1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 1988 AT&T
* All Rights Reserved
*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include "machdep.h"
#include "_audit.h"
#if defined(lint)
#include <sys/types.h>
#include "_rtld.h"
#else
#include <sys/stack.h>
#include <sys/asm_linkage.h>
.file "boot_elf.s"
.seg ".text"
#endif
/*
* We got here because the initial call to a function resolved to a procedure
* linkage table entry. That entry did a branch to the first PLT entry, which
* in turn did a call to elf_rtbndr (refer elf_plt_init()).
*
* the code sequence that got us here was:
*
* PLT entry for foo():
* sethi (.-PLT0), %g1
* ba,a .PLT0 ! patched atomically 2nd
* nop ! patched 1st
* nop
* nop
* nop
* nop
* nop
*
* Therefore on entry, %i7 has the address of the call, which will be added
* to the offset to the plt entry in %g1 to calculate the plt entry address
* we must also subtract 4 because the address of PLT0 points to the
* save instruction before the call.
*
* The PLT entry is rewritten in one of several ways. For the full 64-bit
* span, the following sequence is generated:
*
* nop
* sethi %hh(entry_pt), %g1
* sethi %lm(entry_pt), %g5
* or %g1, %hm(entry_pt), %g1
* sllx %g1, 32, %g1
* or %g1, %g5, %g5
* jmpl %g5 + %lo(entry_pt), %g0
* nop
*
* Shorter code sequences are possible, depending on reachability
* constraints. Note that 'call' is not as useful as it might seem in
* this context, because it is only capable of plus or minus 2Gbyte
* PC-relative jumps, and the rdpc instruction is very slow.
*
* At the time of writing, the present and future SPARC CPUs that will use
* this code are only capable of addressing the bottom 43-bits and top 43-bits
* of the address space. And since shared libraries are placed at the top
* of the address space, the "top 44-bits" sequence will effectively always be
* used. See elf_plt_write() below. The "top 32-bits" are used when they
* can reach.
*/
#if defined(lint)
extern unsigned long elf_bndr(Rt_map *, unsigned long, caddr_t);
/*
* We're called here from .PLTn in a new frame, with %o0 containing
* the result of a sethi (. - .PLT0), and %o1 containing the pc of
* the jmpl instruction we're got here with inside .PLT1
*/
void
elf_rtbndr(Rt_map *lmp, unsigned long pltoff, caddr_t from)
{
(void) elf_bndr(lmp, pltoff, from);
}
#else
.weak _elf_rtbndr ! keep dbx happy as it likes to
_elf_rtbndr = elf_rtbndr ! rummage around for our symbols
ENTRY(elf_rtbndr)
mov %i7, %o3 ! Save callers address(profiling)
save %sp, -SA(MINFRAME), %sp
mov %g4, %l5 ! Save g4 (safe across function calls)
sub %i1, 0x38, %o1 ! compute addr of .PLT0 from addr of .PLT1 jmpl
ldx [%o1 + 0x40], %o0 ! ld PLT2[X] into third arg
srl %i0, 10, %o1 ! shift offset set by sethi
call elf_bndr ! returns function address in %o0
mov %i3, %o2 ! Callers address is arg 3
mov %o0, %g1 ! save address of routine binded
mov %l5, %g4 ! restore g4
restore ! how many restores needed ? 2
jmp %g1 ! jump to it
restore
SET_SIZE(elf_rtbndr)
#endif
#if defined(lint)
void
elf_rtbndr_far(Rt_map *lmp, unsigned long pltoff, caddr_t from)
{
(void) elf_bndr(lmp, pltoff, from);
}
#else
ENTRY(elf_rtbndr_far)
mov %i7, %o3 ! Save callers address
save %sp, -SA(MINFRAME), %sp
mov %g4, %l5 ! preserve %g4
sub %i1, 0x18, %o2 ! compute address of .PLT0 from
! .PLT0 jmpl instr.
sub %i0, %o2, %o1 ! pltoff = pc - 0x10 - .PLT0
sub %o1, 0x10, %o1
ldx [%o2 + 0x40], %o0 ! ld PLT2[X] into third arg
call elf_bndr ! returns function address in %o0
mov %i3, %o2 ! Callers address is arg3
mov %o0, %g1 ! save address of routine binded
mov %l5, %g4 ! restore g4
restore ! how many restores needed ? 2
jmp %g1 ! jump to it
restore
SET_SIZE(elf_rtbndr_far)
#endif
/*
* Initialize a plt entry so that function calls go to 'bindfunc'
* (We parameterize the binding function here because we call this
* routine twice - once for PLT0 and once for PLT1 with different
* binding functions.)
