summaryrefslogtreecommitdiff
path: root/usr/src/uts/intel/os/sundep.c
diff options
context:
space:
mode:
Diffstat (limited to 'usr/src/uts/intel/os/sundep.c')
-rw-r--r--usr/src/uts/intel/os/sundep.c1012
1 files changed, 1012 insertions, 0 deletions
diff --git a/usr/src/uts/intel/os/sundep.c b/usr/src/uts/intel/os/sundep.c
new file mode 100644
index 0000000000..80e149f01b
--- /dev/null
+++ b/usr/src/uts/intel/os/sundep.c
@@ -0,0 +1,1012 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
+ * Copyright 2021 Joyent, Inc.
+ */
+
+/* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
+/* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
+/* All Rights Reserved */
+
+#include <sys/types.h>
+#include <sys/param.h>
+#include <sys/sysmacros.h>
+#include <sys/signal.h>
+#include <sys/systm.h>
+#include <sys/user.h>
+#include <sys/mman.h>
+#include <sys/class.h>
+#include <sys/proc.h>
+#include <sys/procfs.h>
+#include <sys/buf.h>
+#include <sys/kmem.h>
+#include <sys/cred.h>
+#include <sys/archsystm.h>
+#include <sys/vmparam.h>
+#include <sys/prsystm.h>
+#include <sys/reboot.h>
+#include <sys/uadmin.h>
+#include <sys/vfs.h>
+#include <sys/vnode.h>
+#include <sys/file.h>
+#include <sys/session.h>
+#include <sys/ucontext.h>
+#include <sys/dnlc.h>
+#include <sys/var.h>
+#include <sys/cmn_err.h>
+#include <sys/debugreg.h>
+#include <sys/thread.h>
+#include <sys/vtrace.h>
+#include <sys/consdev.h>
+#include <sys/psw.h>
+#include <sys/regset.h>
+#include <sys/privregs.h>
+#include <sys/cpu.h>
+#include <sys/stack.h>
+#include <sys/swap.h>
+#include <vm/hat.h>
+#include <vm/anon.h>
+#include <vm/as.h>
+#include <vm/page.h>
+#include <vm/seg.h>
+#include <vm/seg_kmem.h>
+#include <vm/seg_map.h>
+#include <vm/seg_vn.h>
+#include <sys/exec.h>
+#include <sys/acct.h>
+#include <sys/core.h>
+#include <sys/corectl.h>
+#include <sys/modctl.h>
+#include <sys/tuneable.h>
+#include <c2/audit.h>
+#include <sys/bootconf.h>
+#include <sys/brand.h>
+#include <sys/dumphdr.h>
+#include <sys/promif.h>
+#include <sys/systeminfo.h>
+#include <sys/kdi.h>
+#include <sys/contract_impl.h>
+#include <sys/x86_archext.h>
+#include <sys/segments.h>
+#include <sys/ontrap.h>
+#include <sys/cpu.h>
+#ifdef __xpv
+#include <sys/hypervisor.h>
+#endif
+
+/*
+ * Compare the version of boot that boot says it is against
+ * the version of boot the kernel expects.
+ */
+int
+check_boot_version(int boots_version)
+{
+ if (boots_version == BO_VERSION)
+ return (0);
+
+ prom_printf("Wrong boot interface - kernel needs v%d found v%d\n",
+ BO_VERSION, boots_version);
+ prom_panic("halting");
+ /*NOTREACHED*/
+}
+
+/*
+ * Process the physical installed list for boot.
+ * Finds:
+ * 1) the pfn of the highest installed physical page,
+ * 2) the number of pages installed
+ * 3) the number of distinct contiguous regions these pages fall into.
