diff options
Diffstat (limited to 'usr/src/lib/libm/common/complex/catanl.c')
-rw-r--r-- | usr/src/lib/libm/common/complex/catanl.c | 329 |
1 files changed, 329 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/complex/catanl.c b/usr/src/lib/libm/common/complex/catanl.c new file mode 100644 index 0000000000..b0543ed8b0 --- /dev/null +++ b/usr/src/lib/libm/common/complex/catanl.c @@ -0,0 +1,329 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or http://www.opensolaris.org/os/licensing. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ + +/* + * Copyright 2011 Nexenta Systems, Inc. All rights reserved. + */ +/* + * Copyright 2006 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ + +#pragma weak catanl = __catanl + +/* INDENT OFF */ +/* + * ldcomplex catanl(ldcomplex z); + * + * Atan(z) return A + Bi where, + * 1 + * A = --- * atan2(2x, 1-x*x-y*y) + * 2 + * + * 1 [ x*x + (y+1)*(y+1) ] 1 4y + * B = --- log [ ----------------- ] = - log (1+ -----------------) + * 4 [ x*x + (y-1)*(y-1) ] 4 x*x + (y-1)*(y-1) + * + * 2 16 3 y + * = t - 2t + -- t - ..., where t = ----------------- + * 3 x*x + (y-1)*(y-1) + * Proof: + * Let w = atan(z=x+yi) = A + B i. Then tan(w) = z. + * Since sin(w) = (exp(iw)-exp(-iw))/(2i), cos(w)=(exp(iw)+exp(-iw))/(2), + * Let p = exp(iw), then z = tan(w) = ((p-1/p)/(p+1/p))/i, or + * iz = (p*p-1)/(p*p+1), or, after simplification, + * p*p = (1+iz)/(1-iz) ... (1) + * LHS of (1) = exp(2iw) = exp(2i(A+Bi)) = exp(-2B)*exp(2iA) + * = exp(-2B)*(cos(2A)+i*sin(2A)) ... (2) + * 1-y+ix (1-y+ix)*(1+y+ix) 1-x*x-y*y + 2xi + * RHS of (1) = ------ = ----------------- = --------------- ... (3) + * 1+y-ix (1+y)**2 + x**2 (1+y)**2 + x**2 + * + * Comparing the real and imaginary parts of (2) and (3), we have: + * cos(2A) : 1-x*x-y*y = sin(2A) : 2x + * and hence + * tan(2A) = 2x/(1-x*x-y*y), or + * A = 0.5 * atan2(2x, 1-x*x-y*y) ... (4) + * + * For the imaginary part B, Note that |p*p| = exp(-2B), and + * |1+iz| |i-z| hypot(x,(y-1)) + * |----| = |---| = -------------- + * |1-iz| |i+z| hypot(x,(y+1)) + * Thus + * x*x + (y+1)*(y+1) + * exp(4B) = -----------------, or + * x*x + (y-1)*(y-1) + * + * 1 [x^2+(y+1)^2] 1 4y + * B = - log [-----------] = - log(1+ -------------) ... (5) + * 4 [x^2+(y-1)^2] 4 x^2+(y-1)^2 + * + * QED. + * + * Note that: if catan( x, y) = ( u, v), then + * catan(-x, y) = (-u, v) + * catan( x,-y) = ( u,-v) + * + * Also, catan(x,y) = -i*catanh(-y,x), or + * catanh(x,y) = i*catan(-y,x) + * So, if catanh(y,x) = (v,u), then catan(x,y) = -i*(-v,u) = (u,v), i.e., + * catan(x,y) = (u,v) + * + * EXCEPTION CASES (conform to ISO/IEC 9899:1999(E)): + * catan( 0 , 0 ) = (0 , 0 ) + * catan( NaN, 0 ) = (NaN , 0 ) + * catan( 0 , 1 ) = (0 , +inf) with divide-by-zero + * catan( inf, y ) = (pi/2 , 0 ) for finite +y + * catan( NaN, y ) = (NaN , NaN ) with invalid for finite y != 0 + * catan( x , inf ) = (pi/2 , 0 ) for finite +x + * catan( inf, inf ) = (pi/2 , 0 ) + * catan( NaN, inf ) = (NaN , 0 ) + * catan( x , NaN ) = (NaN , NaN ) with invalid for finite x + * catan( inf, NaN ) = (pi/2 , +-0 ) + */ +/* INDENT ON */ + +#include "libm.h" /* atan2l/atanl/fabsl/isinfl/iszerol/log1pl/logl */ +#include "complex_wrapper.h" +#include "longdouble.h" + +/* INDENT OFF */ +static const long double +zero = 0.0L, +one = 1.0L, +two = 2.0L, +half = 0.5L, +ln2 = 6.931471805599453094172321214581765680755e-0001L, +pi_2 = 1.570796326794896619231321691639751442098584699687552910487472L, +#if defined(__x86) +E = 2.910383045673370361328125000000000000000e-11L, /* 2**-35 */ +Einv = 3.435973836800000000000000000000000000000e+10L; /* 2**+35 */ +#else +E = 8.673617379884035472059622406959533691406e-19L, /* 2**-60 */ +Einv = 1.152921504606846976000000000000000000000e18L; /* 2**+60 */ +#endif +/* INDENT ON */ + +ldcomplex +catanl(ldcomplex z) { + ldcomplex ans; + long double x, y, t1, ax, ay, t; + int hx, hy, ix, iy; + + x = LD_RE(z); + y = LD_IM(z); + ax = fabsl(x); + ay = fabsl(y); + hx = HI_XWORD(x); + hy = HI_XWORD(y); + ix = hx & 0x7fffffff; + iy = hy & 0x7fffffff; + + /* x is inf or NaN */ + if (ix >= 0x7fff0000) { + if (isinfl(x)) { + LD_RE(ans) = pi_2; + LD_IM(ans) = zero; + } else { + LD_RE(ans) = x + x; + if (iszerol(y) || (isinfl(y))) + LD_IM(ans) = zero; + else + LD_IM(ans) = (fabsl(y) - ay) / (fabsl(y) - ay); + } + } else if (iy >= 0x7fff0000) { + /* y is inf or NaN */ + if (isinfl(y)) { + LD_RE(ans) = pi_2; + LD_IM(ans) = zero; + } else { + LD_RE(ans) = (fabsl(x) - ax) / (fabsl(x) - ax); + LD_IM(ans) = y; + } + } else if (iszerol(x)) { + /* INDENT OFF */ + /* + * x = 0 + * 1 1 + * A = --- * atan2(2x, 1-x*x-y*y) = --- atan2(0,1-|y|) + * 2 2 + * + * 1 [ (y+1)*(y+1) ] 1 2 1 2y + * B = - log [ ----------- ] = - log (1+ ---) or - log(1+ ----) + * 4 [ (y-1)*(y-1) ] 2 y-1 2 1-y + */ + /* INDENT ON */ + t = one - ay; + if (ay == one) { + /* y=1: catan(0,1)=(0,+inf) with 1/0 signal */ + LD_IM(ans) = ay / ax; + LD_RE(ans) = zero; + } else if (ay > one) { /* y>1 */ + LD_IM(ans) = half * log1pl(two / (-t)); + LD_RE(ans) = pi_2; + } else { /* y<1 */ + LD_IM(ans) = half * log1pl((ay + ay) / t); + LD_RE(ans) = zero; + } + } else if (ay < E * (one + ax)) { + /* INDENT OFF */ + /* + * Tiny y (relative to 1+|x|) + * |y| < E*(1+|x|) + * where E=2**-29, -35, -60 for double, extended, quad precision + * + * 1 [x<=1: atan(x) + * A = - * atan2(2x,1-x*x-y*y) ~ [ 1 1+x + * 2 [x>=1: - atan2(2,(1-x)*(-----)) + * 2 x + * + * y/x + * B ~ t*(1-2t), where t = ----------------- is tiny + * x + (y-1)*(y-1)/x + * + * y + * (when x < 2**-60, t = ----------- ) + * (y-1)*(y-1) + */ + /* INDENT ON */ + if (ay == zero) + LD_IM(ans) = ay; + else { + t1 = ay - one; + if (ix < 0x3fc30000) + t = ay / (t1 * t1); + else if (ix > 0x403b0000) + t = (ay / ax) / ax; + else + t = ay / (ax * ax + t1 * t1); + LD_IM(ans) = t * (one - two * t); + } + if (ix < 0x3fff0000) + LD_RE(ans) = atanl(ax); + else + LD_RE(ans) = half * atan2l(two, (one - ax) * (one + + one / ax)); + + } else if (ay > Einv * (one + ax)) { + /* INDENT OFF */ + /* + * Huge y relative to 1+|x| + * |y| > Einv*(1+|x|), where Einv~2**(prec/2+3), + * 1 + * A ~ --- * atan2(2x, -y*y) ~ pi/2 + * 2 + * y + * B ~ t*(1-2t), where t = --------------- is tiny + * (y-1)*(y-1) + */ + /* INDENT ON */ + LD_RE(ans) = pi_2; + t = (ay / (ay - one)) / (ay - one); + LD_IM(ans) = t * (one - (t + t)); + } else if (ay == one) { + /* INDENT OFF */ + /* + * y=1 + * 1 1 + * A = - * atan2(2x, -x*x) = --- atan2(2,-x) + * 2 2 + * + * 1 [ x*x+4] 1 4 [ 0.5(log2-logx) if + * B = - log [ -----] = - log (1+ ---) = [ |x|<E, else 0.25* + * 4 [ x*x ] 4 x*x [ log1p((2/x)*(2/x)) + */ + /* INDENT ON */ + LD_RE(ans) = half * atan2l(two, -ax); + if (ax < E) + LD_IM(ans) = half * (ln2 - logl(ax)); + else { + t = two / ax; + LD_IM(ans) = 0.25L * log1pl(t * t); + } + } else if (ax > Einv * Einv) { + /* INDENT OFF */ + /* + * Huge x: + * when |x| > 1/E^2, + * 1 pi + * A ~ --- * atan2(2x, -x*x-y*y) ~ --- + * 2 2 + * y y/x + * B ~ t*(1-2t), where t = --------------- = (-------------- )/x + * x*x+(y-1)*(y-1) 1+((y-1)/x)^2 + */ + /* INDENT ON */ + LD_RE(ans) = pi_2; + t = ((ay / ax) / (one + ((ay - one) / ax) * ((ay - one) / + ax))) / ax; + LD_IM(ans) = t * (one - (t + t)); + } else if (ax < E * E * E * E) { + /* INDENT OFF */ + /* + * Tiny x: + * when |x| < E^4, (note that y != 1) + * 1 1 + * A = --- * atan2(2x, 1-x*x-y*y) ~ --- * atan2(2x,1-y*y) + * 2 2 + * + * 1 [ (y+1)*(y+1) ] 1 2 1 2y + * B = - log [ ----------- ] = - log (1+ ---) or - log(1+ ----) + * 4 [ (y-1)*(y-1) ] 2 y-1 2 1-y + */ + /* INDENT ON */ + LD_RE(ans) = half * atan2l(ax + ax, (one - ay) * (one + ay)); + if (ay > one) /* y>1 */ + LD_IM(ans) = half * log1pl(two / (ay - one)); + else /* y<1 */ + LD_IM(ans) = half * log1pl((ay + ay) / (one - ay)); + } else { + /* INDENT OFF */ + /* + * normal x,y + * 1 + * A = --- * atan2(2x, 1-x*x-y*y) + * 2 + * + * 1 [ x*x+(y+1)*(y+1) ] 1 4y + * B = - log [ --------------- ] = - log (1+ -----------------) + * 4 [ x*x+(y-1)*(y-1) ] 4 x*x + (y-1)*(y-1) + */ + /* INDENT ON */ + t = one - ay; + if (iy >= 0x3ffe0000 && iy < 0x40000000) { + /* y close to 1 */ + LD_RE(ans) = half * (atan2l((ax + ax), (t * (one + + ay) - ax * ax))); + } else if (ix >= 0x3ffe0000 && ix < 0x40000000) { + /* x close to 1 */ + LD_RE(ans) = half * atan2l((ax + ax), ((one - ax) * + (one + ax) - ay * ay)); + } else + LD_RE(ans) = half * atan2l((ax + ax), ((one - ax * + ax) - ay * ay)); + LD_IM(ans) = 0.25L * log1pl((4.0L * ay) / (ax * ax + t * t)); + } + if (hx < 0) + LD_RE(ans) = -LD_RE(ans); + if (hy < 0) + LD_IM(ans) = -LD_IM(ans); + return (ans); +} |