summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/complex/cacos.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/lib/libm/common/complex/cacos.c')
-rw-r--r--usr/src/lib/libm/common/complex/cacos.c404
1 files changed, 404 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/complex/cacos.c b/usr/src/lib/libm/common/complex/cacos.c
new file mode 100644
index 0000000000..4fccae23bb
--- /dev/null
+++ b/usr/src/lib/libm/common/complex/cacos.c
@@ -0,0 +1,404 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
+ */
+/*
+ * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma weak cacos = __cacos
+
+/* INDENT OFF */
+/*
+ * dcomplex cacos(dcomplex z);
+ *
+ * Alogrithm
+ * (based on T.E.Hull, Thomas F. Fairgrieve and Ping Tak Peter Tang's
+ * paper "Implementing the Complex Arcsine and Arccosine Functins Using
+ * Exception Handling", ACM TOMS, Vol 23, pp 299-335)
+ *
+ * The principal value of complex inverse cosine function cacos(z),
+ * where z = x+iy, can be defined by
+ *
+ * cacos(z) = acos(B) - i sign(y) log (A + sqrt(A*A-1)),
+ *
+ * where the log function is the natural log, and
+ * ____________ ____________
+ * 1 / 2 2 1 / 2 2
+ * A = --- / (x+1) + y + --- / (x-1) + y
+ * 2 \/ 2 \/
+ * ____________ ____________
+ * 1 / 2 2 1 / 2 2
+ * B = --- / (x+1) + y - --- / (x-1) + y .
+ * 2 \/ 2 \/
+ *
+ * The Branch cuts are on the real line from -inf to -1 and from 1 to inf.
+ * The real and imaginary parts are based on Abramowitz and Stegun
+ * [Handbook of Mathematic Functions, 1972]. The sign of the imaginary
+ * part is chosen to be the generally considered the principal value of
+ * this function.
+ *
+ * Notes:1. A is the average of the distances from z to the points (1,0)
+ * and (-1,0) in the complex z-plane, and in particular A>=1.
+ * 2. B is in [-1,1], and A*B = x
+ *
+ * Basic relations
+ * cacos(conj(z)) = conj(cacos(z))
+ * cacos(-z) = pi - cacos(z)
+ * cacos( z) = pi/2 - casin(z)
+ *
+ * Special cases (conform to ISO/IEC 9899:1999(E)):
+ * cacos(+-0 + i y ) = pi/2 - i y for y is +-0, +-inf, NaN
+ * cacos( x + i inf) = pi/2 - i inf for all x
+ * cacos( x + i NaN) = NaN + i NaN with invalid for non-zero finite x
+ * cacos(-inf + i y ) = pi - i inf for finite +y
+ * cacos( inf + i y ) = 0 - i inf for finite +y
+ * cacos(-inf + i inf) = 3pi/4- i inf
+ * cacos( inf + i inf) = pi/4 - i inf
+ * cacos(+-inf+ i NaN) = NaN - i inf (sign of imaginary is unspecified)
+ * cacos(NaN + i y ) = NaN + i NaN with invalid for finite y
+ * cacos(NaN + i inf) = NaN - i inf
+ * cacos(NaN + i NaN) = NaN + i NaN
+ *
+ * Special Regions (better formula for accuracy and for avoiding spurious
+ * overflow or underflow) (all x and y are assumed nonnegative):
+ * case 1: y = 0
+ * case 2: tiny y relative to x-1: y <= ulp(0.5)*|x-1|
+ * case 3: tiny y: y < 4 sqrt(u), where u = minimum normal number
+ * case 4: huge y relative to x+1: y >= (1+x)/ulp(0.5)
+ * case 5: huge x and y: x and y >= sqrt(M)/8, where M = maximum normal number
+ * case 6: tiny x: x < 4 sqrt(u)
+ * --------
+ * case 1 & 2. y=0 or y/|x-1| is tiny. We have
+ * ____________ _____________
+ * / 2 2 / y 2
+ * / (x+-1) + y = |x+-1| / 1 + (------)
+ * \/ \/ |x+-1|
+ *
+ * 1 y 2
+ * ~ |x+-1| ( 1 + --- (------) )
+ * 2 |x+-1|
+ *
+ * 2
+ * y
+ * = |x+-1| + --------.