+ * 4) the number of contiguous memory ranges
+ */
+void
+installed_top_size_ex(
+ struct memlist *list, /* pointer to start of installed list */
+ pfn_t *high_pfn, /* return ptr for top value */
+ pgcnt_t *pgcnt, /* return ptr for sum of installed pages */
+ int *ranges) /* return ptr for the count of contig. ranges */
+{
+ pfn_t top = 0;
+ pgcnt_t sumpages = 0;
+ pfn_t highp; /* high page in a chunk */
+ int cnt = 0;
+
+ for (; list; list = list->ml_next) {
+ ++cnt;
+ highp = (list->ml_address + list->ml_size - 1) >> PAGESHIFT;
+ if (top < highp)
+ top = highp;
+ sumpages += btop(list->ml_size);
+ }
+
+ *high_pfn = top;
+ *pgcnt = sumpages;
+ *ranges = cnt;
+}
+
+void
+installed_top_size(
+ struct memlist *list, /* pointer to start of installed list */
+ pfn_t *high_pfn, /* return ptr for top value */
+ pgcnt_t *pgcnt) /* return ptr for sum of installed pages */
+{
+ int ranges;
+
+ installed_top_size_ex(list, high_pfn, pgcnt, &ranges);
+}
+
+void
+phys_install_has_changed(void)
+{}
+
+/*
+ * Copy in a memory list from boot to kernel, with a filter function
+ * to remove pages. The filter function can increase the address and/or
+ * decrease the size to filter out pages. It will also align addresses and
+ * sizes to PAGESIZE.
+ */
+void
+copy_memlist_filter(
+ struct memlist *src,
+ struct memlist **dstp,
+ void (*filter)(uint64_t *, uint64_t *))
+{
+ struct memlist *dst, *prev;
+ uint64_t addr;
+ uint64_t size;
+ uint64_t eaddr;
+
+ dst = *dstp;
+ prev = dst;
+
+ /*
+ * Move through the memlist applying a filter against
+ * each range of memory. Note that we may apply the
+ * filter multiple times against each memlist entry.
+ */
+ for (; src; src = src->ml_next) {
+ addr = P2ROUNDUP(src->ml_address, PAGESIZE);
+ eaddr = P2ALIGN(src->ml_address + src->ml_size, PAGESIZE);
+ while (addr < eaddr) {
+ size = eaddr - addr;
+ if (filter != NULL)
+ filter(&addr, &size);
+ if (size == 0)
+ break;
+ dst->ml_address = addr;
+ dst->ml_size = size;
+ dst->ml_next = 0;
+ if (prev == dst) {
+ dst->ml_prev = 0;
+ dst++;
+ } else {
+ dst->ml_prev = prev;
+ prev->ml_next = dst;
+ dst++;
+ prev++;
+ }
+ addr += size;
+ }
+ }
+
+ *dstp = dst;
+}
+
+/*
+ * Kernel setup code, called from startup().
+ */
+void
+kern_setup1(void)
+{
+ proc_t *pp;
+
+ pp = &p0;
+
+ proc_sched = pp;
+
+ /*
+ * Initialize process 0 data structures
+ */
+ pp->p_stat = SRUN;
+ pp->p_flag = SSYS;
+
+ pp->p_pidp = &pid0;
+ pp->p_pgidp = &pid0;
+ pp->p_sessp = &session0;
+ pp->p_tlist = &t0;
+ pid0.pid_pglink = pp;
+ pid0.pid_pgtail = pp;
+
+ /*
+ * XXX - we asssume that the u-area is zeroed out except for
+ * ttolwp(curthread)->lwp_regs.
+ */
+ PTOU(curproc)->u_cmask = (mode_t)CMASK;
+
+ thread_init(); /* init thread_free list */
+ pid_init(); /* initialize pid (proc) table */
+ contract_init(); /* initialize contracts */
+
+ init_pages_pp_maximum();
+}
+
+/*
+ * Load a procedure into a thread.
+ */
+void
+thread_load(kthread_t *t, void (*start)(), caddr_t arg, size_t len)
+{
+ caddr_t sp;
+ size_t framesz;
+ caddr_t argp;
+ long *p;
+ extern void thread_start();
+
+ /*
+ * Push a "c" call frame onto the stack to represent
+ * the caller of "start".
+ */
+ sp = t->t_stk;
+ ASSERT(((uintptr_t)t->t_stk & (STACK_ENTRY_ALIGN - 1)) == 0);
+ if (len != 0) {
+ /*
+ * the object that arg points at is copied into the
+ * caller's frame.
+ */
+ framesz = SA(len);
+ sp -= framesz;
+ ASSERT(sp > t->t_stkbase);
+ argp = sp + SA(MINFRAME);
+ bcopy(arg, argp, len);
+ arg = argp;
+ }
+ /*
+ * Set up arguments (arg and len) on the caller's stack frame.
+ */
+ p = (long *)sp;
+
+ *--p = 0; /* fake call */
+ *--p = 0; /* null frame pointer terminates stack trace */
+ *--p = (long)len;
+ *--p = (intptr_t)arg;
+ *--p = (intptr_t)start;
+
+ /*
+ * initialize thread to resume at thread_start() which will
+ * turn around and invoke (*start)(arg, len).
