summaryrefslogtreecommitdiff
path: root/usr/src/lib/libm/common/complex/catanl.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/lib/libm/common/complex/catanl.c')
-rw-r--r--usr/src/lib/libm/common/complex/catanl.c329
1 files changed, 329 insertions, 0 deletions
diff --git a/usr/src/lib/libm/common/complex/catanl.c b/usr/src/lib/libm/common/complex/catanl.c
new file mode 100644
index 0000000000..b0543ed8b0
--- /dev/null
+++ b/usr/src/lib/libm/common/complex/catanl.c
@@ -0,0 +1,329 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+
+/*
+ * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
+ */
+/*
+ * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma weak catanl = __catanl
+
+/* INDENT OFF */
+/*
+ * ldcomplex catanl(ldcomplex z);
+ *
+ * Atan(z) return A + Bi where,
+ * 1
+ * A = --- * atan2(2x, 1-x*x-y*y)
+ * 2
+ *
+ * 1 [ x*x + (y+1)*(y+1) ] 1 4y
+ * B = --- log [ ----------------- ] = - log (1+ -----------------)
+ * 4 [ x*x + (y-1)*(y-1) ] 4 x*x + (y-1)*(y-1)
+ *
+ * 2 16 3 y
+ * = t - 2t + -- t - ..., where t = -----------------
+ * 3 x*x + (y-1)*(y-1)
+ * Proof:
+ * Let w = atan(z=x+yi) = A + B i. Then tan(w) = z.
+ * Since sin(w) = (exp(iw)-exp(-iw))/(2i), cos(w)=(exp(iw)+exp(-iw))/(2),
+ * Let p = exp(iw), then z = tan(w) = ((p-1/p)/(p+1/p))/i, or
+ * iz = (p*p-1)/(p*p+1), or, after simplification,
+ * p*p = (1+iz)/(1-iz) ... (1)
+ * LHS of (1) = exp(2iw) = exp(2i(A+Bi)) = exp(-2B)*exp(2iA)
+ * = exp(-2B)*(cos(2A)+i*sin(2A)) ... (2)
+ * 1-y+ix (1-y+ix)*(1+y+ix) 1-x*x-y*y + 2xi
+ * RHS of (1) = ------ = ----------------- = --------------- ... (3)
+ * 1+y-ix (1+y)**2 + x**2 (1+y)**2 + x**2
+ *
+ * Comparing the real and imaginary parts of (2) and (3), we have:
+ * cos(2A) : 1-x*x-y*y = sin(2A) : 2x
+ * and hence
+ * tan(2A) = 2x/(1-x*x-y*y), or
+ * A = 0.5 * atan2(2x, 1-x*x-y*y) ... (4)
+ *
+ * For the imaginary part B, Note that |p*p| = exp(-2B), and
+ * |1+iz| |i-z| hypot(x,(y-1))
+ * |----| = |---| = --------------
+ * |1-iz| |i+z| hypot(x,(y+1))
+ * Thus
+ * x*x + (y+1)*(y+1)
+ * exp(4B) = -----------------, or
+ * x*x + (y-1)*(y-1)
+ *
+ * 1 [x^2+(y+1)^2] 1 4y
+ * B = - log [-----------] = - log(1+ -------------) ... (5)
+ * 4 [x^2+(y-1)^2] 4 x^2+(y-1)^2
+ *
+ * QED.
