4375,
+/* LGL */ 0.003205518096748172348871081083395,
+/* LG10V */ 0.43429448190325182765112891891660509576226,
+};
+
+#define ONE P[0]
+#define TWO52 P[1]
+#define LNAHI P[2]
+#define LNALO P[3]
+#define A1 P[4]
+#define A2 P[5]
+#define A3 P[6]
+#define A4 P[7]
+#define A5 P[8]
+#define A6 P[9]
+#define A7 P[10]
+#define A8 P[11]
+#define A9 P[12]
+#define A10 P[13]
+#define A11 P[14]
+#define A12 P[15]
+#define B1 P[16]
+#define B2 P[17]
+#define B3 P[18]
+#define B4 P[19]
+#define B5 P[20]
+#define B6 P[21]
+#define B7 P[22]
+#define B8 P[23]
+#define LGH P[24]
+#define LGL P[25]
+#define LG10V P[26]
+
+double
+log10(double x) {
+ double *tb, dn, dn1, s, z, r, w;
+ int i, hx, ix, n, lx;
+
+ n = 0;
+ hx = ((int *)&x)[HIWORD];
+ ix = hx & 0x7fffffff;
+ lx = ((int *)&x)[LOWORD];
+
+ /* subnormal,0,negative,inf,nan */
+ if ((hx + 0x100000) < 0x200000) {
+ if (ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0)) /* nan */
+ return (x * x);
+ if (((hx << 1) | lx) == 0) /* zero */
+ return (_SVID_libm_err(x, x, 18));
+ if (hx < 0) /* negative */
+ return (_SVID_libm_err(x, x, 19));
+ if (((hx - 0x7ff00000) | lx) == 0) /* +inf */
+ return (x);
+
+ /* x must be positive and subnormal */
+ x *= TWO52;
+ n = -52;
+ ix = ((int *)&x)[HIWORD];
+ lx = ((int *)&x)[LOWORD];
+ }
+
+ i = ix >> 19;
+ if (i >= 0x7f7 && i <= 0x806) {
+ /* 0.09375 (0x3fb80000) <= x < 24 (0x40380000) */
+ if (ix >= 0x3fec0000 && ix < 0x3ff20000) {
+ /* 0.875 <= x < 1.125 */
+ s = x - ONE;
+ z = s * s;
+ if (((ix - 0x3ff00000) | lx) == 0) /* x = 1 */
+ return (z);
+ r = (A10 * s) * (A11 + s);
+ w = z * s;
+ return (LGH * s - (LGL * s - ((A1 * z) *
+ ((A2 + (A3 * s) * (A4 + s)) + w * (A5 + s))) *
+ (((A6 + s * (A7 + s)) + w * (A8 + s)) *
+ ((A9 + r) + w * (A12 + s)))));
+ } else {
+ i = (ix - 0x3fb80000) >> 15;
+ tb = (double *)_TBL_log + (i + i + i);
+ s = (x - tb[0]) * tb[1];
+ return (LGH * tb[2] - (LGL * tb[2] - ((B1 * s) *
+ (B2 + s * (B3 + s))) *
+ (((B4 + s * B5) + (s * s) * (B6 + s)) *
+ (B7 + s * (B8 + s)))));
+ }
+ } else {
+ dn = (double)(n + ((ix >> 20) - 0x3ff));
+ dn1 = dn * LNAHI;
+ i = (ix & 0x000fffff) | 0x3ff00000; /* scale x to [1,2] */
+ ((int *)&x)[HIWORD] = i;
+ i = (i - 0x3fb80000) >> 15;
+ tb = (double *)_TBL_log + (i + i + i);
+ s = (x - tb[0]) * tb[1];
+ dn = dn * LNALO + tb[2] * LG10V;
+ return (dn1 + (dn + ((B1 * s) *
+ (B2 + s * (B3 + s))) *
+ (((B4 + s * B5) + (s * s) * (B6 + s)) *
+ (B7 + s * (B8 + s)))));
+ }
+}