+ */
+ t->t_pc = (uintptr_t)thread_start;
+ t->t_sp = (uintptr_t)p;
+
+ ASSERT((t->t_sp & (STACK_ENTRY_ALIGN - 1)) == 0);
+}
+
+/*
+ * load user registers into lwp.
+ */
+/*ARGSUSED2*/
+void
+lwp_load(klwp_t *lwp, gregset_t grp, uintptr_t thrptr)
+{
+ struct regs *rp = lwptoregs(lwp);
+
+ setgregs(lwp, grp);
+ rp->r_ps = PSL_USER;
+
+ /*
+ * For 64-bit lwps, we allow one magic %fs selector value, and one
+ * magic %gs selector to point anywhere in the address space using
+ * %fsbase and %gsbase behind the scenes. libc uses %fs to point
+ * at the ulwp_t structure.
+ *
+ * For 32-bit lwps, libc wedges its lwp thread pointer into the
+ * ucontext ESP slot (which is otherwise irrelevant to setting a
+ * ucontext) and LWPGS_SEL value into gregs[REG_GS]. This is so
+ * syslwp_create() can atomically setup %gs.
+ *
+ * See setup_context() in libc.
+ */
+#ifdef _SYSCALL32_IMPL
+ if (lwp_getdatamodel(lwp) == DATAMODEL_ILP32) {
+ if (grp[REG_GS] == LWPGS_SEL)
+ (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr);
+ } else {
+ /*
+ * See lwp_setprivate in kernel and setup_context in libc.
+ *
+ * Currently libc constructs a ucontext from whole cloth for
+ * every new (not main) lwp created. For 64 bit processes
+ * %fsbase is directly set to point to current thread pointer.
+ * In the past (solaris 10) %fs was also set LWPFS_SEL to
+ * indicate %fsbase. Now we use the null GDT selector for
+ * this purpose. LWP[FS|GS]_SEL are only intended for 32 bit
+ * processes. To ease transition we support older libcs in
+ * the newer kernel by forcing %fs or %gs selector to null
+ * by calling lwp_setprivate if LWP[FS|GS]_SEL is passed in
+ * the ucontext. This is should be ripped out at some future
+ * date. Another fix would be for libc to do a getcontext
+ * and inherit the null %fs/%gs from the current context but
+ * that means an extra system call and could hurt performance.
+ */
+ if (grp[REG_FS] == 0x1bb) /* hard code legacy LWPFS_SEL */
+ (void) lwp_setprivate(lwp, _LWP_FSBASE,
+ (uintptr_t)grp[REG_FSBASE]);
+
+ if (grp[REG_GS] == 0x1c3) /* hard code legacy LWPGS_SEL */
+ (void) lwp_setprivate(lwp, _LWP_GSBASE,
+ (uintptr_t)grp[REG_GSBASE]);
+ }
+#else
+ if (grp[GS] == LWPGS_SEL)
+ (void) lwp_setprivate(lwp, _LWP_GSBASE, thrptr);
+#endif
+
+ lwp->lwp_eosys = JUSTRETURN;
+ lwptot(lwp)->t_post_sys = 1;
+}
+
+/*
+ * set syscall()'s return values for a lwp.
+ */
+void
+lwp_setrval(klwp_t *lwp, int v1, int v2)
+{
+ lwptoregs(lwp)->r_ps &= ~PS_C;
+ lwptoregs(lwp)->r_r0 = v1;
+ lwptoregs(lwp)->r_r1 = v2;
+}
+
+/*
+ * set syscall()'s return values for a lwp.
+ */
+void
+lwp_setsp(klwp_t *lwp, caddr_t sp)
+{
+ lwptoregs(lwp)->r_sp = (intptr_t)sp;
+}
+
+/*
+ * Copy regs from parent to child.