+ * 2|x+-1|
+ *
+ * Consequently, it is not difficult to see that
+ * 2
+ * y
+ * [ 1 + ------------ , if x < 1,
+ * [ 2(1+x)(1-x)
+ * [
+ * [
+ * [ x, if x = 1 (y = 0),
+ * [
+ * A ~= [ 2
+ * [ x * y
+ * [ x + ------------ ~ x, if x > 1
+ * [ 2(x+1)(x-1)
+ *
+ * and hence
+ * ______ 2
+ * / 2 y y
+ * A + \/ A - 1 ~ 1 + ---------------- + -----------, if x < 1,
+ * sqrt((x+1)(1-x)) 2(x+1)(1-x)
+ *
+ *
+ * ~ x + sqrt((x-1)*(x+1)), if x >= 1.
+ *
+ * 2
+ * y
+ * [ x(1 - -----------) ~ x, if x < 1,
+ * [ 2(1+x)(1-x)
+ * B = x/A ~ [
+ * [ 1, if x = 1,
+ * [
+ * [ 2
+ * [ y
+ * [ 1 - ------------ , if x > 1,
+ * [ 2(x+1)(x-1)
+ * Thus
+ * [ acos(x) - i y/sqrt((x-1)*(x+1)), if x < 1,
+ * [
+ * cacos(x+i*y)~ [ 0 - i 0, if x = 1,
+ * [
+ * [ y/sqrt(x*x-1) - i log(x+sqrt(x*x-1)), if x > 1.
+ *
+ * Note: y/sqrt(x*x-1) ~ y/x when x >= 2**26.
+ * case 3. y < 4 sqrt(u), where u = minimum normal x.
+ * After case 1 and 2, this will only occurs when x=1. When x=1, we have
+ * A = (sqrt(4+y*y)+y)/2 ~ 1 + y/2 + y^2/8 + ...
+ * and
+ * B = 1/A = 1 - y/2 + y^2/8 + ...
+ * Since
+ * cos(sqrt(y)) ~ 1 - y/2 + ...
+ * we have, for the real part,
+ * acos(B) ~ acos(1 - y/2) ~ sqrt(y)
+ * For the imaginary part,
+ * log(A+sqrt(A*A-1)) ~ log(1+y/2+sqrt(2*y/2))
+ * = log(1+y/2+sqrt(y))
+ * = (y/2+sqrt(y)) - (y/2+sqrt(y))^2/2 + ...
+ * ~ sqrt(y) - y*(sqrt(y)+y/2)/2
+ * ~ sqrt(y)
+ *
+ * case 4. y >= (x+1)/ulp(0.5). In this case, A ~ y and B ~ x/y. Thus
+ * real part = acos(B) ~ pi/2
+ * and
+ * imag part = log(y+sqrt(y*y-one))
+ *
+ * case 5. Both x and y are large: x and y > sqrt(M)/8, where M = maximum x
+ * In this case,
+ * A ~ sqrt(x*x+y*y)
+ * B ~ x/sqrt(x*x+y*y).
+ * Thus
+ * real part = acos(B) = atan(y/x),
+ * imag part = log(A+sqrt(A*A-1)) ~ log(2A)
+ * = log(2) + 0.5*log(x*x+y*y)
+ * = log(2) + log(y) + 0.5*log(1+(x/y)^2)
+ *
+ * case 6. x < 4 sqrt(u). In this case, we have
+ * A ~ sqrt(1+y*y), B = x/sqrt(1+y*y).