*
* The plt entries (PLT0 and PLT1) look like:
*
* save %sp, -176, %sp
* sethi %hh(bindfunc), %l0
* sethi %lm(bindfunc), %l1
* or %l0, %hm(bindfunc), %l0
* sllx %l0, 32, %l0
* or %l0, %l1, %l0
* jmpl %l0 + %lo(bindfunc), %o1
* mov %g1, %o0
*/
#define M_SAVE_SP176SP 0x9de3bf50 /* save %sp, -176, %sp */
#define M_SETHI_L0 0x21000000 /* sethi 0x0, %l0 */
#define M_SETHI_L1 0x23000000 /* sethi 0x0, %l1 */
#define M_OR_L0L0 0xa0142000 /* or %l0, 0x0, %l0 */
#define M_SLLX_L032L0 0xa12c3020 /* sllx %l0, 32, %l0 */
#define M_OR_L0L1L0 0xa0140011 /* or %l0, %l1, %l0 */
#define M_JMPL_L0O1 0x93c42000 /* jmpl %l0 + 0, %o1 */
#define M_MOV_G1O0 0x90100001 /* or %g0, %g1, %o0 */
#if defined(lint)
#define HH22(x) 0 /* for lint's benefit */
#define LM22(x) 0
#define HM10(x) 0
#define LO10(x) 0
/* ARGSUSED */
void
elf_plt_init(void *plt, caddr_t bindfunc)
{
uint_t *_plt;
_plt = (uint_t *)plt;
_plt[0] = M_SAVE_SP176SP;
_plt[1] = M_SETHI_L0 | HH22(bindfunc);
_plt[2] = M_SETHI_L1 | LM22(bindfunc);
_plt[3] = M_OR_L0L0 | HM10(bindfunc);
_plt[4] = M_SLLX_L032L0;
_plt[5] = M_OR_L0L1L0;
_plt[6] = M_JMPL_L0O1 | LO10(bindfunc);
_plt[7] = M_MOV_G1O0;
}
#else
ENTRY(elf_plt_init)
save %sp, -SA(MINFRAME), %sp ! Make a frame
sethi %hi(M_SAVE_SP176SP), %o0 ! Get save instruction
or %o0, %lo(M_SAVE_SP176SP), %o0
st %o0, [%i0] ! Store in plt[0]
sethi %hi(M_SETHI_L0), %o4 ! Get "sethi 0x0, %l0" insn
srlx %i1, 42, %o2 ! get %hh(function address)
or %o4, %o2, %o4 ! or value into instruction
st %o4, [%i0 + 0x4] ! Store instruction in plt[1]
iflush %i0 ! .. and flush
sethi %hi(M_SETHI_L1), %o4 ! Get "sethi 0x0, %l1" insn
srl %i1, 10, %o2 ! get %lm(function address)
or %o4, %o2, %o4 ! or value into instruction
st %o4, [%i0 + 0x8] ! Store instruction in plt[2]
sethi %hi(M_OR_L0L0), %o4 ! Get "or %l0, 0x0, %l0" insn
or %o4, %lo(M_OR_L0L0), %o4
srlx %i1, 32, %o2 ! get %hm(function address)
and %o2, 0x3ff, %o2 ! pick out bits 42-33
or %o4, %o2, %o4 ! or value into instruction
st %o4, [%i0 + 0xc] ! Store instruction in plt[3]
iflush %i0 + 8 ! .. and flush
sethi %hi(M_SLLX_L032L0), %o4 ! get "sllx %l0, 32, %l0" insn
or %o4, %lo(M_SLLX_L032L0), %o4
st %o4, [%i0 + 0x10] ! Store instruction in plt[4]
sethi %hi(M_OR_L0L1L0), %o4 ! get "or %l0, %l1, %l0" insn
or %o4, %lo(M_OR_L0L1L0), %o4
st %o4, [%i0 + 0x14] ! Store instruction in plt[5]
iflush %i0 + 0x10 ! .. and flush
sethi %hi(M_JMPL_L0O1), %o4 ! get "jmpl %l0 + 0, %o1" insn
or %o4, %lo(M_JMPL_L0O1), %o4
and %i1, 0x3ff, %o2 ! get %lo(function address)
or %o4, %o2, %o4 ! or value into instruction
st %o4, [%i0 + 0x18] ! Store instruction in plt[6]
sethi %hi(M_MOV_G1O0), %o4 ! get "mov %g1, %o0" insn
or %o4, %lo(M_MOV_G1O0), %o4
st %o4, [%i0 + 0x1c] ! Store instruction in plt[7]
iflush %i0 + 0x18 ! .. and flush
ret
restore
SET_SIZE(elf_plt_init)
#endif
#if defined(lint)
/*
* The V9 ABI assigns the link map identifier, the
* Rt_map pointer, to the start of .PLT2.