+ */
+void
+lwp_forkregs(klwp_t *lwp, klwp_t *clwp)
+{
+ struct pcb *pcb = &clwp->lwp_pcb;
+ struct regs *rp = lwptoregs(lwp);
+
+ if (!PCB_NEED_UPDATE_SEGS(pcb)) {
+ pcb->pcb_ds = rp->r_ds;
+ pcb->pcb_es = rp->r_es;
+ pcb->pcb_fs = rp->r_fs;
+ pcb->pcb_gs = rp->r_gs;
+ PCB_SET_UPDATE_SEGS(pcb);
+ lwptot(clwp)->t_post_sys = 1;
+ }
+ ASSERT(lwptot(clwp)->t_post_sys);
+
+ fp_lwp_dup(clwp);
+
+ bcopy(lwp->lwp_regs, clwp->lwp_regs, sizeof (struct regs));
+}
+
+/*
+ * This function is currently unused on x86.
+ */
+/*ARGSUSED*/
+void
+lwp_freeregs(klwp_t *lwp, int isexec)
+{}
+
+/*
+ * This function is currently unused on x86.
+ */
+void
+lwp_pcb_exit(void)
+{}
+
+/*
+ * Lwp context ops for segment registers.
+ */
+
+/*
+ * Every time we come into the kernel (syscall, interrupt or trap
+ * but not fast-traps) we capture the current values of the user's
+ * segment registers into the lwp's reg structure. This includes
+ * lcall for i386 generic system call support since it is handled
+ * as a segment-not-present trap.
+ *
+ * Here we save the current values from the lwp regs into the pcb
+ * and or PCB_UPDATE_SEGS (1) in pcb->pcb_rupdate to tell the rest
+ * of the kernel that the pcb copy of the segment registers is the
+ * current one. This ensures the lwp's next trip to user land via
+ * update_sregs. Finally we set t_post_sys to ensure that no
+ * system call fast-path's its way out of the kernel via sysret.
+ *
+ * (This means that we need to have interrupts disabled when we
+ * test t->t_post_sys in the syscall handlers; if the test fails,
+ * we need to keep interrupts disabled until we return to userland
+ * so we can't be switched away.)
+ *
+ * As a result of all this, we don't really have to do a whole lot
+ * if the thread is just mucking about in the kernel, switching on
+ * and off the cpu for whatever reason it feels like. And yet we
+ * still preserve fast syscalls, cause if we -don't- get
+ * descheduled, we never come here either.
+ */
+
+#define VALID_LWP_DESC(udp) ((udp)->usd_type == SDT_MEMRWA && \
+ (udp)->usd_p == 1 && (udp)->usd_dpl == SEL_UPL)
+
+/*ARGSUSED*/
+void
+lwp_segregs_save(klwp_t *lwp)
+{
+ pcb_t *pcb = &lwp->lwp_pcb;
+ struct regs *rp;
+
+ ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc));
+ ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc));
+
+ if (!PCB_NEED_UPDATE_SEGS(pcb)) {
+ rp = lwptoregs(lwp);
+
+ /*
+ * If there's no update already pending, capture the current
+ * %ds/%es/%fs/%gs values from lwp's regs in case the user
+ * changed them; %fsbase and %gsbase are privileged so the
+ * kernel versions of these registers in pcb_fsbase and
+ * pcb_gsbase are always up-to-date.
+ */
+ pcb->pcb_ds = rp->r_ds;
+ pcb->pcb_es = rp->r_es;
+ pcb->pcb_fs = rp->r_fs;
+ pcb->pcb_gs = rp->r_gs;
+ PCB_SET_UPDATE_SEGS(pcb);
+ lwp->lwp_thread->t_post_sys = 1;
+ }
+
+#if !defined(__xpv) /* XXPV not sure if we can re-read gdt? */
+ ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPFS], &lwp->lwp_pcb.pcb_fsdesc,
+ sizeof (lwp->lwp_pcb.pcb_fsdesc)) == 0);
+ ASSERT(bcmp(&CPU->cpu_gdt[GDT_LWPGS], &lwp->lwp_pcb.pcb_gsdesc,
+ sizeof (lwp->lwp_pcb.pcb_gsdesc)) == 0);
+#endif
+}
+
+/*
+ * Update the segment registers with new values from the pcb.
+ *
+ * We have to do this carefully, and in the following order,
+ * in case any of the selectors points at a bogus descriptor.
+ * If they do, we'll catch trap with on_trap and return 1.
+ * returns 0 on success.
+ *
+ * This is particularly tricky for %gs.
+ * This routine must be executed under a cli.