+ *
+ * Note that: if catan( x, y) = ( u, v), then
+ * catan(-x, y) = (-u, v)
+ * catan( x,-y) = ( u,-v)
+ *
+ * Also, catan(x,y) = -i*catanh(-y,x), or
+ * catanh(x,y) = i*catan(-y,x)
+ * So, if catanh(y,x) = (v,u), then catan(x,y) = -i*(-v,u) = (u,v), i.e.,
+ * catan(x,y) = (u,v)
+ *
+ * EXCEPTION CASES (conform to ISO/IEC 9899:1999(E)):
+ * catan( 0 , 0 ) = (0 , 0 )
+ * catan( NaN, 0 ) = (NaN , 0 )
+ * catan( 0 , 1 ) = (0 , +inf) with divide-by-zero
+ * catan( inf, y ) = (pi/2 , 0 ) for finite +y
+ * catan( NaN, y ) = (NaN , NaN ) with invalid for finite y != 0
+ * catan( x , inf ) = (pi/2 , 0 ) for finite +x
+ * catan( inf, inf ) = (pi/2 , 0 )
+ * catan( NaN, inf ) = (NaN , 0 )
+ * catan( x , NaN ) = (NaN , NaN ) with invalid for finite x
+ * catan( inf, NaN ) = (pi/2 , +-0 )
+ */
+/* INDENT ON */
+
+#include "libm.h" /* atan2l/atanl/fabsl/isinfl/iszerol/log1pl/logl */
+#include "complex_wrapper.h"
+#include "longdouble.h"
+
+/* INDENT OFF */
+static const long double
+zero = 0.0L,
+one = 1.0L,
+two = 2.0L,
+half = 0.5L,
+ln2 = 6.931471805599453094172321214581765680755e-0001L,
+pi_2 = 1.570796326794896619231321691639751442098584699687552910487472L,
+#if defined(__x86)
+E = 2.910383045673370361328125000000000000000e-11L, /* 2**-35 */
+Einv = 3.435973836800000000000000000000000000000e+10L; /* 2**+35 */
+#else
+E = 8.673617379884035472059622406959533691406e-19L, /* 2**-60 */
+Einv = 1.152921504606846976000000000000000000000e18L; /* 2**+60 */
+#endif
+/* INDENT ON */
+
+ldcomplex
+catanl(ldcomplex z) {
+ ldcomplex ans;
+ long double x, y, t1, ax, ay, t;
+ int hx, hy, ix, iy;
+
+ x = LD_RE(z);
+ y = LD_IM(z);
+ ax = fabsl(x);
+ ay = fabsl(y);
+ hx = HI_XWORD(x);
+ hy = HI_XWORD(y);
+ ix = hx & 0x7fffffff;
+ iy = hy & 0x7fffffff;
+
+ /* x is inf or NaN */
+ if (ix >= 0x7fff0000) {
+ if (isinfl(x)) {
+ LD_RE(ans) = pi_2;
+ LD_IM(ans) = zero;
+ } else {
+ LD_RE(ans) = x + x;
+ if (iszerol(y) || (isinfl(y)))
+ LD_IM(ans) = zero;
+ else
+ LD_IM(ans) = (fabsl(y) - ay) / (fabsl(y) - ay);
+ }
+ } else if (iy >= 0x7fff0000) {
+ /* y is inf or NaN */
+ if (isinfl(y)) {
+ LD_RE(ans) = pi_2;
+ LD_IM(ans) = zero;
+ } else {
+ LD_RE(ans) = (fabsl(x) - ax) / (fabsl(x) - ax);
+ LD_IM(ans) = y;
+ }
+ } else if (iszerol(x)) {
+ /* INDENT OFF */
+ /*
+ * x = 0
+ * 1 1
+ * A = --- * atan2(2x, 1-x*x-y*y) = --- atan2(0,1-|y|)
+ * 2 2
+ *
+ * 1 [ (y+1)*(y+1) ] 1 2 1 2y
+ * B = - log [ ----------- ] = - log (1+ ---) or - log(1+ ----)
+ * 4 [ (y-1)*(y-1) ] 2 y-1 2 1-y
+ */
+ /* INDENT ON */
+ t = one - ay;
+ if (ay == one) {
+ /* y=1: catan(0,1)=(0,+inf) with 1/0 signal */
+ LD_IM(ans) = ay / ax;
+ LD_RE(ans) = zero;
+ } else if (ay > one) { /* y>1 */
+ LD_IM(ans) = half * log1pl(two / (-t));
+ LD_RE(ans) = pi_2;
+ } else { /* y<1 */
+ LD_IM(ans) = half * log1pl((ay + ay) / t);
+ LD_RE(ans) = zero;
+ }
+ } else if (ay < E * (one + ax)) {
+ /* INDENT OFF */
+ /*
+ * Tiny y (relative to 1+|x|)
+ * |y| < E*(1+|x|)
+ * where E=2**-29, -35, -60 for double, extended, quad precision
+ *
+ * 1 [x<=1: atan(x)
+ * A = - * atan2(2x,1-x*x-y*y) ~ [ 1 1+x
+ * 2 [x>=1: - atan2(2,(1-x)*(-----))
+ * 2 x
+ *
+ * y/x