+ * Since B is tiny, we have
+ * real part = acos(B) ~ pi/2
+ * imag part = log(A+sqrt(A*A-1)) = log (A+sqrt(y*y))
+ * = log(y+sqrt(1+y*y))
+ * = 0.5*log(y^2+2ysqrt(1+y^2)+1+y^2)
+ * = 0.5*log(1+2y(y+sqrt(1+y^2)));
+ * = 0.5*log1p(2y(y+A));
+ *
+ * cacos(z) = acos(B) - i sign(y) log (A + sqrt(A*A-1)),
+ */
+/* INDENT ON */
+
+#include "libm.h"
+#include "complex_wrapper.h"
+
+/* INDENT OFF */
+static const double
+ zero = 0.0,
+ one = 1.0,
+ E = 1.11022302462515654042e-16, /* 2**-53 */
+ ln2 = 6.93147180559945286227e-01,
+ pi = 3.1415926535897931159979634685,
+ pi_l = 1.224646799147353177e-16,
+ pi_2 = 1.570796326794896558e+00,
+ pi_2_l = 6.123233995736765886e-17,
+ pi_4 = 0.78539816339744827899949,
+ pi_4_l = 3.061616997868382943e-17,
+ pi3_4 = 2.356194490192344836998,
+ pi3_4_l = 9.184850993605148829195e-17,
+ Foursqrtu = 5.96667258496016539463e-154, /* 2**(-509) */
+ Acrossover = 1.5,
+ Bcrossover = 0.6417,
+ half = 0.5;
+/* INDENT ON */
+
+dcomplex
+cacos(dcomplex z) {
+ double x, y, t, R, S, A, Am1, B, y2, xm1, xp1, Apx;
+ int ix, iy, hx, hy;
+ unsigned lx, ly;
+ dcomplex ans;
+
+ x = D_RE(z);
+ y = D_IM(z);
+ hx = HI_WORD(x);
+ lx = LO_WORD(x);
+ hy = HI_WORD(y);
+ ly = LO_WORD(y);
+ ix = hx & 0x7fffffff;
+ iy = hy & 0x7fffffff;
+
+ /* x is 0 */
+ if ((ix | lx) == 0) {
+ if (((iy | ly) == 0) || (iy >= 0x7ff00000)) {
+ D_RE(ans) = pi_2;
+ D_IM(ans) = -y;
+ return (ans);
+ }
+ }
+
+ /* |y| is inf or NaN */
+ if (iy >= 0x7ff00000) {
+ if (ISINF(iy, ly)) { /* cacos(x + i inf) = pi/2 - i inf */
+ D_IM(ans) = -y;
+ if (ix < 0x7ff00000) {
+ D_RE(ans) = pi_2 + pi_2_l;
+ } else if (ISINF(ix, lx)) {
+ if (hx >= 0)
+ D_RE(ans) = pi_4 + pi_4_l;
+ else
+ D_RE(ans) = pi3_4 + pi3_4_l;
+ } else {
+ D_RE(ans) = x;
+ }
+ } else { /* cacos(x + i NaN) = NaN + i NaN */
+ D_RE(ans) = y + x;
+ if (ISINF(ix, lx))
+ D_IM(ans) = -fabs(x);
+ else
+ D_IM(ans) = y;
+ }
+ return (ans);
+ }
+
+ x = fabs(x);
+ y = fabs(y);
+
+ /* x is inf or NaN */
+ if (ix >= 0x7ff00000) { /* x is inf or NaN */
+ if (ISINF(ix, lx)) { /* x is INF */
+ D_IM(ans) = -x;
+ if (iy >= 0x7ff00000) {
+ if (ISINF(iy, ly)) {
+ /* INDENT OFF */
+ /* cacos(inf + i inf) = pi/4 - i inf */
+ /* cacos(-inf+ i inf) =3pi/4 - i inf */
+ /* INDENT ON */
+ if (hx >= 0)
+ D_RE(ans) = pi_4 + pi_4_l;
+ else
+ D_RE(ans) = pi3_4 + pi3_4_l;
+ } else
+ /* INDENT OFF */
+ /* cacos(inf + i NaN) = NaN - i inf */
+ /* INDENT ON */
+ D_RE(ans) = y + y;
+ } else
+ /* INDENT OFF */
+ /* cacos(inf + iy ) = 0 - i inf */
+ /* cacos(-inf+ iy ) = pi - i inf */
+ /* INDENT ON */
+ if (hx >= 0)
+ D_RE(ans) = zero;
+ else
+ D_RE(ans) = pi + pi_l;
+ } else { /* x is NaN */
+ /* INDENT OFF */
+ /*
+ * cacos(NaN + i inf) = NaN - i inf