+ */
+int
+update_sregs(struct regs *rp, klwp_t *lwp)
+{
+ pcb_t *pcb = &lwp->lwp_pcb;
+ ulong_t kgsbase;
+ on_trap_data_t otd;
+ int rc = 0;
+
+ if (!on_trap(&otd, OT_SEGMENT_ACCESS)) {
+
+#if defined(__xpv)
+ /*
+ * On the hyervisor this is easy. The hypercall below will
+ * swapgs and load %gs with the user selector. If the user
+ * selector is bad the hypervisor will catch the fault and
+ * load %gs with the null selector instead. Either way the
+ * kernel's gsbase is not damaged.
+ */
+ kgsbase = (ulong_t)CPU;
+ if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL,
+ pcb->pcb_gs) != 0) {
+ no_trap();
+ return (1);
+ }
+
+ rp->r_gs = pcb->pcb_gs;
+ ASSERT((cpu_t *)kgsbase == CPU);
+
+#else /* __xpv */
+
+ /*
+ * A little more complicated running native.
+ */
+ kgsbase = (ulong_t)CPU;
+ __set_gs(pcb->pcb_gs);
+
+ /*
+ * If __set_gs fails it's because the new %gs is a bad %gs,
+ * we'll be taking a trap but with the original %gs and %gsbase
+ * undamaged (i.e. pointing at curcpu).
+ *
+ * We've just mucked up the kernel's gsbase. Oops. In
+ * particular we can't take any traps at all. Make the newly
+ * computed gsbase be the hidden gs via swapgs, and fix
+ * the kernel's gsbase back again. Later, when we return to
+ * userland we'll swapgs again restoring gsbase just loaded
+ * above.
+ */
+ __asm__ __volatile__("mfence; swapgs");
+
+ rp->r_gs = pcb->pcb_gs;
+
+ /*
+ * Restore kernel's gsbase. Note that this also serializes any
+ * attempted speculation from loading the user-controlled
+ * %gsbase.
+ */
+ wrmsr(MSR_AMD_GSBASE, kgsbase);
+
+#endif /* __xpv */
+
+ /*
+ * Only override the descriptor base address if
+ * r_gs == LWPGS_SEL or if r_gs == NULL. A note on
+ * NULL descriptors -- 32-bit programs take faults
+ * if they deference NULL descriptors; however,
+ * when 64-bit programs load them into %fs or %gs,
+ * they DONT fault -- only the base address remains
+ * whatever it was from the last load. Urk.
+ *
+ * XXX - note that lwp_setprivate now sets %fs/%gs to the
+ * null selector for 64 bit processes. Whereas before
+ * %fs/%gs were set to LWP(FS|GS)_SEL regardless of
+ * the process's data model. For now we check for both
+ * values so that the kernel can also support the older
+ * libc. This should be ripped out at some point in the
+ * future.
+ */
+ if (pcb->pcb_gs == LWPGS_SEL || pcb->pcb_gs == 0) {
+#if defined(__xpv)
+ if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER,
+ pcb->pcb_gsbase)) {
+ no_trap();
+ return (1);
+ }
+#else
+ wrmsr(MSR_AMD_KGSBASE, pcb->pcb_gsbase);
+#endif
+ }
+
+ __set_ds(pcb->pcb_ds);
+ rp->r_ds = pcb->pcb_ds;
+
+ __set_es(pcb->pcb_es);
+ rp->r_es = pcb->pcb_es;
+
+ __set_fs(pcb->pcb_fs);
+ rp->r_fs = pcb->pcb_fs;
+
+ /*
+ * Same as for %gs
+ */
+ if (pcb->pcb_fs == LWPFS_SEL || pcb->pcb_fs == 0) {
+#if defined(__xpv)
+ if (HYPERVISOR_set_segment_base(SEGBASE_FS,
+ pcb->pcb_fsbase)) {
+ no_trap();
+ return (1);
+ }
+#else
+ wrmsr(MSR_AMD_FSBASE, pcb->pcb_fsbase);
+#endif
+ }
+
+ } else {
+ cli();
+ rc = 1;
+ }
+ no_trap();
+ return (rc);
+}
+
+/*
+ * Make sure any stale selectors are cleared from the segment registers
+ * by putting KDS_SEL (the kernel's default %ds gdt selector) into them.
+ * This is necessary because the kernel itself does not use %es, %fs, nor
+ * %ds. (%cs and %ss are necessary, and are set up by the kernel - along with
+ * %gs - to point to the current cpu struct.) If we enter kmdb while in the
+ * kernel and resume with a stale ldt or brandz selector sitting there in a
+ * segment register, kmdb will #gp fault if the stale selector points to,
+ * for example, an ldt in the context of another process.
