summaryrefslogtreecommitdiff
path: root/usr/src/uts/common/os/cpu_event.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/uts/common/os/cpu_event.c')
-rw-r--r--usr/src/uts/common/os/cpu_event.c1093
1 files changed, 1093 insertions, 0 deletions
diff --git a/usr/src/uts/common/os/cpu_event.c b/usr/src/uts/common/os/cpu_event.c
new file mode 100644
index 0000000000..11162ccfc9
--- /dev/null
+++ b/usr/src/uts/common/os/cpu_event.c
@@ -0,0 +1,1093 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (c) 2009, Intel Corporation.
+ * All rights reserved.
+ */
+
+/*
+ * Introduction
+ * This file implements a CPU event notification mechanism to signal clients
+ * which are interested in CPU related events.
+ * Currently it only supports CPU idle state change events which will be
+ * triggered just before CPU entering hardware idle state and just after CPU
+ * wakes up from hardware idle state.
+ * Please refer to PSARC/2009/115 for detail information.
+ *
+ * Lock Strategy
+ * 1) cpu_idle_prop_busy/free are protected by cpu_idle_prop_lock.
+ * 2) No protection for cpu_idle_cb_state because it's per-CPU data.
+ * 3) cpu_idle_cb_busy is protected by cpu_idle_cb_lock.
+ * 4) cpu_idle_cb_array is protected by pause_cpus/start_cpus logic.
+ * 5) cpu_idle_cb_max/curr are protected by both cpu_idle_cb_lock and
+ * pause_cpus/start_cpus logic.
+ * We have optimized the algorithm for hot path on read side access.
+ * In the current algorithm, it's lock free on read side access.
+ * On write side, we use pause_cpus() to keep other CPUs in the pause thread,
+ * which will guarantee that no other threads will access
+ * cpu_idle_cb_max/curr/array data structure.
+ */
+
+#include <sys/types.h>
+#include <sys/cmn_err.h>
+#include <sys/cpuvar.h>
+#include <sys/cpu.h>
+#include <sys/kmem.h>
+#include <sys/machcpuvar.h>
+#include <sys/sdt.h>
+#include <sys/sysmacros.h>
+#include <sys/synch.h>
+#include <sys/systm.h>
+#include <sys/sunddi.h>
+#if defined(__sparc)
+#include <sys/machsystm.h>
+#elif defined(__x86)
+#include <sys/archsystm.h>
+#endif
+#include <sys/cpu_event.h>
+
+/* Define normal state for CPU on different platforms. */
+#if defined(__x86)
+#define CPU_IDLE_STATE_NORMAL IDLE_STATE_C0
+#elif defined(__sparc)
+/*
+ * At the time of this implementation IDLE_STATE_NORMAL is defined
+ * in mach_startup.c, and not in a header file. So if we find it is
+ * undefined, then we set it to the value as defined in mach_startup.c
+ * Should it eventually be defined, we will pick it up.
+ */
+#ifndef IDLE_STATE_NORMAL
+#define IDLE_STATE_NORMAL 0
+#endif
+#define CPU_IDLE_STATE_NORMAL IDLE_STATE_NORMAL
+#endif
+
+/*
+ * To improve cache efficiency and avoid cache false sharing, CPU idle
+ * properties are grouped into cache lines as below:
+ * | CPU0 | CPU1 |.........| CPUn |
+ * | cache line 0 | cache line 1 |.........| cache line n |
+ * | v0 | ... | vm | v0 | ... | vm |.........| v0 | ... | vm |
+ * To access value of property m for CPU n, using following value as index:
+ * index = seq_id_of_CPUn * CPU_IDLE_VALUE_GROUP_SIZE + m.
+ */
+#define CPU_IDLE_VALUE_GROUP_SIZE \
+ (CPU_CACHE_COHERENCE_SIZE / sizeof (cpu_idle_prop_value_t))
+
+/* Get callback context handle for current CPU. */
+#define CPU_IDLE_GET_CTX(cp) \
+ ((cpu_idle_callback_context_t)(intptr_t)((cp)->cpu_seqid))
+
+/* Get CPU sequential id from ctx. */
+#define CPU_IDLE_CTX2CPUID(ctx) ((processorid_t)(intptr_t)(ctx))
+
+/* Compute index from callback context handle. */
+#define CPU_IDLE_CTX2IDX(ctx) \
+ (((int)(intptr_t)(ctx)) * CPU_IDLE_VALUE_GROUP_SIZE)
+
+#define CPU_IDLE_HDL2VALP(hdl, idx) \
+ (&((cpu_idle_prop_impl_t *)(hdl))->value[(idx)])
+
+/*
+ * When cpu_idle_cb_array is NULL or full, increase CPU_IDLE_ARRAY_CAPACITY_INC
+ * entries every time. Here we prefer linear growth instead of exponential.
+ */
+#define CPU_IDLE_ARRAY_CAPACITY_INC 0x10
+
+typedef struct cpu_idle_prop_impl {
+ cpu_idle_prop_value_t *value;
+ struct cpu_idle_prop_impl *next;
+ char *name;
+ cpu_idle_prop_update_t update;
+ void *private;
+ cpu_idle_prop_type_t type;
+ uint32_t refcnt;
+} cpu_idle_prop_impl_t;
+
+typedef struct cpu_idle_prop_item {
+ cpu_idle_prop_type_t type;
+ char *name;
+ cpu_idle_prop_update_t update;
+ void *arg;
+ cpu_idle_prop_handle_t handle;
+} cpu_idle_prop_item_t;
+
+/* Structure to maintain registered callbacks in list. */
+typedef struct cpu_idle_cb_impl {
+ struct cpu_idle_cb_impl *next;
+ cpu_idle_callback_t *callback;
+ void *argument;
+ int priority;
+} cpu_idle_cb_impl_t;
+
+/*
+ * Structure to maintain registered callbacks in priority order and also
+ * optimized for cache efficiency for reading access.