+ * B ~ t*(1-2t), where t = ----------------- is tiny
+ * x + (y-1)*(y-1)/x
+ *
+ * y
+ * (when x < 2**-60, t = ----------- )
+ * (y-1)*(y-1)
+ */
+ /* INDENT ON */
+ if (ay == zero)
+ LD_IM(ans) = ay;
+ else {
+ t1 = ay - one;
+ if (ix < 0x3fc30000)
+ t = ay / (t1 * t1);
+ else if (ix > 0x403b0000)
+ t = (ay / ax) / ax;
+ else
+ t = ay / (ax * ax + t1 * t1);
+ LD_IM(ans) = t * (one - two * t);
+ }
+ if (ix < 0x3fff0000)
+ LD_RE(ans) = atanl(ax);
+ else
+ LD_RE(ans) = half * atan2l(two, (one - ax) * (one +
+ one / ax));
+
+ } else if (ay > Einv * (one + ax)) {
+ /* INDENT OFF */
+ /*
+ * Huge y relative to 1+|x|
+ * |y| > Einv*(1+|x|), where Einv~2**(prec/2+3),
+ * 1
+ * A ~ --- * atan2(2x, -y*y) ~ pi/2
+ * 2
+ * y
+ * B ~ t*(1-2t), where t = --------------- is tiny
+ * (y-1)*(y-1)
+ */
+ /* INDENT ON */
+ LD_RE(ans) = pi_2;
+ t = (ay / (ay - one)) / (ay - one);
+ LD_IM(ans) = t * (one - (t + t));
+ } else if (ay == one) {
+ /* INDENT OFF */
+ /*
+ * y=1
+ * 1 1
+ * A = - * atan2(2x, -x*x) = --- atan2(2,-x)
+ * 2 2
+ *
+ * 1 [ x*x+4] 1 4 [ 0.5(log2-logx) if
+ * B = - log [ -----] = - log (1+ ---) = [ |x|<E, else 0.25*
+ * 4 [ x*x ] 4 x*x [ log1p((2/x)*(2/x))
+ */
+ /* INDENT ON */
+ LD_RE(ans) = half * atan2l(two, -ax);
+ if (ax < E)
+ LD_IM(ans) = half * (ln2 - logl(ax));
+ else {
+ t = two / ax;
+ LD_IM(ans) = 0.25L * log1pl(t * t);
+ }
+ } else if (ax > Einv * Einv) {
+ /* INDENT OFF */
+ /*
+ * Huge x:
+ * when |x| > 1/E^2,
+ * 1 pi
+ * A ~ --- * atan2(2x, -x*x-y*y) ~ ---
+ * 2 2
+ * y y/x
+ * B ~ t*(1-2t), where t = --------------- = (-------------- )/x
+ * x*x+(y-1)*(y-1) 1+((y-1)/x)^2
+ */
+ /* INDENT ON */
+ LD_RE(ans) = pi_2;
+ t = ((ay / ax) / (one + ((ay - one) / ax) * ((ay - one) /
+ ax))) / ax;
+ LD_IM(ans) = t * (one - (t + t));
+ } else if (ax < E * E * E * E) {
+ /* INDENT OFF */
+ /*
+ * Tiny x:
+ * when |x| < E^4, (note that y != 1)
+ * 1 1
+ * A = --- * atan2(2x, 1-x*x-y*y) ~ --- * atan2(2x,1-y*y)
+ * 2 2
+ *
+ * 1 [ (y+1)*(y+1) ] 1 2 1 2y
+ * B = - log [ ----------- ] = - log (1+ ---) or - log(1+ ----)
+ * 4 [ (y-1)*(y-1) ] 2 y-1 2 1-y
+ */
+ /* INDENT ON */
+ LD_RE(ans) = half * atan2l(ax + ax, (one - ay) * (one + ay));
+ if (ay > one) /* y>1 */
+ LD_IM(ans) = half * log1pl(two / (ay - one));
+ else /* y<1 */
+ LD_IM(ans) = half * log1pl((ay + ay) / (one - ay));
+ } else {
+ /* INDENT OFF */
+ /*
+ * normal x,y
+ * 1
+ * A = --- * atan2(2x, 1-x*x-y*y)
+ * 2
+ *
+ * 1 [ x*x+(y+1)*(y+1) ] 1 4y
+ * B = - log [ --------------- ] = - log (1+ -----------------)
+ * 4 [ x*x+(y-1)*(y-1) ] 4 x*x + (y-1)*(y-1)
+ */
+ /* INDENT ON */
+ t = one - ay;
+ if (iy >= 0x3ffe0000 && iy < 0x40000000) {
+ /* y close to 1 */
+ LD_RE(ans) = half * (atan2l((ax + ax), (t * (one +
+ ay) - ax * ax)));
+ } else if (ix >= 0x3ffe0000 && ix < 0x40000000) {
+ /* x close to 1 */
+ LD_RE(ans) = half * atan2l((ax + ax), ((one - ax) *
+ (one + ax) - ay * ay));
+ } else
+ LD_RE(ans) = half * atan2l((ax + ax), ((one - ax *
+ ax) - ay * ay));
+ LD_IM(ans) = 0.25L * log1pl((4.0L * ay) / (ax * ax + t * t));
+ }
+ if (hx < 0)
+ LD_RE(ans) = -LD_RE(ans);
+ if (hy < 0)
+ LD_IM(ans) = -LD_IM(ans);
+ return (ans);
+}