*/
void
elf_plt2_init(unsigned int *plt2, Rt_map * lmp)
{
/* LINTED */
*(unsigned long *)plt2 = (unsigned long)lmp;
}
#else
ENTRY(elf_plt2_init)
stx %o1, [%o0]
retl
iflush %o0
SET_SIZE(elf_plt2_init)
#endif
/*
* After the first call to a plt, elf_bndr() will have determined the true
* address of the function being bound. The plt is now rewritten so that
* any subsequent calls go directly to the bound function. If the library
* to which the function belongs is being profiled refer to _plt_cg_write.
*
* For complete 64-bit spanning, the new plt entry is:
*
* nop
* sethi %hh(function address), %g1
* sethi %lm(function address), %g5
* or %g1, %hm(function address), %g1
* sllx %g1, 32, %g1
* or %g1, %g5, %g5
* jmpl %g5, %lo(function address), %g0
* nop
*
* However, shorter instruction sequences are possible and useful.
* This version gets us anywhere in the top 44 bits of the
* address space - since this is where shared objects live most
* of the time, this case is worth optimizing.
*
* nop
* sethi %h44(~function_address), %g5
* xnor %g5, %m44(~function address), %g1
* sllx %g1, 12, %g1
* jmpl %g1 + %l44(function address), %g0
* nop
* nop
* nop
*
* This version gets anywhere in the top 32 bits:
*
* nop
* sethi %hi(~function_address), %g5
* xnor %g5, %lo(~function_address), %g1
* jmpl %g1, %g0
* nop
* nop
* nop
* nop
*
* This version get's us to a destination within
* +- 8megs of the PLT's address:
*
* nop
* ba,a <dest>
* nop
* nop
* nop
* nop
* nop
* nop
*
* This version get's us to a destination within
* +- 2megs of the PLT's address:
*
* nop
* ba,a,pt %icc, <dest>
* nop
* nop
* nop
* nop
* nop
* nop
*
*
* The PLT is written in reverse order to ensure re-entrant behaviour.
* Note that the first two instructions must be overwritten with a
* single stx.
*
* Note that even in the 44-bit case, we deliberately use both %g5 and
* %g1 to prevent anyone accidentally relying on either of them being
* non-volatile across a function call.