+ */
+typedef struct cpu_idle_cb_item {
+ cpu_idle_enter_cbfn_t enter;
+ cpu_idle_exit_cbfn_t exit;
+ void *arg;
+ cpu_idle_cb_impl_t *impl;
+} cpu_idle_cb_item_t;
+
+/* Per-CPU state aligned to CPU_CACHE_COHERENCE_SIZE to avoid false sharing. */
+typedef union cpu_idle_cb_state {
+ struct {
+ int index;
+ boolean_t ready;
+ cpu_idle_prop_value_t *idle_state;
+ cpu_idle_prop_value_t *enter_ts;
+ cpu_idle_prop_value_t *exit_ts;
+ cpu_idle_prop_value_t *last_idle;
+ cpu_idle_prop_value_t *last_busy;
+ cpu_idle_prop_value_t *total_idle;
+ cpu_idle_prop_value_t *total_busy;
+ cpu_idle_prop_value_t *intr_cnt;
+ } v;
+#ifdef _LP64
+ char align[2 * CPU_CACHE_COHERENCE_SIZE];
+#else
+ char align[CPU_CACHE_COHERENCE_SIZE];
+#endif
+} cpu_idle_cb_state_t;
+
+static kmutex_t cpu_idle_prop_lock;
+static cpu_idle_prop_impl_t *cpu_idle_prop_busy = NULL;
+static cpu_idle_prop_impl_t *cpu_idle_prop_free = NULL;
+
+static kmutex_t cpu_idle_cb_lock;
+static cpu_idle_cb_impl_t *cpu_idle_cb_busy = NULL;
+static cpu_idle_cb_item_t *cpu_idle_cb_array = NULL;
+static int cpu_idle_cb_curr = 0;
+static int cpu_idle_cb_max = 0;
+
+static cpu_idle_cb_state_t *cpu_idle_cb_state;
+
+static int cpu_idle_prop_update_intr_cnt(void *arg, uint64_t seqnum,
+ cpu_idle_prop_value_t *valp);
+
+static cpu_idle_prop_item_t cpu_idle_prop_array[] = {
+ {
+ CPU_IDLE_PROP_TYPE_INTPTR, CPU_IDLE_PROP_IDLE_STATE,
+ NULL, NULL, NULL
+ },
+ {
+ CPU_IDLE_PROP_TYPE_HRTIME, CPU_IDLE_PROP_ENTER_TIMESTAMP,
+ NULL, NULL, NULL
+ },
+ {
+ CPU_IDLE_PROP_TYPE_HRTIME, CPU_IDLE_PROP_EXIT_TIMESTAMP,
+ NULL, NULL, NULL
+ },
+ {
+ CPU_IDLE_PROP_TYPE_HRTIME, CPU_IDLE_PROP_LAST_IDLE_TIME,
+ NULL, NULL, NULL
+ },
+ {
+ CPU_IDLE_PROP_TYPE_HRTIME, CPU_IDLE_PROP_LAST_BUSY_TIME,
+ NULL, NULL, NULL
+ },
+ {
+ CPU_IDLE_PROP_TYPE_HRTIME, CPU_IDLE_PROP_TOTAL_IDLE_TIME,
+ NULL, NULL, NULL
+ },
+ {
+ CPU_IDLE_PROP_TYPE_HRTIME, CPU_IDLE_PROP_TOTAL_BUSY_TIME,
+ NULL, NULL, NULL
+ },
+ {
+ CPU_IDLE_PROP_TYPE_UINT64, CPU_IDLE_PROP_INTERRUPT_COUNT,
+ cpu_idle_prop_update_intr_cnt, NULL, NULL
+ },
+};
+
+#define CPU_IDLE_PROP_IDX_IDLE_STATE 0
+#define CPU_IDLE_PROP_IDX_ENTER_TS 1
+#define CPU_IDLE_PROP_IDX_EXIT_TS 2
+#define CPU_IDLE_PROP_IDX_LAST_IDLE 3
+#define CPU_IDLE_PROP_IDX_LAST_BUSY 4
+#define CPU_IDLE_PROP_IDX_TOTAL_IDLE 5
+#define CPU_IDLE_PROP_IDX_TOTAL_BUSY 6
+#define CPU_IDLE_PROP_IDX_INTR_CNT 7
+
+/*ARGSUSED*/
+static void
+cpu_idle_dtrace_enter(void *arg, cpu_idle_callback_context_t ctx,
+ cpu_idle_check_wakeup_t check_func, void *check_arg)
+{
+ int state;
+
+ state = cpu_idle_prop_get_intptr(
+ cpu_idle_prop_array[CPU_IDLE_PROP_IDX_IDLE_STATE].handle, ctx);
+ DTRACE_PROBE1(idle__state__transition, uint_t, state);
+}
+
+/*ARGSUSED*/
+static void
+cpu_idle_dtrace_exit(void *arg, cpu_idle_callback_context_t ctx, int flag)
+{
+ DTRACE_PROBE1(idle__state__transition, uint_t, CPU_IDLE_STATE_NORMAL);
+}
+
+static cpu_idle_callback_handle_t cpu_idle_cb_handle_dtrace;
+static cpu_idle_callback_t cpu_idle_callback_dtrace = {
+ CPU_IDLE_CALLBACK_VERS,
+ cpu_idle_dtrace_enter,