+ *
+ * WARNING: Intel and AMD chips behave differently when storing
+ * the null selector into %fs and %gs while in long mode. On AMD
+ * chips fsbase and gsbase are not cleared. But on Intel chips, storing
+ * a null selector into %fs or %gs has the side effect of clearing
+ * fsbase or gsbase. For that reason we use KDS_SEL, which has
+ * consistent behavor between AMD and Intel.
+ *
+ * Caller responsible for preventing cpu migration.
+ */
+void
+reset_sregs(void)
+{
+ ulong_t kgsbase = (ulong_t)CPU;
+
+ ASSERT(curthread->t_preempt != 0 || getpil() >= DISP_LEVEL);
+
+ cli();
+ __set_gs(KGS_SEL);
+
+ /*
+ * restore kernel gsbase
+ */
+#if defined(__xpv)
+ xen_set_segment_base(SEGBASE_GS_KERNEL, kgsbase);
+#else
+ wrmsr(MSR_AMD_GSBASE, kgsbase);
+#endif
+
+ sti();
+
+ __set_ds(KDS_SEL);
+ __set_es(0 | SEL_KPL); /* selector RPL not ring 0 on hypervisor */
+ __set_fs(KFS_SEL);
+}
+
+
+#ifdef _SYSCALL32_IMPL
+
+/*
+ * Make it impossible for a process to change its data model.
+ * We do this by toggling the present bits for the 32 and
+ * 64-bit user code descriptors. That way if a user lwp attempts
+ * to change its data model (by using the wrong code descriptor in
+ * %cs) it will fault immediately. This also allows us to simplify
+ * assertions and checks in the kernel.
+ */
+
+static void
+gdt_ucode_model(model_t model)
+{
+ kpreempt_disable();
+ if (model == DATAMODEL_NATIVE) {
+ gdt_update_usegd(GDT_UCODE, &ucs_on);
+ gdt_update_usegd(GDT_U32CODE, &ucs32_off);
+ } else {
+ gdt_update_usegd(GDT_U32CODE, &ucs32_on);
+ gdt_update_usegd(GDT_UCODE, &ucs_off);
+ }
+ kpreempt_enable();
+}
+
+#endif /* _SYSCALL32_IMPL */
+
+/*
+ * Restore lwp private fs and gs segment descriptors
+ * on current cpu's GDT.
+ */
+static void
+lwp_segregs_restore(klwp_t *lwp)
+{
+ pcb_t *pcb = &lwp->lwp_pcb;
+
+ ASSERT(VALID_LWP_DESC(&pcb->pcb_fsdesc));
+ ASSERT(VALID_LWP_DESC(&pcb->pcb_gsdesc));
+
+#ifdef _SYSCALL32_IMPL
+ gdt_ucode_model(DATAMODEL_NATIVE);
+#endif
+
+ gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc);
+ gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc);
+
+}
+
+#ifdef _SYSCALL32_IMPL
+
+static void
+lwp_segregs_restore32(klwp_t *lwp)
+{
+ /*LINTED*/
+ cpu_t *cpu = CPU;
+ pcb_t *pcb = &lwp->lwp_pcb;
+
+ ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_fsdesc));
+ ASSERT(VALID_LWP_DESC(&lwp->lwp_pcb.pcb_gsdesc));
+
+ gdt_ucode_model(DATAMODEL_ILP32);
+ gdt_update_usegd(GDT_LWPFS, &pcb->pcb_fsdesc);
+ gdt_update_usegd(GDT_LWPGS, &pcb->pcb_gsdesc);
+}
+
+#endif /* _SYSCALL32_IMPL */
+
+/*
+ * If this is a process in a branded zone, then we want it to use the brand
+ * syscall entry points instead of the standard Solaris entry points. This
+ * routine must be called when a new lwp is created within a branded zone
+ * or when an existing lwp moves into a branded zone via a zone_enter()
+ * operation.