*/
#define M_JMPL_G5G0 0x81c16000 /* jmpl %g5 + 0, %g0 */
#define M_OR_G1G5G5 0x8a104005 /* or %g1, %g5, %g5 */
#define M_SLLX_G132G1 0x83287020 /* sllx %g1, 32, %g1 */
#define M_OR_G1G1 0x82106000 /* or %g1, 0x0, %g1 */
#define M_SETHI_G5 0x0b000000 /* sethi 0x0, %g5 */
#define M_SETHI_G1 0x03000000 /* sethi 0x0, %g1 */
#define M_NOP 0x01000000 /* sethi 0x0, %g0 */
#define M_JMPL_G1G0 0x81c06000 /* jmpl %g1 + 0, %g0 */
#define M_SLLX_G112G1 0x8328700c /* sllx %g1, 12, %g1 */
#define M_XNOR_G5G1 0x82396000 /* xnor %g5, 0, %g1 */
#if defined(lint)
/* ARGSUSED */
#define MASK(m) ((1ul << (m)) - 1ul)
#define BITS(v, u, l) (((v) >> (l)) & MASK((u) - (l) + 1))
#define H44(v) BITS(v, 43, 22)
#define M44(v) BITS(v, 21, 12)
#define L44(v) BITS(v, 11, 0)
#endif
#if defined(lint)
void
/* ARGSUSED1 */
plt_upper_32(uintptr_t pc, uintptr_t symval)
{
ulong_t sym = (ulong_t)symval;
/* LINTED */
ulong_t nsym = ~sym;
uint_t * plttab = (uint_t *)pc;
plttab[3] = M_JMPL_G1G0;
plttab[2] = (uint_t)(M_XNOR_G5G1 | LO10(nsym));
*(ulong_t *)pc =
((ulong_t)M_NOP << 32) | (M_SETHI_G5 | LM22(nsym));
}
#else
ENTRY(plt_upper_32)
!
! Address lies in top 32-bits of address space, so use
! compact PLT sequence
!
sethi %hi(M_JMPL_G1G0), %o3 ! Get "jmpl %g1, %g0" insn
st %o3, [%o0 + 0xc] ! store instruction in plt[3]
iflush %o0 + 0xc ! .. and flush
not %o1, %o4
sethi %hi(M_XNOR_G5G1), %o3 ! Get "xnor %g5, %g1, %g1" insn
and %o4, 0x3ff, %o2 ! pick out bits 0-9
or %o3, %o2, %o3 ! or value into instruction
st %o3, [%o0 + 0x8] ! store instruction in plt[2]
iflush %o0 + 0x8 ! .. and flush
sethi %hi(M_SETHI_G5), %o3 ! Get "sethi 0x0, %g5" insn
srl %o4, 10, %o2 ! get %lm(~function address)
or %o3, %o2, %o3 ! or value into instruction
sethi %hi(M_NOP), %o4 ! Get "nop" instruction
sllx %o4, 32, %o4 ! shift to top of instruction pair
or %o3, %o4, %o3 ! or value into instruction pair
stx %o3, [%o0] ! store instructions into plt[0] plt[1]
retl
iflush %o0 ! .. and flush
SET_SIZE(plt_upper_32)
#endif /* defined lint */
#if defined(lint)
void
/* ARGSUSED1 */
plt_upper_44(uintptr_t pc, uintptr_t symval)
{
ulong_t sym = (ulong_t)symval;
ulong_t nsym = ~sym;
uint_t * plttab = (uint_t *)pc;
/* LINTED */
plttab[4] = (uint_t)(M_JMPL_G1G0 | L44(sym));
plttab[3] = M_SLLX_G112G1;
/* LINTED */
plttab[2] = (uint_t)(M_XNOR_G5G1 | M44(nsym));
*(ulong_t *)pc = ((ulong_t)M_NOP << 32) | (M_SETHI_G5 | H44(nsym));
}
#else
ENTRY(plt_upper_44)
!
! Address lies in top 44-bits of address space, so use
! compact PLT sequence
!