+ cpu_idle_dtrace_exit,
+};
+
+#if defined(__x86) && !defined(__xpv)
+extern void tlb_going_idle(void);
+extern void tlb_service(void);
+
+static cpu_idle_callback_handle_t cpu_idle_cb_handle_tlb;
+static cpu_idle_callback_t cpu_idle_callback_tlb = {
+ CPU_IDLE_CALLBACK_VERS,
+ (cpu_idle_enter_cbfn_t)tlb_going_idle,
+ (cpu_idle_exit_cbfn_t)tlb_service,
+};
+#endif
+
+void
+cpu_event_init(void)
+{
+ int i, idx;
+ size_t sz;
+ intptr_t buf;
+ cpu_idle_cb_state_t *sp;
+ cpu_idle_prop_item_t *ip;
+
+ mutex_init(&cpu_idle_cb_lock, NULL, MUTEX_DRIVER, NULL);
+ mutex_init(&cpu_idle_prop_lock, NULL, MUTEX_DRIVER, NULL);
+
+ /* Create internal properties. */
+ for (i = 0, ip = cpu_idle_prop_array;
+ i < sizeof (cpu_idle_prop_array) / sizeof (cpu_idle_prop_array[0]);
+ i++, ip++) {
+ (void) cpu_idle_prop_create_property(ip->name, ip->type,
+ ip->update, ip->arg, &ip->handle);
+ ASSERT(ip->handle != NULL);
+ }
+
+ /* Allocate buffer and align to CPU_CACHE_COHERENCE_SIZE. */
+ sz = sizeof (cpu_idle_cb_state_t) * max_ncpus;
+ sz += CPU_CACHE_COHERENCE_SIZE;
+ buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
+ cpu_idle_cb_state = (cpu_idle_cb_state_t *)P2ROUNDUP(buf,
+ CPU_CACHE_COHERENCE_SIZE);
+
+ /* Cache frequently used property value pointers. */
+ for (sp = cpu_idle_cb_state, i = 0; i < max_ncpus; i++, sp++) {
+ idx = CPU_IDLE_CTX2IDX(i);
+#define ___INIT_P(f, i) \
+ sp->v.f = CPU_IDLE_HDL2VALP(cpu_idle_prop_array[(i)].handle, idx)
+ ___INIT_P(idle_state, CPU_IDLE_PROP_IDX_IDLE_STATE);
+ ___INIT_P(enter_ts, CPU_IDLE_PROP_IDX_ENTER_TS);
+ ___INIT_P(exit_ts, CPU_IDLE_PROP_IDX_EXIT_TS);
+ ___INIT_P(last_idle, CPU_IDLE_PROP_IDX_LAST_IDLE);
+ ___INIT_P(last_busy, CPU_IDLE_PROP_IDX_LAST_BUSY);
+ ___INIT_P(total_idle, CPU_IDLE_PROP_IDX_TOTAL_IDLE);
+ ___INIT_P(total_busy, CPU_IDLE_PROP_IDX_TOTAL_BUSY);
+ ___INIT_P(last_idle, CPU_IDLE_PROP_IDX_INTR_CNT);
+#undef ___INIT_P
+ }
+
+ /* Register built-in callbacks. */
+ if (cpu_idle_register_callback(CPU_IDLE_CB_PRIO_DTRACE,
+ &cpu_idle_callback_dtrace, NULL, &cpu_idle_cb_handle_dtrace) != 0) {
+ cmn_err(CE_PANIC,
+ "cpu_idle: failed to register callback for dtrace.");
+ }
+#if defined(__x86) && !defined(__xpv)
+ if (cpu_idle_register_callback(CPU_IDLE_CB_PRIO_TLB,
+ &cpu_idle_callback_tlb, NULL, &cpu_idle_cb_handle_tlb) != 0) {
+ cmn_err(CE_PANIC,
+ "cpu_idle: failed to register callback for tlb_flush.");
+ }
+#endif
+}
+
+void
+cpu_event_init_cpu(cpu_t *cp)
+{
+ ASSERT(cp->cpu_seqid < max_ncpus);
+ cpu_idle_cb_state[cp->cpu_seqid].v.ready = B_FALSE;
+}
+
+void
+cpu_event_fini_cpu(cpu_t *cp)
+{
+ ASSERT(cp->cpu_seqid < max_ncpus);
+ cpu_idle_cb_state[cp->cpu_seqid].v.ready = B_FALSE;
+}
+
+static void
+cpu_idle_insert_callback(cpu_idle_cb_impl_t *cip)
+{
+ int unlock = 0, unpause = 0;
+ int i, cnt_new = 0, cnt_old = 0;
+ char *buf_new = NULL, *buf_old = NULL;
+
+ ASSERT(MUTEX_HELD(&cpu_idle_cb_lock));
+
+ /*
+ * Expand array if it's full.
+ * Memory must be allocated out of pause/start_cpus() scope because
+ * kmem_zalloc() can't be called with KM_SLEEP flag within that scope.