+ */
+void
+lwp_attach_brand_hdlrs(klwp_t *lwp)
+{
+ kthread_t *t = lwptot(lwp);
+
+ ASSERT(PROC_IS_BRANDED(lwptoproc(lwp)));
+
+ ASSERT(removectx(t, NULL, brand_interpositioning_disable,
+ brand_interpositioning_enable, NULL, NULL,
+ brand_interpositioning_disable, NULL) == 0);
+ installctx(t, NULL, brand_interpositioning_disable,
+ brand_interpositioning_enable, NULL, NULL,
+ brand_interpositioning_disable, NULL, NULL);
+
+ if (t == curthread) {
+ kpreempt_disable();
+ brand_interpositioning_enable();
+ kpreempt_enable();
+ }
+}
+
+/*
+ * If this is a process in a branded zone, then we want it to disable the
+ * brand syscall entry points. This routine must be called when the last
+ * lwp in a process is exiting in proc_exit().
+ */
+void
+lwp_detach_brand_hdlrs(klwp_t *lwp)
+{
+ kthread_t *t = lwptot(lwp);
+
+ ASSERT(PROC_IS_BRANDED(lwptoproc(lwp)));
+ if (t == curthread)
+ kpreempt_disable();
+
+ /* Remove the original context handlers */
+ VERIFY(removectx(t, NULL, brand_interpositioning_disable,
+ brand_interpositioning_enable, NULL, NULL,
+ brand_interpositioning_disable, NULL) != 0);
+
+ if (t == curthread) {
+ /* Cleanup our MSR and IDT entries. */
+ brand_interpositioning_disable();
+ kpreempt_enable();
+ }
+}
+
+/*
+ * Add any lwp-associated context handlers to the lwp at the beginning
+ * of the lwp's useful life.
+ *
+ * All paths which create lwp's invoke lwp_create(); lwp_create()
+ * invokes lwp_stk_init() which initializes the stack, sets up
+ * lwp_regs, and invokes this routine.
+ *
+ * All paths which destroy lwp's invoke lwp_exit() to rip the lwp
+ * apart and put it on 'lwp_deathrow'; if the lwp is destroyed it
+ * ends up in thread_free() which invokes freectx(t, 0) before
+ * invoking lwp_stk_fini(). When the lwp is recycled from death
+ * row, lwp_stk_fini() is invoked, then thread_free(), and thus
+ * freectx(t, 0) as before.
+ *
+ * In the case of exec, the surviving lwp is thoroughly scrubbed
+ * clean; exec invokes freectx(t, 1) to destroy associated contexts.
+ * On the way back to the new image, it invokes setregs() which
+ * in turn invokes this routine.
+ */
+void
+lwp_installctx(klwp_t *lwp)
+{
+ kthread_t *t = lwptot(lwp);
+ int thisthread = t == curthread;
+#ifdef _SYSCALL32_IMPL
+ void (*restop)(klwp_t *) = lwp_getdatamodel(lwp) == DATAMODEL_NATIVE ?
+ lwp_segregs_restore : lwp_segregs_restore32;
+#else
+ void (*restop)(klwp_t *) = lwp_segregs_restore;
+#endif
+ struct ctxop *ctx;
+
+ /*
+ * Install the basic lwp context handlers on each lwp.
+ *
+ * On the amd64 kernel, the context handlers are responsible for
+ * virtualizing %ds, %es, %fs, and %gs to the lwp. The register
+ * values are only ever changed via sys_rtt when the
+ * PCB_UPDATE_SEGS bit (1) is set in pcb->pcb_rupdate. Only
+ * sys_rtt gets to clear the bit.
+ *
+ * On the i386 kernel, the context handlers are responsible for
+ * virtualizing %gs/%fs to the lwp by updating the per-cpu GDTs
+ */
+ ASSERT(removectx(t, lwp, lwp_segregs_save, restop,
+ NULL, NULL, NULL, NULL) == 0);
+ if (thisthread) {
+ ctx = installctx_preallocate();
+ kpreempt_disable();
+ } else {
+ ctx = NULL;
+ }
+ installctx(t, lwp, lwp_segregs_save, restop,
+ NULL, NULL, NULL, NULL, ctx);
+ if (thisthread) {
+ /*
+ * Since we're the right thread, set the values in the GDT
+ */
+ restop(lwp);
+ kpreempt_enable();
+ }
+
+ /*
+ * If we have sysenter/sysexit instructions enabled, we need
+ * to ensure that the hardware mechanism is kept up-to-date with the
+ * lwp's kernel stack pointer across context switches.
+ *
+ * sep_save zeros the sysenter stack pointer msr; sep_restore sets
+ * it to the lwp's kernel stack pointer (kstktop).