setuw M_JMPL_G1G0, %o3 ! Get "jmpl %g1, %g0" insn
and %o1, 0xfff, %o2 ! lower 12 bits of function address
or %o3, %o2, %o3 ! is or'ed into instruction
st %o3, [%o0 + 0x10] ! store instruction in plt[4]
iflush %o0 + 0x10 ! .. and flush
setuw M_SLLX_G112G1, %o3 ! Get "sllx %g1, 12, %g1" insn
st %o3, [%o0 + 0xc] ! store instruction in plt[3]
not %o1, %o4
setuw M_XNOR_G5G1, %o3 ! Get "xnor %g5, 0, %g1" insn
srlx %o4, 12, %o2 ! get %m44(0 - function address)
and %o2, 0x3ff, %o2 ! pick out bits 21-12
or %o3, %o2, %o3 ! or value into instruction
st %o3, [%o0 + 8] ! store instruction in plt[2]
iflush %o0 + 8 ! .. and flush
setuw M_SETHI_G5, %o3 ! Get "sethi 0x0, %g5" insn
srlx %o4, 22, %o2 ! get %h44(0 - function address)
or %o3, %o2, %o3 ! or value into instruction
setuw M_NOP, %o4 ! Get "nop" instruction
sllx %o4, 32, %o4 ! shift to top of instruction pair
or %o3, %o4, %o3 ! or value into instruction pair
stx %o3, [%o0] ! store instructions into plt[0] plt[1]
retl
iflush %o0 ! .. and flush
SET_SIZE(plt_upper_44)
#endif /* defined(lint) */
#if defined(lint)
void
/* ARGSUSED1 */
plt_full_range(uintptr_t pc, uintptr_t symval)
{
uint_t * plttab = (uint_t *)pc;
plttab[6] = M_JMPL_G5G0 | LO10(symval);
plttab[5] = M_OR_G1G5G5;
plttab[4] = M_SLLX_G132G1;
plttab[3] = M_OR_G1G1 | HM10(symval);
plttab[2] = M_SETHI_G5 | LM22(symval);
*(ulong_t *)pc =
((ulong_t)M_NOP << 32) | (M_SETHI_G1 | HH22(symval));
}
#else
ENTRY(plt_full_range)
!
! Address lies anywhere in 64-bit address space, so use
! full PLT sequence
!
sethi %hi(M_JMPL_G5G0), %o3 ! Get "jmpl %g5, %g0" insn
and %o1, 0x3ff, %o2 ! lower 10 bits of function address
or %o3, %o2, %o3 ! is or'ed into instruction
st %o3, [%o0 + 0x18] ! store instruction in plt[6]
iflush %o0 + 0x18 ! .. and flush
sethi %hi(M_OR_G1G5G5), %o3 ! Get "or %g1, %g5, %g1" insn
or %o3, %lo(M_OR_G1G5G5), %o3
st %o3, [%o0 + 0x14] ! store instruction in plt[5]
sethi %hi(M_SLLX_G132G1), %o3 ! Get "sllx %g1, 32, %g1" insn
or %o3, %lo(M_SLLX_G132G1), %o3
st %o3, [%o0 + 0x10] ! store instruction in plt[4]
iflush %o0 + 0x10 ! .. and flush
sethi %hi(M_OR_G1G1), %o3 ! Get "or %g1, 0x0, %g1" insn
or %o3, %lo(M_OR_G1G1), %o3
srlx %o1, 32, %o2 ! get %hm(function address)
and %o2, 0x3ff, %o2 ! pick out bits 42-33
or %o3, %o2, %o3 ! or value into instruction
st %o3, [%o0 + 0xc] ! store instruction in plt[3]
sethi %hi(M_SETHI_G5), %o3 ! Get "sethi 0x0, %g5" insn
srl %o1, 10, %o2 ! get %lm(function address)
or %o3, %o2, %o3 ! or value into instruction
st %o3, [%o0 + 0x8] ! store instruction in plt[2]
iflush %o0 + 8 ! .. and flush
sethi %hi(M_SETHI_G1), %o3 ! Get "sethi 0x0, %g1" insn
srlx %o1, 42, %o2 ! get %hh(function address)
or %o3, %o2, %o3 ! or value into instruction
sethi %hi(M_NOP), %o4 ! Get "nop" instruction
sllx %o4, 32, %o4 ! shift to top of instruction pair
or %o3, %o4, %o3 ! or value into instruction pair
stx %o3, [%o0] ! store instructions into plt[0] plt[1]
retl
iflush %o0 ! .. and flush
SET_SIZE(plt_full_range)
#endif /* defined(lint) */
/*
* performs the 'iflush' instruction on a range of memory.