+ */
+ if (cpu_idle_cb_curr == cpu_idle_cb_max) {
+ cnt_new = cpu_idle_cb_max + CPU_IDLE_ARRAY_CAPACITY_INC;
+ buf_new = (char *)kmem_zalloc(cnt_new *
+ sizeof (cpu_idle_cb_item_t), KM_SLEEP);
+ }
+
+ /* Try to acquire cpu_lock if not held yet. */
+ if (!MUTEX_HELD(&cpu_lock)) {
+ mutex_enter(&cpu_lock);
+ unlock = 1;
+ }
+ /*
+ * Pause all other CPUs (and let them run pause thread).
+ * It's guaranteed that no other threads will access cpu_idle_cb_array
+ * after pause_cpus().
+ */
+ if (!cpus_paused()) {
+ pause_cpus(NULL);
+ unpause = 1;
+ }
+
+ /* Copy content to new buffer if needed. */
+ if (buf_new != NULL) {
+ buf_old = (char *)cpu_idle_cb_array;
+ cnt_old = cpu_idle_cb_max;
+ if (buf_old != NULL) {
+ ASSERT(cnt_old != 0);
+ bcopy(cpu_idle_cb_array, buf_new,
+ sizeof (cpu_idle_cb_item_t) * cnt_old);
+ }
+ cpu_idle_cb_array = (cpu_idle_cb_item_t *)buf_new;
+ cpu_idle_cb_max = cnt_new;
+ }
+
+ /* Insert into array according to priority. */
+ ASSERT(cpu_idle_cb_curr < cpu_idle_cb_max);
+ for (i = cpu_idle_cb_curr; i > 0; i--) {
+ if (cpu_idle_cb_array[i - 1].impl->priority >= cip->priority) {
+ break;
+ }
+ cpu_idle_cb_array[i] = cpu_idle_cb_array[i - 1];
+ }
+ cpu_idle_cb_array[i].arg = cip->argument;
+ cpu_idle_cb_array[i].enter = cip->callback->idle_enter;
+ cpu_idle_cb_array[i].exit = cip->callback->idle_exit;
+ cpu_idle_cb_array[i].impl = cip;
+ cpu_idle_cb_curr++;
+
+ /* Resume other CPUs from paused state if needed. */
+ if (unpause) {
+ start_cpus();
+ }
+ if (unlock) {
+ mutex_exit(&cpu_lock);
+ }
+
+ /* Free old resource if needed. */
+ if (buf_old != NULL) {
+ ASSERT(cnt_old != 0);
+ kmem_free(buf_old, cnt_old * sizeof (cpu_idle_cb_item_t));
+ }
+}
+
+static void
+cpu_idle_remove_callback(cpu_idle_cb_impl_t *cip)
+{
+ int i, found = 0;
+ int unlock = 0, unpause = 0;
+ cpu_idle_cb_state_t *sp;
+
+ ASSERT(MUTEX_HELD(&cpu_idle_cb_lock));
+
+ /* Try to acquire cpu_lock if not held yet. */
+ if (!MUTEX_HELD(&cpu_lock)) {
+ mutex_enter(&cpu_lock);
+ unlock = 1;
+ }
+ /*
+ * Pause all other CPUs.
+ * It's guaranteed that no other threads will access cpu_idle_cb_array
+ * after pause_cpus().
+ */
+ if (!cpus_paused()) {
+ pause_cpus(NULL);
+ unpause = 1;
+ }
+
+ /* Remove cip from array. */
+ for (i = 0; i < cpu_idle_cb_curr; i++) {
+ if (found == 0) {
+ if (cpu_idle_cb_array[i].impl == cip) {
+ found = 1;
+ }
+ } else {
+ cpu_idle_cb_array[i - 1] = cpu_idle_cb_array[i];
+ }
+ }
+ ASSERT(found != 0);
+ cpu_idle_cb_curr--;
+
+ /*
+ * Reset property ready flag for all CPUs if no registered callback
+ * left because cpu_idle_enter/exit will stop updating property if
+ * there's no callback registered.
+ */
+ if (cpu_idle_cb_curr == 0) {
+ for (sp = cpu_idle_cb_state, i = 0; i < max_ncpus; i++, sp++) {
+ sp->v.ready = B_FALSE;
+ }
+ }
+
+ /* Resume other CPUs from paused state if needed. */
+ if (unpause) {
+ start_cpus();
+ }
+ if (unlock) {
+ mutex_exit(&cpu_lock);
+ }
+}
+
+int
+cpu_idle_register_callback(uint_t prio, cpu_idle_callback_t *cbp,
+ void *arg, cpu_idle_callback_handle_t *hdlp)
+{
+ cpu_idle_cb_state_t *sp;
+ cpu_idle_cb_impl_t *cip = NULL;
+
+ /* First validate parameters. */
+ ASSERT(!CPU_ON_INTR(CPU));
+ ASSERT(CPU->cpu_seqid < max_ncpus);
+ sp = &cpu_idle_cb_state[CPU->cpu_seqid];
+ if (sp->v.index != 0) {
+ cmn_err(CE_NOTE,
+ "!cpu_event: register_callback called from callback.");
+ return (EBUSY);
+ } else if (cbp == NULL || hdlp == NULL) {
+ cmn_err(CE_NOTE,
+ "!cpu_event: NULL parameters in register_callback.");
+ return (EINVAL);
+ } else if (prio < CPU_IDLE_CB_PRIO_LOW_BASE ||
+ prio >= CPU_IDLE_CB_PRIO_RESV_BASE) {
+ cmn_err(CE_NOTE,
+ "!cpu_event: priority 0x%x out of range.", prio);
+ return (EINVAL);
