1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* This file contains bignum implementation code that
* is specific to AMD64, but which is still more appropriate
* to write in C, rather than assembly language.
* bignum_amd64_asm.s does all the assembly language code
* for AMD64 specific bignum support. The assembly language
* source file has pure code, no data. Let the C compiler
* generate what is needed to handle the variations in
* data representation and addressing, for example,
* statically linked vs PIC.
*/
#include "bignum.h"
/*
* The bignum interface deals only with arrays of 32-bit "digits".
* The 64-bit bignum functions are internal implementation details.
* If a bignum happens to be aligned on a 64-bit boundary
* and its length is even, then the pure 64-bit implementation
* can be used.
*/
#define ISALIGNED64(p) (((uintptr_t)(p) & 7) == 0)
#define ISBIGNUM64(p, len) (ISALIGNED64(p) && (((len) & 1) == 0))
#if defined(__lint)
extern uint64_t *P64(uint32_t *addr);
#else /* lint */
#define P64(addr) ((uint64_t *)addr)
#endif /* lint */
extern uint64_t big_mul_set_vec64(uint64_t *, uint64_t *, int, uint64_t);
extern uint64_t big_mul_add_vec64(uint64_t *, uint64_t *, int, uint64_t);
extern void big_mul_vec64(uint64_t *, uint64_t *, int, uint64_t *, int);
extern void big_sqr_vec64(uint64_t *, uint64_t *, int);
extern uint32_t big_mul_set_vec32(uint32_t *, uint32_t *, int, uint32_t);
extern uint32_t big_mul_add_vec32(uint32_t *, uint32_t *, int, uint32_t);
extern void big_mul_vec32(uint32_t *, uint32_t *, int, uint32_t *, int);
extern void big_sqr_vec32(uint32_t *, uint32_t *, int);
uint32_t big_mul_set_vec(uint32_t *, uint32_t *, int, uint32_t);
uint32_t big_mul_add_vec(uint32_t *, uint32_t *, int, uint32_t);
void big_mul_vec(uint32_t *, uint32_t *, int, uint32_t *, int);
void big_sqr_vec(uint32_t *, uint32_t *, int);
void
big_mul_vec(uint32_t *r, uint32_t *a, int alen, uint32_t *b, int blen)
{
if (!ISALIGNED64(r) || !ISBIGNUM64(a, alen) || !ISBIGNUM64(b, blen)) {
big_mul_vec32(r, a, alen, b, blen);
return;
}
big_mul_vec64(P64(r), P64(a), alen / 2, P64(b), blen / 2);
}
void
big_sqr_vec(uint32_t *r, uint32_t *a, int alen)
{
if (!ISALIGNED64(r) || !ISBIGNUM64(a, alen)) {
big_mul_vec32(r, a, alen, a, alen);
return;
}
big_sqr_vec64(P64(r), P64(a), alen / 2);
}
/*
* It is OK to cast the 64-bit carry to 32 bit.
* There will be no loss, because although we are multiplying the vector, a,
* by a uint64_t, its value cannot exceedthat of a uint32_t.
*/
uint32_t
big_mul_set_vec(uint32_t *r, uint32_t *a, int alen, uint32_t digit)
{
if (!ISALIGNED64(r) || !ISBIGNUM64(a, alen))
return (big_mul_set_vec32(r, a, alen, digit));
return (big_mul_set_vec64(P64(r), P64(a), alen / 2, digit));
}
uint32_t
big_mul_add_vec(uint32_t *r, uint32_t *a, int alen, uint32_t digit)
{
if (!ISALIGNED64(r) || !ISBIGNUM64(a, alen))
return (big_mul_add_vec32(r, a, alen, digit));
return (big_mul_add_vec64(P64(r), P64(a), alen / 2, digit));
}
void
big_mul_vec64(uint64_t *r, uint64_t *a, int alen, uint64_t *b, int blen)
{
int i;
r[alen] = big_mul_set_vec64(r, a, alen, b[0]);
for (i = 1; i < blen; ++i)
r[alen + i] = big_mul_add_vec64(r+i, a, alen, b[i]);
}
void
big_mul_vec32(uint32_t *r, uint32_t *a, int alen, uint32_t *b, int blen)
{
int i;
r[alen] = big_mul_set_vec32(r, a, alen, b[0]);
for (i = 1; i < blen; ++i)
r[alen + i] = big_mul_add_vec32(r+i, a, alen, b[i]);
}
void
big_sqr_vec32(uint32_t *r, uint32_t *a, int alen)
{
big_mul_vec32(r, a, alen, a, alen);
}
uint32_t
big_mul_set_vec32(uint32_t *r, uint32_t *a, int alen, uint32_t digit)
{
uint64_t p, d, cy;
d = (uint64_t)digit;
cy = 0;
while (alen != 0) {
p = (uint64_t)a[0] * d + cy;
r[0] = (uint32_t)p;
cy = p >> 32;
++r;
++a;
--alen;
}
return ((uint32_t)cy);
}
uint32_t
big_mul_add_vec32(uint32_t *r, uint32_t *a, int alen, uint32_t digit)
{
uint64_t p, d, cy;
d = (uint64_t)digit;
cy = 0;
while (alen != 0) {
p = r[0] + (uint64_t)a[0] * d + cy;
r[0] = (uint32_t)p;
cy = p >> 32;
++r;
++a;
--alen;
}
return ((uint32_t)cy);
}
|