*/
#if defined(lint)
void
iflush_range(caddr_t addr, size_t len)
{
/* LINTED */
uintptr_t base;
base = (uintptr_t)addr & ~7; /* round down to 8 byte alignment */
len = (len + 7) & ~7; /* round up to multiple of 8 bytes */
for (len -= 8; (long)len >= 0; len -= 8)
/* iflush(base + len) */;
}
#else
ENTRY(iflush_range)
add %o1, 7, %o1
andn %o0, 7, %o0
andn %o1, 7, %o1
1: subcc %o1, 8, %o1
bge,a,pt %xcc, 1b
iflush %o0 + %o1
retl
nop
SET_SIZE(iflush_range)
#endif
#if defined(lint)
ulong_t
elf_plt_trace()
{
return (0);
}
#else
.global elf_plt_trace
.type elf_plt_trace, #function
/*
* The dyn_plt that called us has already created a stack-frame for
* us and placed the following entries in it:
*
* [%fp + STACK_BIAS + -0x8] * dyndata
* [%fp + STACK_BIAS + -0x10] * prev stack size
*
* dyndata currently contains:
*
* dyndata:
* 0x0 Addr *reflmp
* 0x8 Addr *deflmp
* 0x10 Word symndx
* 0x14 Word sb_flags
* 0x18 Sym symdef.st_name
* 0x1c symdef.st_info
* 0x1d symdef.st_other
* 0x1e symdef.st_shndx
* 0x20 symdef.st_value
* 0x28 symdef.st_size
*/
#define REFLMP_OFF 0x0
#define DEFLMP_OFF 0x8
#define SYMNDX_OFF 0x10
#define SBFLAGS_OFF 0x14
#define SYMDEF_OFF 0x18
#define SYMDEF_VALUE_OFF 0x20
#define LAREGSSZ 0x40 /* sizeof (La_sparcv9_regs) */
elf_plt_trace:
1: call 2f
sethi %hi(_GLOBAL_OFFSET_TABLE_ - (1b - .)), %l7
2: or %l7, %lo(_GLOBAL_OFFSET_TABLE_ - (1b - .)), %l7
add %l7, %o7, %l7
ldx [%fp + STACK_BIAS + -CLONGSIZE], %l1 ! l1 = * dyndata
lduw [%l1 + SBFLAGS_OFF], %l2 ! l2 = sb_flags
andcc %l2, LA_SYMB_NOPLTENTER, %g0
be,pt %icc, .start_pltenter
ldx [%l1 + SYMDEF_VALUE_OFF], %l0 ! l0 =
! sym.st_value(calling address)
ba,a,pt %icc, .end_pltenter
nop
/*
* save all registers into La_sparcv9_regs
*/
.start_pltenter:
sub %sp, LAREGSSZ, %sp ! create space for La_sparcv9_regs
! storage on the stack.
add %fp, STACK_BIAS - (LAREGSSZ + (2 * CLONGSIZE)), %o4 ! addr of new space.
stx %i0, [%o4 + 0x0]
stx %i1, [%o4 + 0x8]
stx %i2, [%o4 + 0x10]
stx %i3, [%o4 + 0x18] ! because a regwindow shift has
stx %i4, [%o4 + 0x20] ! already occured our current %i*
stx %i5, [%o4 + 0x28] ! register's are the equivalent of
stx %i6, [%o4 + 0x30] ! the %o* registers that the final
stx %i7, [%o4 + 0x38] ! procedure shall see.
mov %g4, %l5 ! save g4 (safe across function calls)
ldx [%fp + STACK_BIAS + -CLONGSIZE], %l1 ! %l1 == * dyndata
ldx [%l1 + REFLMP_OFF], %o0 ! %o0 = reflmp
ldx [%l1 + DEFLMP_OFF], %o1 ! %o1 = deflmp
add %l1, SYMDEF_OFF, %o2 ! %o2 = symp
lduw [%l1 + SYMNDX_OFF], %o3 ! %o3 = symndx
call audit_pltenter
add %l1, SBFLAGS_OFF, %o5 ! %o3 = * sb_flags
mov %o0, %l0 ! %l0 == calling address
add %sp, LAREGSSZ, %sp ! cleanup La_sparcv9_regs off
! of the stack.
.end_pltenter:
/*
* If *no* la_pltexit() routines exist we do not need
* to keep the stack frame before we call the actual
* routine. Instead we jump to it and remove ourself
* from the stack at the same time.