+ } else if (cbp->version != CPU_IDLE_CALLBACK_VERS) {
+ cmn_err(CE_NOTE,
+ "!cpu_event: callback version %d is not supported.",
+ cbp->version);
+ return (EINVAL);
+ }
+
+ mutex_enter(&cpu_idle_cb_lock);
+ /* Check whether callback with priority exists if not dynamic. */
+ if (prio != CPU_IDLE_CB_PRIO_DYNAMIC) {
+ for (cip = cpu_idle_cb_busy; cip != NULL;
+ cip = cip->next) {
+ if (cip->priority == prio) {
+ mutex_exit(&cpu_idle_cb_lock);
+ cmn_err(CE_NOTE, "!cpu_event: callback with "
+ "priority 0x%x already exists.", prio);
+ return (EEXIST);
+ }
+ }
+ }
+
+ cip = kmem_zalloc(sizeof (*cip), KM_SLEEP);
+ cip->callback = cbp;
+ cip->argument = arg;
+ cip->priority = prio;
+ cip->next = cpu_idle_cb_busy;
+ cpu_idle_cb_busy = cip;
+ cpu_idle_insert_callback(cip);
+ mutex_exit(&cpu_idle_cb_lock);
+
+ *hdlp = (cpu_idle_callback_handle_t)cip;
+
+ return (0);
+}
+
+int
+cpu_idle_unregister_callback(cpu_idle_callback_handle_t hdl)
+{
+ int rc = ENODEV;
+ cpu_idle_cb_state_t *sp;
+ cpu_idle_cb_impl_t *ip, **ipp;
+
+ ASSERT(!CPU_ON_INTR(CPU));
+ ASSERT(CPU->cpu_seqid < max_ncpus);
+ sp = &cpu_idle_cb_state[CPU->cpu_seqid];
+ if (sp->v.index != 0) {
+ cmn_err(CE_NOTE,
+ "!cpu_event: unregister_callback called from callback.");
+ return (EBUSY);
+ } else if (hdl == NULL) {
+ cmn_err(CE_NOTE,
+ "!cpu_event: hdl is NULL in unregister_callback.");
+ return (EINVAL);
+ }
+
+ ip = (cpu_idle_cb_impl_t *)hdl;
+ mutex_enter(&cpu_idle_cb_lock);
+ for (ipp = &cpu_idle_cb_busy; *ipp != NULL; ipp = &(*ipp)->next) {
+ if (*ipp == ip) {
+ *ipp = ip->next;
+ cpu_idle_remove_callback(ip);
+ rc = 0;
+ break;
+ }
+ }
+ mutex_exit(&cpu_idle_cb_lock);
+
+ if (rc == 0) {
+ kmem_free(ip, sizeof (*ip));
+ } else {
+ cmn_err(CE_NOTE,
+ "!cpu_event: callback handle %p not found.", (void *)hdl);
+ }
+
+ return (rc);
+}
+
+static int
+cpu_idle_enter_state(cpu_idle_cb_state_t *sp, intptr_t state)
+{
+ sp->v.idle_state->cipv_intptr = state;
+ sp->v.enter_ts->cipv_hrtime = gethrtime_unscaled();
+ sp->v.last_busy->cipv_hrtime = sp->v.enter_ts->cipv_hrtime -
+ sp->v.exit_ts->cipv_hrtime;
+ sp->v.total_busy->cipv_hrtime += sp->v.last_busy->cipv_hrtime;
+ if (sp->v.ready == B_FALSE) {
+ sp->v.ready = B_TRUE;
+ return (0);
+ }
+
+ return (1);
+}
+
+static void
+cpu_idle_exit_state(cpu_idle_cb_state_t *sp)
+{
+ sp->v.idle_state->cipv_intptr = CPU_IDLE_STATE_NORMAL;
+ sp->v.exit_ts->cipv_hrtime = gethrtime_unscaled();
+ sp->v.last_idle->cipv_hrtime = sp->v.exit_ts->cipv_hrtime -
+ sp->v.enter_ts->cipv_hrtime;
+ sp->v.total_idle->cipv_hrtime += sp->v.last_idle->cipv_hrtime;
+}
+
+/*ARGSUSED*/
+int
+cpu_idle_enter(int state, int flag,
+ cpu_idle_check_wakeup_t check_func, void *check_arg)
+{
+ int i;
+ cpu_idle_cb_item_t *cip;
+ cpu_idle_cb_state_t *sp;
+ cpu_idle_callback_context_t ctx;
+#if defined(__x86)
+ ulong_t iflags;
+#endif
+
+ ctx = CPU_IDLE_GET_CTX(CPU);
+ ASSERT(CPU->cpu_seqid < max_ncpus);
+ sp = &cpu_idle_cb_state[CPU->cpu_seqid];
+ ASSERT(sp->v.index == 0);
+
+ /*
+ * On x86, cpu_idle_enter can be called from idle thread with either
+ * interrupts enabled or disabled, so we need to make sure interrupts
+ * are disabled here.
+ * On SPARC, cpu_idle_enter will be called from idle thread with
+ * interrupt disabled, so no special handling necessary.
+ */
+#if defined(__x86)
+ iflags = intr_clear();
+#endif
+
+ /* Skip calling callback if state is not ready for current CPU. */
+ if (cpu_idle_enter_state(sp, state) == 0) {
+#if defined(__x86)
+ intr_restore(iflags);
+#endif
+ return (0);
+ }
+
+ for (i = 0, cip = cpu_idle_cb_array; i < cpu_idle_cb_curr; i++, cip++) {
+ /*
+ * Increase index so corresponding idle_exit callback
+ * will be invoked should interrupt happen during
+ * idle_enter callback.