+ */
+ if (is_x86_feature(x86_featureset, X86FSET_SEP)) {
+ caddr_t kstktop = (caddr_t)lwp->lwp_regs;
+ ASSERT(removectx(t, kstktop,
+ sep_save, sep_restore, NULL, NULL, NULL, NULL) == 0);
+
+ if (thisthread) {
+ ctx = installctx_preallocate();
+ kpreempt_disable();
+ } else {
+ ctx = NULL;
+ }
+ installctx(t, kstktop,
+ sep_save, sep_restore, NULL, NULL, NULL, NULL, ctx);
+ if (thisthread) {
+ /*
+ * We're the right thread, so set the stack pointer
+ * for the first sysenter instruction to use
+ */
+ sep_restore(kstktop);
+ kpreempt_enable();
+ }
+ }
+
+ if (PROC_IS_BRANDED(ttoproc(t)))
+ lwp_attach_brand_hdlrs(lwp);
+}
+
+/*
+ * Clear registers on exec(2).
+ */
+void
+setregs(uarg_t *args)
+{
+ struct regs *rp;
+ kthread_t *t = curthread;
+ klwp_t *lwp = ttolwp(t);
+ pcb_t *pcb = &lwp->lwp_pcb;
+ greg_t sp;
+
+ /*
+ * Initialize user registers
+ */
+ (void) save_syscall_args(); /* copy args from registers first */
+ rp = lwptoregs(lwp);
+ sp = rp->r_sp;
+ bzero(rp, sizeof (*rp));
+
+ rp->r_ss = UDS_SEL;
+ rp->r_sp = sp;
+ rp->r_pc = args->entry;
+ rp->r_ps = PSL_USER;
+
+ pcb->pcb_fs = pcb->pcb_gs = 0;
+ pcb->pcb_fsbase = pcb->pcb_gsbase = 0;
+
+ if (ttoproc(t)->p_model == DATAMODEL_NATIVE) {
+
+ rp->r_cs = UCS_SEL;
+
+ /*
+ * Only allow 64-bit user code descriptor to be present.
+ */
+ gdt_ucode_model(DATAMODEL_NATIVE);
+
+ /*
+ * Arrange that the virtualized %fs and %gs GDT descriptors
+ * have a well-defined initial state (present, ring 3
+ * and of type data).
+ */
+ pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
+
+ /*
+ * thrptr is either NULL or a value used by DTrace.
+ * 64-bit processes use %fs as their "thread" register.
+ */
+ if (args->thrptr)
+ (void) lwp_setprivate(lwp, _LWP_FSBASE, args->thrptr);
+
+ } else {
+
+ rp->r_cs = U32CS_SEL;
+ rp->r_ds = rp->r_es = UDS_SEL;
+
+ /*
+ * only allow 32-bit user code selector to be present.
+ */
+ gdt_ucode_model(DATAMODEL_ILP32);
+
+ pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
+
+ /*
+ * thrptr is either NULL or a value used by DTrace.
+ * 32-bit processes use %gs as their "thread" register.
+ */
+ if (args->thrptr)
+ (void) lwp_setprivate(lwp, _LWP_GSBASE, args->thrptr);
+
+ }
+
+ pcb->pcb_ds = rp->r_ds;
+ pcb->pcb_es = rp->r_es;
+ PCB_SET_UPDATE_SEGS(pcb);
+
+ lwp->lwp_eosys = JUSTRETURN;
+ t->t_post_sys = 1;
+
+ /*
+ * Add the lwp context handlers that virtualize segment registers,
+ * and/or system call stacks etc.
+ */
+ lwp_installctx(lwp);
+
+ /*
+ * Reset the FPU flags and then initialize the FPU for this lwp.
+ */
+ fp_exec();
+}
+
+user_desc_t *
+cpu_get_gdt(void)
+{
+ return (CPU->cpu_gdt);
+}
+
+
+#if !defined(lwp_getdatamodel)
+
+/*
+ * Return the datamodel of the given lwp.
+ */
+/*ARGSUSED*/
+model_t
+lwp_getdatamodel(klwp_t *lwp)
+{
+ return (lwp->lwp_procp->p_model);
+}
+
+#endif /* !lwp_getdatamodel */
+
+#if !defined(get_udatamodel)
+
+model_t
+get_udatamodel(void)
+{
+ return (curproc->p_model);
+}
+
+#endif /* !get_udatamodel */