*/
ldx [%l7+audit_flags], %l3
lduw [%l3], %l3 ! %l3 = audit_flags
andcc %l3, AF_PLTEXIT, %g0 ! AF_PLTEXIT = 2
be,pt %icc, .bypass_pltexit
ldx [%fp + STACK_BIAS + -CLONGSIZE], %l1 ! %l1 = * dyndata
lduw [%l1 + SBFLAGS_OFF], %l2 ! %l2 = sb_flags
andcc %l2, LA_SYMB_NOPLTEXIT, %g0 ! LA_SYMB_NOPLTEXIT = 2
bne,a,pt %icc, .bypass_pltexit
nop
ba,a,pt %icc, .start_pltexit
nop
.bypass_pltexit:
mov %l5, %g4 ! restore g4
jmpl %l0, %g0
restore
.start_pltexit:
/*
* In order to call la_pltexit() we must duplicate the
* arguments from the 'callers' stack on our stack frame.
*
* First we check the size of the callers stack and grow
* our stack to hold any of the arguments that need
* duplicating (these are arguments 6->N), because the
* first 6 (0->5) are passed via register windows on sparc.
*/
/*
* The first calculation is to determine how large the
* argument passing area might be. Since there is no
* way to distinquish between 'argument passing' and
* 'local storage' from the previous stack this amount must
* cover both.
*/
ldx [%fp + STACK_BIAS + -(2 * CLONGSIZE)], %l1 ! %l1 = callers
! stack size
sub %l1, MINFRAME, %l1 ! %l1 = argument space on
! caller's stack
/*
* Next we compare the prev. stack size against the audit_argcnt. We
* copy at most 'audit_argcnt' arguments. The default arg count is 64.
*
* NOTE: on sparc we always copy at least six args since these
* are in reg-windows and not on the stack.
*
* NOTE: Also note that we multiply (shift really) the arg count
* by 8 which is the 'word size' to calculate the amount
* of stack space needed.
*/
ldx [%l7 + audit_argcnt], %l2
lduw [%l2], %l2 ! %l2 = audit_argcnt
cmp %l2, 6
ble,pn %icc, .grow_stack
sub %l2, 6, %l2
sllx %l2, CLONGSHIFT, %l2 ! arg count * 8
cmp %l1, %l2 !
ble,a,pn %icc, .grow_stack
nop
mov %l2, %l1
.grow_stack:
/*
* When duplicating the stack we skip the first SA(MINFRAME)
* bytes. This is the space on the stack reserved for preserving
* the register windows and such and do not need to be duplicated
* on this new stack frame. We start duplicating at the portion
* of the stack reserved for argument's above 6.
*/
sub %sp, %l1, %sp ! grow our stack by amount required.
srax %l1, CLONGSHIFT, %l1 ! %l1 = %l1 / 8 (words to copy)
mov SA(MINFRAME), %l2 ! %l2 = index into stack & frame
1:
cmp %l1, 0
ble,a,pn %icc, 2f
nop
add %fp, %l2, %l4
ldx [%l4 + STACK_BIAS], %l3 ! duplicate args from previous
add %sp, %l2, %l4
stx %l3, [%l4 + STACK_BIAS] ! stack onto current stack
add %l2, CLONGSIZE, %l2
ba,pt %icc, 1b
sub %l1, 0x1, %l1
2:
mov %i0, %o0 ! copy ins to outs
mov %i1, %o1
mov %i2, %o2
mov %i3, %o3
mov %i4, %o4
mov %i5, %o5
call %l0 ! call original routine
mov %l5, %g4 ! restore g4
mov %o1, %l2 ! l2 = second 1/2 of return value
! for those those 64 bit operations
! link div64 - yuck...
! %o0 = retval
ldx [%fp + STACK_BIAS + -CLONGSIZE], %l1
ldx [%l1 + REFLMP_OFF], %o1 ! %o1 = reflmp
ldx [%l1 + DEFLMP_OFF], %o2 ! %o2 = deflmp
add %l1, SYMDEF_OFF, %o3 ! %o3 = symp
call audit_pltexit
lduw [%l1 + SYMNDX_OFF], %o4 ! %o4 = symndx
mov %o0, %i0 ! pass on return code
mov %l2, %i1
ret
restore
.size elf_plt_trace, . - elf_plt_trace
#endif
|