+ */
+ sp->v.index++;
+
+ /* Call idle_enter callback function if it's not NULL. */
+ if (cip->enter != NULL) {
+ cip->enter(cip->arg, ctx, check_func, check_arg);
+
+ /*
+ * cpu_idle_enter runs with interrupts
+ * disabled, so the idle_enter callbacks will
+ * also be called with interrupts disabled.
+ * It is permissible for the callbacks to
+ * enable the interrupts, if they can also
+ * handle the condition if the interrupt
+ * occurs.
+ *
+ * However, if an interrupt occurs and we
+ * return here without dealing with it, we
+ * return to the cpu_idle_enter() caller
+ * with an EBUSY, and the caller will not
+ * enter the idle state.
+ *
+ * We detect the interrupt, by checking the
+ * index value of the state pointer. If it
+ * is not the index we incremented above,
+ * then it was cleared while processing
+ * the interrupt.
+ *
+ * Also note, that at this point of the code
+ * the normal index value will be one greater
+ * than the variable 'i' in the loop, as it
+ * hasn't yet been incremented.
+ */
+ if (sp->v.index != i + 1) {
+#if defined(__x86)
+ intr_restore(iflags);
+#endif
+ return (EBUSY);
+ }
+ }
+ }
+#if defined(__x86)
+ intr_restore(iflags);
+#endif
+
+ return (0);
+}
+
+void
+cpu_idle_exit(int flag)
+{
+ int i;
+ cpu_idle_cb_item_t *cip;
+ cpu_idle_cb_state_t *sp;
+ cpu_idle_callback_context_t ctx;
+#if defined(__x86)
+ ulong_t iflags;
+#endif
+
+ ASSERT(CPU->cpu_seqid < max_ncpus);
+ sp = &cpu_idle_cb_state[CPU->cpu_seqid];
+
+#if defined(__sparc)
+ /*
+ * On SPARC, cpu_idle_exit will only be called from idle thread
+ * with interrupt disabled.
+ */
+
+ if (sp->v.index != 0) {
+ ctx = CPU_IDLE_GET_CTX(CPU);
+ cpu_idle_exit_state(sp);
+ for (i = sp->v.index - 1; i >= 0; i--) {
+ cip = &cpu_idle_cb_array[i];
+ if (cip->exit != NULL) {
+ cip->exit(cip->arg, ctx, flag);
+ }
+ }
+ sp->v.index = 0;
+ }
+#elif defined(__x86)
+ /*
+ * On x86, cpu_idle_exit will be called from idle thread or interrupt
+ * handler. When called from interrupt handler, interrupts will be
+ * disabled. When called from idle thread, interrupts may be disabled
+ * or enabled.
+ */
+
+ /* Called from interrupt, interrupts are already disabled. */
+ if (flag & CPU_IDLE_CB_FLAG_INTR) {
+ /*
+ * return if cpu_idle_exit already called or
+ * there is no registered callback.
+ */
+ if (sp->v.index == 0) {
+ return;
+ }
+ ctx = CPU_IDLE_GET_CTX(CPU);
+ cpu_idle_exit_state(sp);
+ for (i = sp->v.index - 1; i >= 0; i--) {
+ cip = &cpu_idle_cb_array[i];
+ if (cip->exit != NULL) {
+ cip->exit(cip->arg, ctx, flag);
+ }
+ }
+ sp->v.index = 0;
+
+ /* Called from idle thread, need to disable interrupt. */
+ } else {
+ iflags = intr_clear();
+ if (sp->v.index != 0) {
+ ctx = CPU_IDLE_GET_CTX(CPU);
+ cpu_idle_exit_state(sp);
+ for (i = sp->v.index - 1; i >= 0; i--) {
+ cip = &cpu_idle_cb_array[i];
+ if (cip->exit != NULL) {
+ cip->exit(cip->arg, ctx, flag);
+ }
+ }
+ sp->v.index = 0;
+ }
+ intr_restore(iflags);
+ }
+#endif
+}
+
+cpu_idle_callback_context_t
+cpu_idle_get_context(void)
+{
+ return (CPU_IDLE_GET_CTX(CPU));
+}
+
+/*
+ * Allocate property structure in group of CPU_IDLE_VALUE_GROUP_SIZE to improve
+ * cache efficiency. To simplify implementation, allocated memory for property
+ * structure won't be freed.