+ * cacos(NaN + i y ) = NaN + i NaN
+ * cacos(NaN + i NaN) = NaN + i NaN
+ */
+ /* INDENT ON */
+ D_RE(ans) = x + y;
+ if (iy >= 0x7ff00000) {
+ D_IM(ans) = -y;
+ } else {
+ D_IM(ans) = x;
+ }
+ }
+ if (hy < 0)
+ D_IM(ans) = -D_IM(ans);
+ return (ans);
+ }
+
+ if ((iy | ly) == 0) { /* region 1: y=0 */
+ if (ix < 0x3ff00000) { /* |x| < 1 */
+ D_RE(ans) = acos(x);
+ D_IM(ans) = zero;
+ } else {
+ D_RE(ans) = zero;
+ if (ix >= 0x43500000) /* |x| >= 2**54 */
+ D_IM(ans) = ln2 + log(x);
+ else if (ix >= 0x3ff80000) /* x > Acrossover */
+ D_IM(ans) = log(x + sqrt((x - one) * (x +
+ one)));
+ else {
+ xm1 = x - one;
+ D_IM(ans) = log1p(xm1 + sqrt(xm1 * (x + one)));
+ }
+ }
+ } else if (y <= E * fabs(x - one)) { /* region 2: y < tiny*|x-1| */
+ if (ix < 0x3ff00000) { /* x < 1 */
+ D_RE(ans) = acos(x);
+ D_IM(ans) = y / sqrt((one + x) * (one - x));
+ } else if (ix >= 0x43500000) { /* |x| >= 2**54 */
+ D_RE(ans) = y / x;
+ D_IM(ans) = ln2 + log(x);
+ } else {
+ t = sqrt((x - one) * (x + one));
+ D_RE(ans) = y / t;
+ if (ix >= 0x3ff80000) /* x > Acrossover */
+ D_IM(ans) = log(x + t);
+ else
+ D_IM(ans) = log1p((x - one) + t);
+ }
+ } else if (y < Foursqrtu) { /* region 3 */
+ t = sqrt(y);
+ D_RE(ans) = t;
+ D_IM(ans) = t;
+ } else if (E * y - one >= x) { /* region 4 */
+ D_RE(ans) = pi_2;
+ D_IM(ans) = ln2 + log(y);
+ } else if (ix >= 0x5fc00000 || iy >= 0x5fc00000) { /* x,y>2**509 */
+ /* region 5: x+1 or y is very large (>= sqrt(max)/8) */
+ t = x / y;
+ D_RE(ans) = atan(y / x);
+ D_IM(ans) = ln2 + log(y) + half * log1p(t * t);
+ } else if (x < Foursqrtu) {
+ /* region 6: x is very small, < 4sqrt(min) */
+ D_RE(ans) = pi_2;
+ A = sqrt(one + y * y);
+ if (iy >= 0x3ff80000) /* if y > Acrossover */
+ D_IM(ans) = log(y + A);
+ else
+ D_IM(ans) = half * log1p((y + y) * (y + A));
+ } else { /* safe region */
+ y2 = y * y;
+ xp1 = x + one;
+ xm1 = x - one;
+ R = sqrt(xp1 * xp1 + y2);
+ S = sqrt(xm1 * xm1 + y2);
+ A = half * (R + S);
+ B = x / A;
+ if (B <= Bcrossover)
+ D_RE(ans) = acos(B);
+ else { /* use atan and an accurate approx to a-x */
+ Apx = A + x;
+ if (x <= one)
+ D_RE(ans) = atan(sqrt(half * Apx * (y2 / (R +
+ xp1) + (S - xm1))) / x);
+ else
+ D_RE(ans) = atan((y * sqrt(half * (Apx / (R +
+ xp1) + Apx / (S + xm1)))) / x);
+ }
+ if (A <= Acrossover) {
+ /* use log1p and an accurate approx to A-1 */
+ if (x < one)
+ Am1 = half * (y2 / (R + xp1) + y2 / (S - xm1));
+ else
+ Am1 = half * (y2 / (R + xp1) + (S + xm1));
+ D_IM(ans) = log1p(Am1 + sqrt(Am1 * (A + one)));
+ } else {
+ D_IM(ans) = log(A + sqrt(A * A - one));
+ }
+ }
+ if (hx < 0)
+ D_RE(ans) = pi - D_RE(ans);
+ if (hy >= 0)
+ D_IM(ans) = -D_IM(ans);
+ return (ans);
+}