+ */
+static void
+cpu_idle_prop_allocate_impl(void)
+{
+ int i;
+ size_t sz;
+ intptr_t buf;
+ cpu_idle_prop_impl_t *prop;
+ cpu_idle_prop_value_t *valp;
+
+ ASSERT(!CPU_ON_INTR(CPU));
+ prop = kmem_zalloc(sizeof (*prop) * CPU_IDLE_VALUE_GROUP_SIZE,
+ KM_SLEEP);
+ sz = sizeof (*valp) * CPU_IDLE_VALUE_GROUP_SIZE * max_ncpus;
+ sz += CPU_CACHE_COHERENCE_SIZE;
+ buf = (intptr_t)kmem_zalloc(sz, KM_SLEEP);
+ valp = (cpu_idle_prop_value_t *)P2ROUNDUP(buf,
+ CPU_CACHE_COHERENCE_SIZE);
+
+ for (i = 0; i < CPU_IDLE_VALUE_GROUP_SIZE; i++, prop++, valp++) {
+ prop->value = valp;
+ prop->next = cpu_idle_prop_free;
+ cpu_idle_prop_free = prop;
+ }
+}
+
+int
+cpu_idle_prop_create_property(const char *name, cpu_idle_prop_type_t type,
+ cpu_idle_prop_update_t update, void *arg, cpu_idle_prop_handle_t *hdlp)
+{
+ int rc = EEXIST;
+ cpu_idle_prop_impl_t *prop;
+
+ ASSERT(!CPU_ON_INTR(CPU));
+ if (name == NULL || hdlp == NULL) {
+ cmn_err(CE_WARN,
+ "!cpu_event: NULL parameters in create_property.");
+ return (EINVAL);
+ }
+
+ mutex_enter(&cpu_idle_prop_lock);
+ for (prop = cpu_idle_prop_busy; prop != NULL; prop = prop->next) {
+ if (strcmp(prop->name, name) == 0) {
+ cmn_err(CE_NOTE,
+ "!cpu_event: property %s already exists.", name);
+ break;
+ }
+ }
+ if (prop == NULL) {
+ if (cpu_idle_prop_free == NULL) {
+ cpu_idle_prop_allocate_impl();
+ }
+ ASSERT(cpu_idle_prop_free != NULL);
+ prop = cpu_idle_prop_free;
+ cpu_idle_prop_free = prop->next;
+ prop->next = cpu_idle_prop_busy;
+ cpu_idle_prop_busy = prop;
+
+ ASSERT(prop->value != NULL);
+ prop->name = strdup(name);
+ prop->type = type;
+ prop->update = update;
+ prop->private = arg;
+ prop->refcnt = 1;
+ *hdlp = prop;
+ rc = 0;
+ }
+ mutex_exit(&cpu_idle_prop_lock);
+
+ return (rc);
+}
+
+int
+cpu_idle_prop_destroy_property(cpu_idle_prop_handle_t hdl)
+{
+ int rc = ENODEV;
+ cpu_idle_prop_impl_t *prop, **propp;
+ cpu_idle_prop_value_t *valp;
+
+ ASSERT(!CPU_ON_INTR(CPU));
+ if (hdl == NULL) {
+ cmn_err(CE_WARN,
+ "!cpu_event: hdl is NULL in destroy_property.");
+ return (EINVAL);
+ }
+
+ prop = (cpu_idle_prop_impl_t *)hdl;
+ mutex_enter(&cpu_idle_prop_lock);
+ for (propp = &cpu_idle_prop_busy; *propp != NULL;
+ propp = &(*propp)->next) {
+ if (*propp == prop) {
+ ASSERT(prop->refcnt > 0);
+ if (atomic_cas_32(&prop->refcnt, 1, 0) == 1) {
+ *propp = prop->next;
+ strfree(prop->name);
+ valp = prop->value;
+ bzero(prop, sizeof (*prop));
+ prop->value = valp;
+ prop->next = cpu_idle_prop_free;
+ cpu_idle_prop_free = prop;
+ rc = 0;
+ } else {
+ rc = EBUSY;
+ }
+ break;
+ }
+ }
+ mutex_exit(&cpu_idle_prop_lock);
+
+ return (rc);
+}
+
+int
+cpu_idle_prop_create_handle(const char *name, cpu_idle_prop_handle_t *hdlp)
+{
+ int rc = ENODEV;
+ cpu_idle_prop_impl_t *prop;
+
+ ASSERT(!CPU_ON_INTR(CPU));
+ if (name == NULL || hdlp == NULL) {
+ cmn_err(CE_WARN,
+ "!cpu_event: NULL parameters in create_handle.");
+ return (EINVAL);
+ }
+
+ mutex_enter(&cpu_idle_prop_lock);
+ for (prop = cpu_idle_prop_busy; prop != NULL; prop = prop->next) {
+ if (strcmp(prop->name, name) == 0) {
+ /* Hold one refcount on object. */
+ ASSERT(prop->refcnt > 0);
+ atomic_inc_32(&prop->refcnt);
+ *hdlp = (cpu_idle_prop_handle_t)prop;
+ rc = 0;
+ break;
+ }
+ }
+ mutex_exit(&cpu_idle_prop_lock);
+
+ return (rc);
+}
+
+int
+cpu_idle_prop_destroy_handle(cpu_idle_prop_handle_t hdl)
+{
+ int rc = ENODEV;
+ cpu_idle_prop_impl_t *prop;
+
+ ASSERT(!CPU_ON_INTR(CPU));
+ if (hdl == NULL) {
+ cmn_err(CE_WARN,
+ "!cpu_event: hdl is NULL in destroy_handle.");
+ return (EINVAL);
+ }
+
+ mutex_enter(&cpu_idle_prop_lock);
+ for (prop = cpu_idle_prop_busy; prop != NULL; prop = prop->next) {
+ if (prop == hdl) {
+ /* Release refcnt held in create_handle. */
+ ASSERT(prop->refcnt > 1);
+ atomic_dec_32(&prop->refcnt);
+ rc = 0;
+ break;
+ }
+ }
+ mutex_exit(&cpu_idle_prop_lock);
+
+ return (rc);
+}
+
+cpu_idle_prop_type_t
+cpu_idle_prop_get_type(cpu_idle_prop_handle_t hdl)
+{
+ ASSERT(hdl != NULL);
+ return (((cpu_idle_prop_impl_t *)hdl)->type);
+}
+
+const char *
+cpu_idle_prop_get_name(cpu_idle_prop_handle_t hdl)
+{
+ ASSERT(hdl != NULL);
+ return (((cpu_idle_prop_impl_t *)hdl)->name);
+}
+
+int
+cpu_idle_prop_get_value(cpu_idle_prop_handle_t hdl,
+ cpu_idle_callback_context_t ctx, cpu_idle_prop_value_t *valp)
+{
+ int idx, rc = 0;
+ cpu_idle_prop_impl_t *prop = (cpu_idle_prop_impl_t *)hdl;
+
+ ASSERT(CPU_IDLE_CTX2CPUID(ctx) < max_ncpus);
+ if (hdl == NULL || valp == NULL) {
+ cmn_err(CE_NOTE, "!cpu_event: NULL parameters in prop_get.");
+ return (EINVAL);
+ }
+ idx = CPU_IDLE_CTX2IDX(ctx);
+ if (prop->update != NULL) {
+ cpu_idle_cb_state_t *sp;
+
+ ASSERT(CPU->cpu_seqid < max_ncpus);
+ sp = &cpu_idle_cb_state[CPU->cpu_seqid];
+ /* CPU's idle enter timestamp as sequence number. */
+ rc = prop->update(prop->private,
+ (uint64_t)sp->v.enter_ts->cipv_hrtime, &prop->value[idx]);
+ }
+ if (rc == 0) {
+ *valp = prop->value[idx];
+ }
+
+ return (rc);
+}
+
+uint32_t
+cpu_idle_prop_get_uint32(cpu_idle_prop_handle_t hdl,
+ cpu_idle_callback_context_t ctx)
+{
+ int idx;
+ cpu_idle_prop_impl_t *prop = (cpu_idle_prop_impl_t *)hdl;
+
+ ASSERT(hdl != NULL);
+ ASSERT(CPU_IDLE_CTX2CPUID(ctx) < max_ncpus);
+ idx = CPU_IDLE_CTX2IDX(ctx);
+ return (prop->value[idx].cipv_uint32);
+}
+
+uint64_t
+cpu_idle_prop_get_uint64(cpu_idle_prop_handle_t hdl,
+ cpu_idle_callback_context_t ctx)
+{
+ int idx;
+ cpu_idle_prop_impl_t *prop = (cpu_idle_prop_impl_t *)hdl;
+
+ ASSERT(hdl != NULL);
+ ASSERT(CPU_IDLE_CTX2CPUID(ctx) < max_ncpus);
+ idx = CPU_IDLE_CTX2IDX(ctx);
+ return (prop->value[idx].cipv_uint64);
+}
+
+intptr_t
+cpu_idle_prop_get_intptr(cpu_idle_prop_handle_t hdl,
+ cpu_idle_callback_context_t ctx)
+{
+ int idx;
+ cpu_idle_prop_impl_t *prop = (cpu_idle_prop_impl_t *)hdl;
+
+ ASSERT(hdl != NULL);
+ ASSERT(CPU_IDLE_CTX2CPUID(ctx) < max_ncpus);
+ idx = CPU_IDLE_CTX2IDX(ctx);
+ return (prop->value[idx].cipv_intptr);
+}
+
+hrtime_t
+cpu_idle_prop_get_hrtime(cpu_idle_prop_handle_t hdl,
+ cpu_idle_callback_context_t ctx)
+{
+ int idx;
+ cpu_idle_prop_impl_t *prop = (cpu_idle_prop_impl_t *)hdl;
+
+ ASSERT(hdl != NULL);
+ ASSERT(CPU_IDLE_CTX2CPUID(ctx) < max_ncpus);
+ idx = CPU_IDLE_CTX2IDX(ctx);
+ return (prop->value[idx].cipv_hrtime);
+}
+
+void
+cpu_idle_prop_set_value(cpu_idle_prop_handle_t hdl,
+ cpu_idle_callback_context_t ctx, cpu_idle_prop_value_t val)
+{
+ int idx;
+ cpu_idle_prop_impl_t *prop = (cpu_idle_prop_impl_t *)hdl;
+
+ ASSERT(hdl != NULL);
+ ASSERT(CPU_IDLE_CTX2CPUID(ctx) < max_ncpus);
+ idx = CPU_IDLE_CTX2IDX(ctx);
+ prop->value[idx] = val;
+}
+
+void
+cpu_idle_prop_set_all(cpu_idle_prop_handle_t hdl, cpu_idle_prop_value_t val)
+{
+ int i, idx;
+ cpu_idle_prop_impl_t *prop = (cpu_idle_prop_impl_t *)hdl;
+
+ ASSERT(hdl != NULL);
+ for (i = 0; i < max_ncpus; i++) {
+ idx = CPU_IDLE_CTX2IDX(i);
+ prop->value[idx] = val;
+ }
+}
+
+/*ARGSUSED*/
+static int cpu_idle_prop_update_intr_cnt(void *arg, uint64_t seqnum,
+ cpu_idle_prop_value_t *valp)
+{
+ int i;
+ uint64_t val;
+
+ for (val = 0, i = 0; i < PIL_MAX; i++) {
+ val += CPU->cpu_stats.sys.intr[i];
+ }
+ valp->cipv_uint64 = val;
+
+ return (0);
+}
+
+uint_t
+cpu_idle_get_cpu_state(cpu_t *cp)
+{
+ ASSERT(cp != NULL && cp->cpu_seqid < max_ncpus);
+ return ((uint_t)cpu_idle_prop_get_uint32(
+ cpu_idle_prop_array[CPU_IDLE_PROP_IDX_IDLE_STATE].handle,
+ CPU_IDLE_GET_CTX(cp)));
+}